B-Human

Team Report and Code Release 2015

Thomas Rofer!?, Tim Laue?
Jesse Richter-Klug?, Maik Schiinemann? Jonas Stiensmeier?
Andreas Stolpmann?, Alexander Stowing?, Felix Thielke?

! Deutsches Forschungszentrum fiir Kiinstliche Intelligenz,
Enrique-Schmidt-Str. 5, 28359 Bremen, Germany
2 Universitit Bremen, Fachbereich 3, Postfach 330440, 28334 Bremen, Germany

Revision: November 30, 2015

Contents

1 Introduction 5
1.1 About Us e
1.2 About this Document 5
2 Getting Started 7
2.1 Download L 7
2.2 Components and Configurations 7
2.3 Building the Code L 9
2.3.1 Project Generation L 9
2.3.2 Visual Studio on Windows L oo 9
2.3.2.1 Required Software, . 9
2.3.2.2 Compiling 10
233 Xcodeon OS X L 10
2.3.3.1 Required Software 10
2.3.3.2 Compiling 10
234 Linux 11
2.3.4.1 Required Software 11
2.3.42 Compiling 11
2.4 Setting Up the NAO 12
2.4.1 Requirements 12
2.4.2 Creating a Robot Configuration. 12
2.4.3 Managing Wireless Configurations 13
244 Setup e e 13
2.5 Copying the Compiled Code 13
2.6 Working with the NAO 14
2.7 Starting SimRobot oL 15
2.8 Calibrating the Robots 16
2.8.1 Overall Physical Calibration 16
2.8.2 Joint Calibration 16

CONTENTS

B-Human 2015

2.8.3 Camera Calibration
2.8.4 Color Calibrationo
2.9 Configuration Files

3 Changes Since 2014

3.1 Infrastructure
3.1.1 Modules and Representations
312 LogkFiles

3.1.3 C-based Agent Behavior Specification Language (CABSL)

3.14 Eigen
3.1.5 Wrist and Hand Joints, Tactile Sensors, and Head LED . .
3.1.6 Additional Changes

3.2 Tools. e
3.2.1 Automatic Camera Calibrator.

3.3 Perception
3.3.1 Goal Perception
3.3.2 Penalty Mark Perception
3.3.3 Players Perception

3.4 Motion Selection and Combination
3.5 Behavior.
3.5.1 Defender
3.5.1.1 The Left / Right Decision

3.5.1.2 The Back / Forward Decision

3.5.1.3 The Position Selection

3.5.1.4 The Decision to Move

4 Technical Challenges

4.1 Corner Kicks Challenge
4.1.1 A Kick Engine based on Dynamic Movement Primitives . .
4.1.1.1 Prediction of Motor Behavior

4.1.1.2 Balancing

4.1.1.3 Modeling of the Kick Trajectory

4.2 Many Carpets Challenge
4.3 Realistic Ball Challenge
4.3.1 RealisticBallPerceptor
4.3.2 RealisticBallPerceptSelector

5 Team Communication Monitor

B-Human 2015 CONTENTS

6 Acknowledgements 41

Bibliography 43

Chapter 1

Introduction

1.1 About Us

B-Human is a joint RoboCup team of the University of Bremen and the German Research Center
for Artificial Intelligence (DFKI). The team was founded in 2006 as a team in the Humanoid
League, but switched to participating in the Standard Platform League in 2009. Since then, we
participated in seven RoboCup German Open competitions and in seven RoboCups. We always
won the German Open and became world champion four times.

This year, we came second by only losing the final to the world champion UNSW Australia.
Beside this, we reached also the second place in the Drop-In Competition. In the Technical
Challenge we became first by reaching the second place in each single contest, which were the
Corner Kicks Challenge, the Many Carpets Challenge, and the Realistic Ball Challenge.

The current team consists of the following persons:

Team Leaders / Staff: Tim Laue, Thomas Rofer.

Students: Arne Bockmann, Patrick Glaser, Vitali Gutsch, Florian Maaf}, Jesse Richter-Klug,
Maik Schiinemann, Jonas Stiensmeier, Alexander Stéwing, Andreas Stolpmann, Felix
Thielke, Alexis Tsogias, Jan-Bernd Vosteen

Associated Researchers: Udo Frese, Judith Miiller, Dennis Schiithe, Felix Wenk

1.2 About this Document

In this document, we give a short overview of the changes that we made in our system since
last year and provide descriptions of the approaches used in the technical challenges. The most
comprehensive reference to our system is still the team report of 2013 [12].

Chapter 2 gives a short introduction on how to build our 2015 code, including the software
required to do so, and how to run the NAO with our system. In Chapter 3, we summarize
the changes we made since 2014 that are not described elsewhere in this document. Chapter 4
describes our contributions to this year’s technical challenges. Chapter 5 gives an overview of
the Team Communication Monitor. Finally, Chapter 6 lists the software developed by others
that we include in our code release as well as the people and organizations that sponsored us.

B-Human 2015 1.2. ABOUT THIS DOCUMENT

ISTIC T
" Y + -
League

~ Saal Meyer

~ Saal Rontgen
.

pen2ots © HESEN GERMAOSEES

‘ A GERMAN OPEN

Figure 1.1: The team members of B-Human 2015

Chapter 2

Getting Started

The goal of this chapter is to give an overview of the code release package and to give instructions
on how to enliven a NAO with our code. For the latter, several steps are necessary: downloading
the source code, compiling the code using Visual Studio, Xcode, or make on Linux, setting up
the NAO, copying the files to the robot and starting the software. In addition, all calibration
procedures are described here.

2.1 Download

The code release can be downloaded from GitHub at https://github.com/bhuman. Store the
code release in a folder of your liking. After the download is finished, the chosen folder should
contain several subdirectories which are described below.

Build is the target directory for generated binaries and for temporary files created during the
compilation of the source code. It is initially missing and will be created by the build
system.

Config contains configuration files used to configure the B-Human software. A brief overview
of the organization of the configuration files can be found in Sect. 2.9.

Install contains all files needed to set up B-Human on a NAO.

Make Contains Makefiles, other files needed to compile the code, the Copyfiles tool, and a
script to download log files from a NAO. In addition there are generate scripts that create
the project files for Xcode, Visual Studio, CodeLite, and NetBeans.

Src contains the source code of the B-Human software including the B-Human User Shell [12,
Chapter 8.2]

Util contains auxiliary and third party libraries (cf. Sect. 6) as well as our tools, e. g. SimRobot
[12, Chapter 8.1]

2.2 Components and Configurations

The B-Human software is usable on Windows, Linux, and OS X. It consists of two shared
libraries for NAOqi running on the real robot, an additional executable for the robot, the same

https://github.com/bhuman

B-Human 2015 2.2. COMPONENTS AND CONFIGURATIONS

software running in our simulator SimRobot (without NAOqi), as well as some libraries and
tools. Therefore, the software is separated into the following components:

bush is a tool to deploy and manage multiple robots at the same time [12, Chapter 8.2].

Controller is a static library that contains NAO-specific extensions of the simulator, the in-
terface to the robot code framework, and it is also required for controlling and high level
debugging of code that runs on a NAO.

copyfiles is a tool for copying compiled code to the robot. For a more detailed explanation see
Sect. 2.5. In the Xcode project, this is called Deploy.

libbhuman is the shared library used by the B-Human executable to interact with NAOqi.

libgamectrl is a shared NAQOqi library that communicates with the GameController. Addi-
tionally, it implements the official button interface and sets the LEDs as specified in the
rules. More information can be found in our 2013 code release [12, Chapter 3.1].

libgxt is a static library that provides an additional widget for Qt on Windows and Linux. On
OS X, the same source files are simply part of the library Controller.

Nao is the B-Human executable for the NAO. It depends on SpecialActions, libbhuman, and
libgamectrl.

qtpropertybrowser is a static library that implements a property browser in Qt.

SimRobot is the simulator executable for running and controlling the B-Human robot code. It
dynamically links against the components SimRobotCore2, SimRobotEditor, SimRobotH-
elp, SimulatedNao, and some third-party libraries. It also depends on the component
SpecialActions, the result of which is loaded by the robot code. SimRobot is compilable in
Release, Develop, and Debug configurations. All these configurations contain debug code,
but Release performs some optimizations and strips debug symbols (Linux and OS X).
Dewvelop produces debuggable robot code while linking against non-debuggable but faster
Release libraries.

SimRobotCore2 is a shared library that contains the simulation engine of SimRobot.
SimRobotEditor is a shared library that contains the editor widget of the simulator.
SimRobotHelp is a shared library that contains the help widget of the simulator.
SimulatedNao is a shared library containing the B-Human code for the simulator. It depends

on Controller, gtpropertybrowser, and libgzt. It is statically linked against them.

All components can be built in the three configurations Release, Develop, and Debug. Release
is meant for “game code” and thus enables the highest optimizations; Debug provides full de-
bugging support and no optimization. Develop is a special case. It generates executables with
some debugging support for the components Nao and SimulatedNao (see the table below for
more specific information). For all other components it is identical to Release.

2.3. BUILDING THE CODE B-Human 2015

The different configurations for Nao and SimulatedNao can be looked up here:

without debug symbols debug libs! optimizations
assertions | (compiler flags) (_DEBUG, (compiler flags)
(NDEBUG) compiler flags)

Release

Nao v X X v
SimulatedNao v X X v
Develop

Nao X X X v
SimulatedNao X v X X
Debug

Nao X v v X
SimulatedNao X v v X

1~ on Windows - http://msdn.microsoft.com/en-us/library/0b98s6w8 (v=vs.140) .aspx

2.3 Building the Code

2.3.1 Project Generation

The scripts generate (or generate.cmd on Windows) in the Make/<OS/IDE> directories gen-
erate the platform or IDE specific files that are needed to compile the components. The script
collects all the source files, headers, and other resources if needed and packs them into a solution
matching your system (i.e. Visual Studio projects and a solution file for Windows, a CodeLite
project for Linux, and an Xcode project for OS X). It has to be called before any IDE can
be opened or any build process can be started and it has to be called again whenever files are
added or removed from the project. On Linux, the generate script is needed when working with
CodelLite or NetBeans. Building the code from the command line, via the provided Makefile,
works without calling generate on Linux.

2.3.2 Visual Studio on Windows
2.3.2.1 Required Software

e Windows 7 64 bit or later

e Visual Studio 2015! or later

e Cygwin x86 / x64% (available at http://www.cygwin.com) with the additional packages
rsync, openssh, ccache, and clang. Let the installer add an icon to the start menu (the
Cygwin Terminal). Add the ...\cygwin64\bin directory to the beginning of the PATH en-
vironment variable (before the Windows system directory, since there are some commands
that have the same names but work differently). Make sure to start the Cygwin Terminal
at least once, since it will create a home directory.

Visual Studio 2015 Community Edition with only the “Common Tools for Visual C++ 2015” installed is
sufficient.
2Unfortunately, the Cygwin 64-bit version does not work on Windows 10 1511.

http://msdn.microsoft.com/en-us/library/0b98s6w8(v=vs.140).aspx
http://www.cygwin.com

B-Human 2015 2.3. BUILDING THE CODE

e alcommon — For the extraction of the required alcommon library and compatible boost
headers from the NAOqi C++ SDK 2.1.4 Linuz 32 (naoqi-sdk-2.1.4.13-linux32.tar.gz),
the script Install/installAlcommon can be used, which is delivered with the B-Human
software. The required package has to be downloaded manually and handed over to the
script. It is available at https://community.aldebaran.com (account required). Please
note that this package is only required to compile the code for the actual NAO robot.

2.3.2.2 Compiling

Generate the Visual Studio project files using the script Make/VS2015/generate.cmd and open
the solution Make/VS2015/B-Human.sln in Visual Studio. Visual Studio will then list all the
components (cf. Sect. 2.2) of the software in the “Solution Explorer”. Select the desired con-
figuration (cf. Sect. 2.2, Develop would be a good choice for starters) and build the desired
project: SimRobot compiles every project used by the simulator, Nao compiles every project
used for working with a real NAO, and Utils/bush compiles the B-Human User Shell (cf. [12,
Chapter 8.2]). You may select SimRobot or Utils/bush as “StartUp Project”.

2.3.3 Xcode on OS X
2.3.3.1 Required Software

The following components are required:

e OS X 10.11 or later
e Xcode 7.1 or later

e alcommon — For the extraction of the required alcommon library and compatible boost
headers from the NAOqi C++ SDK 2.1.4 Linuz 32 (naoqi-sdk-2.1.4.13-linux32.tar.gz),
the script Install/installAlcommon can be used, which is delivered with the B-Human
software. The required package has to be downloaded manually and handed over to the
script. It is available at https://community.aldebaran.com (account required). Please
note that this package is only required to compile the code for the actual NAO robot.
Also note that installAlcommon expects the extension .tar.gz. If the NAOqi archive was
partially unpacked after the download, e.g., by Safari, repack it again before executing
the script.

2.3.3.2 Compiling

Generate the Xcode project by executing Make/OSX /generate. Open the Xcode project
Make/OSX/B-Human.xcodeproj. A number of schemes (selectable in the toolbar) allow build-
ing SimRobot in the configurations Debug, Develop, and Release, as well as the code for the
NAO?3 in all three configurations (cf. Sect. 2.2). For both targets, Develop is a good choice. In
addition, the B-Human User Shell bush can be built. It is advisable to delete all the schemes
that are automatically created by Xcode, i.e. all non-shared ones.

When building for the NAO, a successful build will open a dialog to deploy the code to a robot
(using the copyfiles script, cf. Sect. 2.5).% If the login script was used before to login to a NAO,

3Note that the cross compiler actually builds code for Linux, although the scheme says “My Mac”.
“Before you can do that, you have to setup the NAO first (cf. Sect. 2.4).

10

https://community.aldebaran.com
https://community.aldebaran.com

2.3. BUILDING THE CODE B-Human 2015

the IP address used will be provided as default. In addition, the option -r is provided by default,
which will restart the software on the NAO after it was deployed. Both the TP address selected
and the options specified are remembered for the next use of the deploy dialog. The IP address is
stored in the file Config/Scenes/connect.con that is also written by the login script and used by
the RemoteRobot simulator scene. The options are stored in Make/OSX/copyfiles-options.txt.
A special option is -a: If it is specified, the deploy dialog is not shown anymore in the future.
Instead, the previous settings will be reused, i.e. building the code will automatically deploy it
without any questions asked. To get the dialog back, hold down the shift key at the time the
dialog would normally appear.

2.3.4 Linux

The following has been tested and works on Ubuntu 14.04 64-bit. It should also work on other
Linux distributions (as long as they are 64-bit); however, different or additional packages may
be needed.

2.3.4.1 Required Software

Requirements (listed by common package names) for Ubuntu 14.04:

e clang > 3.4

e (t4-dev-tools

e libglew-dev

e libxml2-dev

e graphviz — Optional, for generating module graphs and the behavior graph.

e alcommon — For the extraction of the required alcommon library and compatible boost
headers from the NAOqi C++ SDK 2.1.4 Linuz 32 (naoqi-sdk-2.1.4.13-linux32.tar.gz),
the script Install/installAlcommon can be used, which is delivered with the B-Human
software. The required package has to be downloaded manually and handed over to the
script. It is available at https://community.aldebaran.com (account required). Please
note that this package is only required to compile the code for the actual NAO robot.

On Ubuntu 14.04, you can execute the following command to install all requirements except for
alcommon:

sudo apt-get install qt4-dev-tools libglew-dev libxml2-dev clang graphviz

2.3.4.2 Compiling

To compile one of the components described in Section 2.2 (except Copyfiles), simply select
Make/Linux as the current working directory and type:

make <component> [CONFIG=<configuration >]

To clean up the whole solution, use:

make clean [CONFIG=<configuration>]

11

https://community.aldebaran.com

B-Human 2015 2.4. SETTING UP THE NAO

As an alternative, there is also support for the integrated development environments NetBeans
and CodeLite that work similar to Visual Studio for Windows (cf. Sect. 2.3.2.2).

To use CodeLite, execute Make/LinuxCodeLite/generate and open the B-Human.workspace
afterwards. Note that CodeLite 5 or later is required to open the workspace generated. Older
versions might crash. For the NetBeans project files execute Make/NetBeans/generate.

2.4 Setting Up the NAO

2.4.1 Requirements

First of all, download the the atom system image, e.g. version 2.14 (opennao-atom-system-
image-2.1.4.13.0pn), and the Flasher, e.g. version 2.1.0, for your operating system from the
download area of https://community.aldebaran.com (account required). In order to flash the
robot, you need a USB flash drive having at least 2 GB space and a network cable.

To use the scripts in the directory Install, the following tools are required®:
sed, rsync.

Each script will check its requirements and will terminate with an error message if a required
tool is not found.

The commands in this chapter are shell commands. They should be executed inside a Unix
shell. On Windows, you must use the Cygwin Terminal to execute the commands. All shell
commands should be executed from the Install directory.

2.4.2 Creating a Robot Configuration

Before you start to set up the NAO, you need to create configuration files for each robot you
want to set up. To create a robot configuration, run createRobot. The script expects a team id,
a robot id, and a robot name. The team id is usually equal to your team number configured in
Config/settings.cfg, but you can use any number between 1 and 254. The given team id is used
as third part of the IPv4 address of the robot on both interfaces LAN and WLAN. All robots
playing in the same team need the same team id to be able to communicate with each other.
The robot id is the last part of the IP address and must be unique for each team id. The robot
name is used as host name in the NAO operating system and is saved in the chestboard of the
NAO as BodyNickname.

Before creating your first robot configuration, check whether the network configuration template
files wireless and wired in Install/Network and default in Install/Network/Profiles match the
requirements of your local network configuration.

Here is an example for creating a new set of configuration files for a robot named Penny in team
three with IP xxx.xxx.3.25:

./createRobot -t 3 -r 25 Penny

Help for createRobot is available using the option -h.

Running createRobot creates all needed files to install the robot. This script also creates a robot
directory in Config/Robots.

°In the unlikely case that they are missing in a Linux distribution, execute sudo apt-get install sed scp. On
Windows and OS X, they are already installed at this point.

12

https://community.aldebaran.com

2.5. COPYING THE COMPILED CODE B-Human 2015

2.4.3 Managing Wireless Configurations

All wireless configurations are stored in Install/Network/Profiles. Additional configurations
must be placed here and will be installed alongside the default configuration. After the setup
is completed, the NAO will always load the default configuration, when booting the operating
system.

You can later switch between different configurations by calling the script setprofile on the NAO,
which overwrites the default configuration.

setprofile SPL_A
setprofile Home

Another way to switch between different configurations is by using the tools copyfiles (cf.
Sect. 2.5) or bush (cf. [12, Chapter 8.2]).

2.4.4 Setup

After the robot specific configuration files were created (cf. Sect. 2.4.2 and Sect. 2.4.3), plug
in your USB flash drive and start the NAO flasher tool®. Select the opennao-atom-system-
image-2.1.3.3.opn and your USB flash drive. Enable “Factory reset” and click on the write
button.

After the USB flash drive has been flashed, plug it into the NAO and press the chest button for
about 5 seconds. Afterwards, the NAO will automatically install NAO OS and reboot. While
installing the basic operating system, connect your computer to the robot using the network
cable and configure your Network for DHCP. Once the reboot is finished, the NAO will do its
usual Aldebaran wake up procedure. Now the NAO will say its IP address by pressing the chest
button.

For example run:

./installRobot Penny 169.254.220.18

Now you can use copyfiles (cf. Sect. 2.5) or bush (cf. [12, Chapter 8.2]) to copy compiled code
and configuration files to the NAO.

2.5 Copying the Compiled Code

The tool copyfiles is used to copy compiled code and configuration files to the NAO. Although
copyfiles allows specifying the team number, it is usually better to configure the team number
and the UDP port used for team communication permanently in the file Config/settings.cfg.

On Windows as well as on OS X, you can use your IDE to use copyfiles. In Visual Studio, you
can run the script by “building” the tool copyfiles, which can be built in all configurations. If
the code is not up-to-date in the desired configuration, it will be built. After a successful build,
you will be prompted to enter the parameters described below. On the Mac, a successful build
for the NAO always ends with a dialog asking for copyfiles’ command line options.

You can also execute the script at the command prompt, which is the only option for Linux
users. The script is located in the folder Make/<OS/IDE>.

50n Linux and OS X you have to start the flasher with root permissions. Usually you can do this with sudo
./flasher

13

B-Human 2015 2.6. WORKING WITH THE NAO

copyfiles requires two mandatory parameters. First, the configuration the code was compiled
with (Debug, Develop or Release)”, and second, the IP address of the robot. To adjust the
desired settings, it is possible to set the following optional parameters:

Option Description
-1 <location> | Sets the location, replacing the value in the settings.cfg.
-t <color> Sets the team color to blue or red, replacing the value in the settings.cfg.

-p <number> | Sets the player number, replacing the value in the settings.cfg.
-n <number> | Sets team number, replacing the value in the settings.cfg.

-0 <port> Overwrite team port (default is 10000 + team number).

-r Restarts bhuman after copying.

-TIT Forces restart of bhuman and naoqi.

-m n <ip> Copies to IP address <ip> and sets the player number to n. This option
can be specified more than ones to deploy to multiple robots.

-wce Compiles also under Windows if the binaries are outdated.

-nc Never compiles, even if binaries are outdated. Default on Windows/OS X.

-nr Do not check whether robot is reachable. Otherwise, ping it once.

-d Removes all log files from the robot’s /home/nao/logs directory before

copying files.

-v <percent> | Set NAO’s sound volume.
-w <profile> | Set wireless profile.

-h | ==help Prints the help.

Possible calls could be:

./copyfiles Develop 134.102.204.229 -n 5 -t blue -p 3 -r
./copyfiles Release -m 1 10.0.0.1 -m 3 10.0.0.2

The destination directory on the robot is /home/nao/Config. Alternatively, the B-Human User
Shell (cf. [12, Chapter 8.2]) can be used to copy the compiled code to several robots at once.

2.6 Working with the NAO

After pressing the chest button, it takes about 40 seconds until NAOqi is started. Currently,
the B-Human software consists of two shared libraries (libbhuman.so and libgamectrl.so) that
are loaded by NAOqi at startup, and one executable (bhuman), which is also loaded at startup.

To connect to the NAQO, the subdirectories of Make contain a login script for each supported
platform. The only parameter of that script is the IP address of the robot to login. It automat-
ically uses the appropriate SSH key to login. In addition, the IP address specified is written to
the file Config/Scenes/connect.con. Thus, a later use of the SimRobot scene RemoteRobot.ros2
will automatically connect to the same robot. On OS X, the IP address is also the default
address for deployment in Xcode.

Additionally, the script Make/Linux/ssh-config can be used to output a valid ssh config file
containing all robots currently present in the robots folder. Using this configuration file, one
can connect to a robot using its name instead of the IP address.

There are several scripts to start and stop NAOqi and bhuman via SSH. Those scripts are copied
to the NAO upon installing the B-Human software.

"This parameter is automatically passed to the script when using IDE-based deployment.

14

2.7. STARTING SIMROBOT B-Human 2015

naoqi executes NAQOqi in the foreground. Press Ctri+C to terminate the process. Please note
that the process will automatically be terminated if the SSH connection is closed.

nao start|stop|restart starts, stops or restarts NAOqi. In case libbhuman or libgamectr] were
updated, copyfiles restarts NAOqi automatically.

bhuman executes the bhuman executable in the foreground. Press Ctrl+C to terminate the
process. Please note that the process will automatically be terminated if the SSH connec-
tion is closed.

bhumand start|stop|restart starts, stops or restarts the bhuman executable. Copyfiles al-
ways stops bhuman before deploying. If copyfiles is started with option -r, it will restart
bhuman after all files were copied.

status shows the status of NAOqi and bhuman.
stop stops running instances of NAOqi and bhuman.

halt shuts down the NAO. If NAQOqi is running, this can also be done by pressing the chest
button longer than three seconds.

reboot reboots the NAO.

2.7 Starting SimRobot

On Windows and OS X, SimRobot can either be started from the development environment
or by starting a scene description file in Config/Scenes®. In the first case, a scene description
file has to be opened manually, whereas it will already be loaded in the latter case. On Linux,
just run Build/SimRobot/Linux/< configuration> /SimRobot, either from the shell or from your
favorite file browser, and load a scene description file afterwards. When a simulation is opened
for the first time, only the scene graph is displayed. The simulation is already running, which
can be noted from the increasing number of simulation steps shown in the status bar. A scene
view showing the soccer field can be opened by double-clicking RoboCup. The view can be
adjusted by using the context menu of the window or the toolbar. Double-clicking Console will
open a window that shows the output of the robot code and that allows entering commands.
All windows can be docked in the main window.

After starting a simulation, a script file may automatically be executed, setting up the robot(s)
as desired. The name of the script file is the same as the name of the scene description file but
with the extension .con. Together with the ability of SimRobot to store the window layout, the
software can be configured to always start with a setup suitable for a certain task.

Although any object in the scene graph can be opened, only displaying certain entries in the ob-
ject tree makes sense, namely the main scene RoboCup, the objects in the group RoboCup/robots,
and all other views.

To connect to a real NAO, open the RemoteRobot scene Config/Scenes/RemoteRobot.ros2. You
will be prompted to enter the NAO’s IP address.” In a remote connection, the simulation scene
is usually empty. Therefore, it is not necessary to open a scene view.

80n Windows, the first time starting such a file the SimRobot.exe must be manually chosen to open these
files. Note that both on Windows and OS X, starting a scene description file bears the risk of executing a different
version of SimRobot than the one that was just compiled.

9The script might instead automatically connect to the IP address that was last used for login or deployment.

15

B-Human 2015 2.8. CALIBRATING THE ROBOTS

2.8 Calibrating the Robots

Correctly calibrated robots are very important since the software requires all parts of the NAO
to be at the expected locations. Otherwise, the NAO will not be able to walk stable and
projections from image coordinates to world coordinates (and vice versa) will be wrong. In
general, a lot of calculations will be unreliable. T'wo physical components of the NAO can be
calibrated via SimRobot; the joints (cf. Sect. 2.8.2) and the cameras (cf. Sect. 2.8.3). Checking
those calibrations from time to time is important, especially for the joints. New robots come
with calibrated joints and are theoretically ready to play out of the box. However, over time
and usage, the joints wear out. This is especially noticeable with the hip joint.

In addition to that, the B-Human vision software uses seven color classes which have to be
calibrated, too (cf. Sect. 2.8.4). Changing locations or light conditions might require them to
be adjusted.

2.8.1 Overall Physical Calibration

The physical calibration process can be split into three steps with the overall goal of an upright
and straight standing robot, and a correctly calibrated camera. The first step is to get both
feet in a planar position. This does not mean that the robot has to stand straight. It is done
by lifting the robot up so that the bottom of the feet can be seen. The joint offsets of feet and
legs are then changed until both feet are planar and the legs are parallel to one another. The
distance between the two legs can be measured at the gray parts of the legs. They should be 10
cm apart from center to center.

The second step is the camera calibration (cf. Sect. 2.8.3). This step also measures the tilt of
the body with respect to the feet. This measurement can then be used in the third step to
improve the joint calibration and straighten the robot up (cf. Sect. 2.8.2). In some cases it may
be necessary to repeat these steps.

2.8.2 Joint Calibration

The software supports two methods for calibrating the joints; either by manually adjusting offsets
for each joint, or by using the JointCalibrator module which uses an inverse kinematic to do the
same [12, Chapter 6.2.1.2]. The third step of the overall calibration process (cf. Sect. 2.8.1) can
only be done via the JointCalibrator. When switching between these two methods, it is necessary
to save the JointCalibration, redeploy the NAO and restart bhuman. Otherwise, the changes
done previously will not be used.

Before changing joint offsets, the robot has to be set in a standing position with fixed joint
angles. Otherwise, the balancing mechanism of the motion engine might move the legs, messing
up the joint calibrations. This can be done with

get representation:MotionRequest

and then set motion = stand in the returned statement.

When the calibration is finished it should be saved:

save representation:JointCalibration

16

2.8. CALIBRATING THE ROBOTS B-Human 2015

Manually Adjusting Joint Offsets

First of all, the robot has to be switched to a stationary stand, otherwise the balancing mecha-
nism of the motion engine might move the legs, messing up the joint calibration:

mr StandOutput CalibrationStand

There are two ways to adjust the joint offsets. Either by requesting the JointCalibration repre-
sentation with a get call:

get representation:JointCalibration

modifying the calibration returned and then setting it. Or by using a Data View [12, Chap-
ter 8.1.4.5]

vd representation:JointCalibration

which is more comfortable.

The JointCalibration also contains other information for each joint that should not be changed!

Using the JointCalibrator

First set the JointCalibrator to provide the JointCalibration and switch to the CalibrationStand:

call JointCalibrator

When a completely new calibration is desired, the JointCalibration can be reset:

dr module:JointCalibrator:reset

Afterwards, the translation and rotation of the feet can be modified. Again either with

get module:JointCalibrator:offsets

or with:

vd module:JointCalibrator:offsets

The units of the translations are in millimeters and the rotations are in degrees.

Straightening Up the NAO

The camera calibration (cf. Sect. 2.8.3) also calculates a rotation for the body rotation. These
values can be passed to the JointCalibrator that will then set the NAO in an upright position.
Call:

get representation:CameraCalibration
call JointCalibrator

Copy the values of bodyRotationCorrection (representation CameraCalibration) into bodyRotation
(representation JointCalibration). Afterwards, set bodyRotationCorrection (representation Cam-
eraCalibration) to zero. Another way to make these actions more or less automatically is possible
by using the AutomaticCameraCalibrator with the automation flag (cf. Sect. 3.2.1).

The last step is to adjust the translation of both feet at the same time (and most times in the
same direction) so they are perpendicular positioned below the torso. A plummet or line laser
is very useful for that task.

When all is done save the representations by executing

17

B-Human 2015 2.8. CALIBRATING THE ROBOTS

save representation:JointCalibration
save representation:CameraCalibration

Then redeploy the NAO and restart bhuman.

2.8.3 Camera Calibration

There are two methods to calibrate the camera [12, Chapter 4.1.2.1] of the robots. Both are
explained within the following paragraphs.

Manual Calibration with the CameraCalibrator

(a) (b)

Figure 2.1: Projected lines before (a) and after (b) the calibration procedure

For manually calibrating the cameras using the module CameraCalibrator, follow the steps below:

1. Connect the simulator to a robot on the field and place it on a defined spot (e.g. the
penalty mark).

2. Run the SimRobot configuration file CameraCalibrator.con, i.e. type call CameraCali-
brators/Default in SimRobot’s console. This will initialize the calibration process and
furthermore print some help and a command to the simulator console that will be needed
later on.

3. Announce the robot’s position on the field [12, Chapter 4.1.2] using the CameraCalibrator
module (e.g. for setting the robot’s position to the penalty mark of a field, type set
module:CameraCalibrator:robotPose rotation = 0; translation = {x = -3200; y = 0;}; in
the console).

4. Start collecting points. Move the head to collect points for different rotations of the head
by clicking on field lines. The number of collected points is shown in the top area of the
image view. The head can be moved by clicking into an image view while holding the shift
key down.!® The head will then look at that position.

10Note that this will actually change the module that controls the head motion.

18

2.8. CALIBRATING THE ROBOTS B-Human 2015

5. Run the automatic calibration process by pressing Shift+Ctrl+O' and wait until the
optimization has converged. You can always go back to collecting more points by pressing

Shift+Ctrl+C.

The calibration module allows to arbitrarily switch between upper and lower camera during the
point collection phase. Both cameras should be considered for a good result. For the purpose
of manual refinement of the robot-specific parameters mentioned, there is a debug drawing that
projects the field lines into the camera image. To activate this drawing, type vid raw module:-
CameraMatrixProvider:calibrationHelper in the simulator console. This drawing is helpful for
calibrating, because the real lines and the projected lines only match if the camera matrix and
hence the camera calibration is correct (assuming that the real position corresponds to the self-
localization of the robot). Modify the parameters of CameraCalibration so that the projected
lines match the field lines in the image (see Fig. 2.1b for a desirable calibration).

Automatic Calibration with the AutomaticCameraCalibrator

For an automatic camera calibration using the module AutomaticCameraCalibrator (cf.
Sect. 3.2.1), follow the steps below:

1.-3. Same process as for the CameraCalibrator. But instead of typing CameraCalibrators/De-
fault use CameraCalibrators/Automatic.

4. To automatically generate the commands for the following joint cali-
bration to correct the body rotation, you can set a flag via set mod-
ule: AutomaticCameraCalibrator:setJoint Offsets true. After you finished the optimization
you can just enter the generated commands and thereby correct the rotation.

5. To start the point collection use the command dr mod-
ule:AutomaticCameraCalibrator:start and wait for the output “Accumulation finished.
Waiting to optimize...”. The process includes both, the upper and lower camera.

6. If you are unhappy with the collection of some specific samples you are now able to delete
samples by left-clicking onto the sample in the image in which it has been found. If there
are some samples missing you can manually add them by Ctrl + left-clicking into the
correspondent image.

7. Run the automatic calibration process using dr module:AutomaticCameraCalibrator:-
optimize and wait until the optimization has converged.

2.8.4 Color Calibration

Calibrating the color classes is split into two steps. First of all, the parameters of the camera
driver must be updated to the environment’s needs. The commands:

get representation:UpperCameraSettings
get representation:LowerCameraSettings

will return the current settings. Furthermore, the necessary set command will be generated.
The most important parameters are:

whiteBalance: The white balance used. The available interval is [2700, 6500].

11 As always, press Cmd instead of Ctrl on a Mac.

19

B-Human 2015 2.9. CONFIGURATION FILES

exposure: The exposure used. The available interval is [0, 1000]. Usually, an exposure of 140
is used, which equals 14 ms. Be aware that high exposures lead to blurred images.

gain: The gain used. The available interval is [0, 255]. Usually, the gain is set to 50 - 70. Be
aware that high gain values lead to noisy images.

autoWhiteBalance: Enable(1) / disable(0) the automatism for white balance. This parameter
should always be disabled since a change in the white balance can change the color and
mess up the color calibration. On the other hand, a real change in the color temperature
of the environment will have the same result.

autoExposure: Enable (1) / disable (0) the automatism for exposure. This parameter should
always be disabled, since the automation will choose higher values than necessary, which
will result in blurry images.

The camera driver can do a one-time auto white balance. This feature can be triggered with
the commands:

dr module:CameraProvider:DoWhiteBalanceUpper
dr module:CameraProvider:DoWhiteBalanceLower

i Bl

rh” ———
(a)

Figure 2.2: a) An image with improper white balance. b) The same image with better settings
for white balance.

After setting up the parameters of the camera driver, the parameters of the color classes must be
updated (cf. [12, Chapter 4.1.4]). To do so, one needs to open the views with the upper and lower
camera images and the color calibration view. See [12, Chapter 8.1.4.1] for a detailed description.
Unlike stated there, one has to select the color displayed/calibrated for each view separately
now. It might be useful to first update the green calibration since some perceptors, e.g. the
BallPerceptor, use the FieldBoundary, which relies on proper green classification. After finishing
the color class calibration and saving the current parameters, copyfiles/bush (cf. Sect. 2.5) can
be used to deploy the current settings. Ensure the updated files upperCameraSettings.cfg,
lowerCameraSettings.cfg and colorCalibration.cfg are stored in the correct location.

2.9 Configuration Files

Since the recompilation of the code takes a lot of time in some cases and each robot needs
a different configuration, the software uses a huge amount of configuration files which can be

20

2.9. CONFIGURATION FILES B-Human 2015

12

altered without causing recompilation. All the files that are used by the software'® are located

below the directory Config.

Locations can be used to configure the software for different independent tasks. They can be set
up by simply creating a new folder with the desired name within Config/Locations and placing
configuration files in it. Those configuration files are only taken into account if the location is
activated in the file Config/settings.cfg.

Besides the global configuration files, there are some files which depend on the robot’s head,
body, or both. To differentiate the locations of these files, the names of the head and the body
of each robot is used. The <head name> depends on the IP address of the robot which in turn
belongs to the robot’s head. The <body name> is stored in the chestboard of the nao and thus
depends on the body. In the Simulator, both names are always “Nao”.

To handle all these different configuration files, there are fall-back rules that are applied if a
requested configuration file is not found. The search sequence for a configuration file is:

1. Config/Robots/<head name>/Head/< filename>

e Used for files that only depend on the robot’s head
e e.g.: Robots/Amy/Head/cameralntrinsics.cfg

2. Config/Robots/<body name>/Body/< filename>

e Used for files that only depend on the robot’s body
e e.g.: Robots/Alex/Body/walkingEngine.cfq

3. Config/Robots/<head name>/<body name> /<filename>

e Used for files that depend on both, the robot’s head and body.
e c.g.: "Robots/Amy/Alex/cameraCalibration.cfq”

4. Config/Robots/<head name> /< filename>

e If the head and body constellations for your robots are always the same, all files which
belong to a robot may also be saved here.

5. Config/Robots/Default /< filename>
Config/Locations/<current location> /< filename>

Config/Locations/Default /< filename>

® N

Config/< filename>

So, whether a configuration file is robot-dependent or location-dependent or should always be
available to the software is just a matter of moving it between the directories specified above.
This allows for a maximum of flexibility. Directories that are searched earlier might contain
specialized versions of configuration files. Directories that are searched later can provide fallback
versions of these configuration files that are used if no specialization exists.

Using configuration files within our software requires very little effort because loading them
is completely transparent for a developer when using parametrized modules (cf. [12, Chapter
3.3.5], but note that the syntax has changed).

12There are also some configuration files for the operating system of the robots that are located in the directory
Install.

21

Chapter 3

Changes Since 2014

In this chapter, we describe changes made to our system that are not directly related to the
subsequently described Technical Challenges.

3.1 Infrastructure

3.1.1 Modules and Representations

The macro MODULE allows specifying the interface of a module, i.e. which representations it
requires and which it provides. There have been a lot of variants of the macro PROVIDES that
defines the latter in the past. Now this has been reduced to only two variants, one of which
is rarely used. Previously, WITH_OUTPUT had to be added to indicate that the representation
provided could also be logged. This is now determined automatically by searching whether one
of the constants defined in the enumeration MessageID matches the name of the representation.
So far, it also had to be indicated that a representation could interactively be modified by adding
_WITH_MODIFY. This is now the default and the addition -WITHOUT MODIFY has to be added to
turn off this feature. Finally, the addition WITH DRAW was removed. Instead, it is determined
during compile time, whether the representation defines a method draw(). If it does, that
method will be called automatically.

The macros STREAMABLE and STREAMABLE _WITH_BASE that are usually used to define represen-
tations now generate structs instead of classes, because representations are meant to only
provide public data fields, and that is what structs do by default. There is also a new class
Angle that represents angles in radians. However, when reading them from a text stream, the
extensions deg and rad are accepted. In case of deg, the angle is converted from degrees to
radians. When writing angles to a text stream, they are always converted to degrees.

3.1.2 Log Files

Log files now contain additional information that allows replaying them even after the specifica-
tion of the data types recorded has changed (in most cases). Based on the specification of each
data type stored in a log file and its current specification, the data is automatically translated
during the replay if it has changed. Missing fields keep their default values. Removed fields are
ignored.

To further enhance the usage of log files, we added the possibility for our modules to annotate
individual frames of a log file with important information. This is, for example, information

22

3.1. INFRASTRUCTURE B-Human 2015

scene Graph JF X LOG.annotations.cognition X
Conscle Filter:
’ B Docs Fra}me Marne Annotation
4
LoG - 0 Behavior Initial 5tate.
“ ”””D‘”‘“??s 1 Behavior Ready State.
[cognition || 2692 Behavior Set State.
motion 2909 Behavior Ready State.
behavior 11600 Beh av!ur Set S_tate.
colorCalibration 16422 Behaviar Getting up.
o 16631 Behavior Getting up.
colorSpace 21681 Behavior Getting up.
field 21834 Behavior Getting up.
image 22733 Behavior Ready State.
jointData 25424 Beh av?ur Set State,
modules 28295 Behavior Ready State.
- 31018 Behavior Set State,
sensorData 33758 Behavior Getting up.
timing 38525 Behavior Ready State.
ReboCup 39363 Behavior Set State.
40201 Behavior Finished State,

Figure 3.1: Display of annotations in SimRobot.

about a change of game state, the execution of a kick, or other information that may help us to
debug our code. Thereby, when replaying the log file, we may consult a list of those annotations
to see whether specific events actually did happen during the game. In addition, if an annotation
was recorded, we are able to directly jump to the corresponding frame of the log file to review
the emergence and effects of the event without having to search through the whole log file.

This feature is accessed via the ANNOTATION-Macro. An example is given below:

#include "Tools/Debugging/Annotation.h"

ANNOTATION("GroundContactDetector", "Lost GroundContact");

It is advised to be careful to not send an annotation in each frame because this will clutter
the log file. When using annotations inside of a behavior option the output option Annotation
should be used to make sure annotations are not sent multiple times. To view the annotations
when replaying a log file, an annotation frame may be opened via the scene graph (cf. Fig. 3.1).
Double clicking on an annotation will cause the log file to jump to the given frame number.

As of now, it is not possible to log annotations that originate inside a motion module. It is,
however, possible to view annotations of motion and cognition modules when using the simulated
NAO or a direct debug connection to a real NAO. This has to be activated by using the following
debug request:

dr annotation

3.1.3 C-based Agent Behavior Specification Language (CABSL)

The C-based Agent Behavior Specification Language (CABSL) [12] now uses the same syntax
for specifying parameters as the streamable data types in our system. Thereby, the actual
parameters of each option can be recorded in log files and they can also be shown in the behavior
dialog (cf. Fig. 3.2). Please note that the source code shown in Fig. 3.2 is still understood by a
C++ compiler and thereby by the editors of C++ IDEs.

23

B-Human 2015 3.1. INFRASTRUCTURE

option(SetHeadPanTilt, ([) robot2.behavior
(float) pan, Soccer 47.04
(float) tilt, state = playSoccer 44.90
E;mg;)f{?l)RSpee‘j{ c ControlMode) (autoc)) HandlePenaltyState 44.90
‘ eaaMotionRequest, ameratontrolMode)(autolLamera) camera state = notPenalized 44.90
initial_state(setRequest) HandleGameState 44.90
state = set 3.86
transition Activity 47.04

activity = standAndWait

if(state_time > 200 && !theHeadJointRequest.moving)

goto targetReached; Sstt:::ta'j= setActivity 4;3;
action state = requestisExecuted 4.91
{ HeadControl 44.90
theHeadMotionRequest.mode = HeadMotionRequest::panTiltMode; state =|00kLeﬁAndHight 3.86
theHeadMotionRequest.cameraControlMode = camera; .
theHeadMotionRequest.pan = pan; LOOKLeﬂAndB'ght 3.86
theHeadMotionRequest.tilt = tilt; state = lookRight 0.63
theHeadMotionRequest.speed = speed; SetHeadPanTilt 3.86
¥ pan = -0.872665
¥ tilt = 0.401426
target_state(targetReached) speed = 1.74533
{ state = setRequest 0.63

Figure 3.2: The behavior view shows the actual parameters, e.g. of the option SetHeadPanTilt
(left: source, right: view). The display of values equaling default parameters (specified in a
second pair of parentheses) is suppressed. On the right of the view, the number of seconds an
option or state is active is shown.

3.1.4 Eigen

We decided to replace our own math library with Eigen [8] which is a “C++ template library
for linear algebra: matrices, vectors, numerical solvers, and related algorithms”. We kept some
special methods that Eigen does not offer and integrated them through Eigen extensions. Since
Eigen adds a considerable source code footprint to compilation, we use precompiled headers in
our build system for all projects that include Eigen!. It is important to note that the data fields
of Eigen objects are initialized with NANs by default when built with the configurations Debug
and Develop and not initialized at all when built with Release.

3.1.5 Wrist and Hand Joints, Tactile Sensors, and Head LED

As it is possible (by the new robots) to use the wrist and hand joints, we added them to our
whole system. So they can be used like every other joint. For our robots without an H25 body,
using the same system, the use of the nonexistent joints has no effect or rather no sensor data
(normally 0) will be returned. If someone nevertheless needs to know if a feature is existent
within the robot, RobotInfo is holding the adequate information. Since we decided against
loading the corresponding modules of the NAOqi API, the robot type will be read in as part of
the NaoProvider parameters.

In addition to these modifications, we also extended the KeyStates by the tactile sensors and
the LEDRequest by the head LED.

3.1.6 Additional Changes

e The SensorData representation was split up into six smaller ones: SensorData/FsrSensor-
Data, SensorData/InertialSensorData, SensorData/JointSensorData, SensorData/KeyStates,

10On OS X and when targeting Windows.

24

3.2.

TOOLS B-Human 2015

SensorData/SystemSensorData, SensorData/UsSensorData. This way, modules can request
only the data they actually need.

JointData was renamed to JointAngles.
HardnessData was renamed to StiffnessData.

Removed the InertiaSensorCalibrator since NAOqi does not provide the raw IMU data any-
more.

Removed FilteredSensorData and FilteredJointData. Use the SensorData representations
mentioned above and JointAngles instead.

The InertialData representation is a combination of InertiaSensorData and OrientationData
and is provided by the InertialDataFilter.

The URC [12] compiler was removed. Instead, SpecialActions are compiled by bhuman on
startup.

3.2 Tools

3.2.1 Automatic Camera Calibrator

The former CameraCalibratorV6 (cf. [13], chapter 2.8.3) has been renamed to AutomaticCamer-
aCalibrator which is way more meaningful. The other changes to improve the calibration and
make the whole process more comfortable are:

. A distance check between samples. For the purpose of a better weighting of the samples,

we now have the constraint that a new sample must have at least a distance of 30 cm to
every other sample that is already taken.

. A manual deletion of samples is now possible by left-clicking into the image and on the

point the sample has been taken.

. A manual insertion of samples is now possible by CTRL + left-clicking into the image at

the point you want the sample to be.

. Command generation for correcting the body rotation. In case you don’t want the BodyRo-

tationCorrection stored in the CameraCalibration, you can manually call the JointCalibrator
and transfer the values or you can use the command

set module: AutomaticCameraCalibrator:setJointOffsets true

before running the optimization. After the optimization, a bunch of commands will be
generated and you can enter them in order of appearance to transfer the values into the
JointCalibration.

3.3 Perception

3.3.1 Goal Perception

Due to the change of the color of the goal from yellow to white, as depicted in the new rules,
a new goal perception needed to be built. Our old algorithm searched for yellow areas that

25

B-Human 2015 3.3. PERCEPTION

g

AL |E&=

70 it | mg.

Figure 3.3: The left image shows the found regions, which could represent a goalpost. The blue
cross is the base point, the red and green post represents the edge of the region.

On the right, the (simulated) image of a goal is shown, where the areas around the goalposts
are convolved with the Sobel operator.

intersect the horizon of the robot [12]. At the German Open 2015, a similar method to detect
goals was used, but proved unsuccessful due to the amount of white regions in the environment
and on the field.

The new goal perception searches for lines in the edge map of the upper image.

Initially, the algorithm searches for white regions below the field border, which are then evaluated
by their height and width. If such a region is found, it should either be a robot or a goalpost,
since every other object on the field shouldn’t have the color white or is too small to be recognized
as a possible goalpost (cf. Fig. 3.3). Afterwards, for all potential regions a model of the goal
is calculated by using the lowest horizontally middle point of the region as the base point. The
size in pixels of a goalpost can be estimated given the real dimensions of a goal.

To search for edges on the whole image takes a lot of time. To speed up the process, only areas
with interesting features should be scanned. By using the goal model, an area where a goalpost
should be can be determined. This area is then convolved with the Sobel operator to search for
edges around the goalpost (cf. Fig. 3.3).

Under the assumption that a goalpost is roughly vertical in an image, a Hough transform can
be executed, with an angle between +x degrees, where z is a parameter (we used the value 3
during RoboCup 2015). The Hough transform then extracts all lines that contain at least a
certain number of edge points. If a pixel in the edge map is an edge can either be determined
by using a constant value or by using the Otsu threshold algorithm.

By only using a threshold to detect the lines, a lot of possible lines might be found. In the next
step the Lines which most likely represent a goalpost are chosen, for this all lines are sorted by
the proximity of their hough value to the expected hough value. Then the line with the best
evaluation and a second line which has a minimal distance and doesn’t cross the first one will
be chosen (cf. Fig. 3.4).

Afterwards, the numerical evaluations will take place:

e The difference between the angle of both lines
e The distance of the average to the expected value

e The number of pixels contained in the lines of the post

If the resulting value is above a certain threshold, two exclusion criteria might be used (depending
on the value of the parameters):

26

3.3. PERCEPTION B-Human 2015

Figure 3.4: Goal with found Hough lines after the filter process

1. Are there more than 40% non-white or pixels with an edge value above the threshold
between the two lines?

2. Is the variance between the lines higher than a certain threshold?

As the last step, it needs to be checked, if the found goalposts are part of a goal. If only one
goalpost has been found, it is immediately accepted as part of a goal. If more than one goalpost
is found, they need to be further checked.

For each combination of goalposts, starting with the best ones, a numerical evaluation takes
place. If the resulting value is above a threshold, the search will be stopped and the posts will
be accepted as a complete goal. If no combination is above the threshold, only the best post
will be accepted as part of the goal.

The numerical evaluation consists of the average value, the distance between and the parallelism
of the goalposts. Afterwards, the value is multiplied with the evaluation of a crossbar plus one.
One is always added since it is not given that a goalpost is visible between two posts, but if a
crossbar is visible, it confirms the hypothesis that both posts are part of a goal.

The result will then be provided in the GoalPercept.
Parameters

The module has parameters that affect its behavior:

useAlternativeLineSearch: Instead of the described methods to filter Hough lines, another
approach is used which searches for two lines next to a gap of a certain size.

useCheckBetweenLines: If set to true, exclusion criteria 1 is used
useNMS: Set to true to use non-maximum suppression on the edge map
useNoise: If set to true, exclusion criteria 2 is used

useOtsu: Use Otsu to automatically determine the Sobel threshold

Debugging

The module provides five main debug drawings to illustrate its activity:

27

B-Human 2015 3.3. PERCEPTION

PossiblePosts: Shows the initially found region which represents possible goalposts

Edges: Shows the created edge maps filtered with a threshold (use EdgesUnfiltered for the
original version)

HoughLinesFiltered: Shows the filtered hough lines in the image (use HoughLines for the
unfiltered version)

CheckBetweenLines: Shows which pixels are accepted by the exclusion criteria (green) and
which not (red)

Validation: Draws all validation values for a goalpost

3.3.2 Penalty Mark Perception

In response to the change of the goal color, which makes the goal perception more difficult, a
penalty mark perceptor was built to aid the localization of the robots. The penalty marks can
help the localization more than the lines and intersections on the field, because they only exist
twice on the field in central positions exactly known.

The recognition of the lines and the penalty marks relies on the recognition of spots that could
form a line. While a line consists of multiple close spots, a penalty mark consists of an isolated
spot without surrounding white outside of the dimensions of the penalty mark.

To maximize code sharing, the process of detecting the possible line spots has been extracted
from the module LineSpotProvider into the PotentialLineSpotsProvider. The LineSpotProvider
and the PenaltyMarkPerceptor both require the representation PotentialLineSpots provided by
the PotentialLineSpotsProvider.

To detect a penalty mark, the line spots found are scanned and evaluated according to the
following criteria:

Could it form a penalty mark? From the center of the potential line spot, the endpoints
of its surrounding white region are searched in horizontal and vertical direction. The x
coordinate of the penalty mark is set to the mean of the x coordinates of the left and right
endpoints, the y coordinate is set to the mean of the y coordinates of the upper and lower
endpoints. It is then checked, whether the width and height of the region are too big for
a penalty mark and whether they are too narrow. If these two checks fail, a rectangle
around the region is scanned. For each pixel, it is checked, whether there are too many
green pixels in a small square around it. In addition, it is checked if the variance of the
Y channels of the pixels scanned is too big. If one of these checks succeeds, the spot is
discarded.

Is it far enough away from the field border? A real penalty mark is always far away from
the field border. If the distance of the spot to the field boundary is too small, it is discarded.

Is it close enough to the observer? If the distance of the spot from the robot is above a
certain threshold, it is discarded because it is most likely a false positive.

Is it not inside a ball? It might happen that a potential line spot is recognized on the surface

of a ball. To account for this, it is checked, if the spot is inside a perceived ball. If this is
the case, the spot is discarded.

28

3.3. PERCEPTION B-Human 2015

The first spot that fulfills these criteria is set as a recognized penalty mark and no further spots
are evaluated, because there cannot be two penalty marks in the same image that both aren’t
too far away. The properties of the penalty mark recognized are provided in the representation
PenaltyMarkPercept.

Parameters

The module has parameters that affect its behavior:

expectedSize: The width and height in mm of the penalty mark.

toleratedSizeDeviation: The tolerated percentage deviation of the size of the spot found from
the expected size.

minDistToFieldBoundary: The minimal distance in mm that a penalty mark found can have
from the field boundary.

noiseAreaSize: The size of the square around a pixel that is searched for non-green pixels.

maxDetectionDistance: The maximum distance in mm from of a penalty mark recognized
to the robot.

whiteSpacing: The additional spacing outside of the white region to search for a green sur-
rounding.

numNotGreenMax: The maximum count of non-green pixels.

max Variance: The maximum variance of the Y channel of the pixels allowed.

Debugging

The module provides the following debug drawings:

penaltyPointScanLines: Shows the rectangle of white regions, which represents potential line
spots as well as additional information about the spot such as its width and height.

noiseRect: Shows the noise rectangle.

3.3.3 Players Perception

As it is now allowed to play in custom jerseys, we had to change our previously used Play-
ersPerceptor (cf. [13], chapter 3.2.5) to identify our own black jerseys and not only the cyan and
magenta ones.

The perceptor receives the team color information from the game controller and chooses the
corresponding color values from the parameter colors. If one of the teams uses black jerseys,
we scan up to four times with the first scan looking at the shins of the Nao, to check whether it
is a referee or not. Otherwise, we scan up to three times. The other scans are performed below
the shoulders, at the height of the chest, and at the stomach, when no jersey was detected in
each previous scan.

During each scan, the color values of scanned pixels are analyzed by using the following condi-
tions:

29

B-Human 2015 3.4. MOTION SELECTION AND COMBINATION

1. Is the intensity high and the saturation low enough to be white?
Then a counter for white will be increased.

2. Is the hue and intensity value like green?
Then the pixel will be ignored.

3. Is one of the jerseys black?

e Yes

— Is the intensity too high for black but low enough for a dark color and
the saturation not too high for gray?
Then it could be a black jersey.

e No

— Is the intensity too high for black?
It will be checked which teamcolor is within the ranges or next to the color of
the pixel, if both are within the ranges.

Depending on which color dominates, the obstacle will be marked as an opponent, teammate or
obstacle.

Parameter

The module has parameters that affect its behavior:

jerseyYFirst & jerseyYSecond & jerseyYThird: First, second, and third height within a
player to scan for jersey colors.

refereeY: If the perceptor finds black pixels at this height, then it is a referee.

maxWhiteS & minWhitel: Colors with an intensity above maxWhitel and a saturation be-
low maxWhiteS look like white/gray.

minGreenH & maxGreenH & minGreenl: Colors with a hue between min- and max-
GreenH and with an intensity above minGreenl look like the field.

maxBlackI: Colors with a intensity below the value look like black.
maxDarklI: Colors with a intensity below the value are darker.
maxGrayS: Colors with a saturation below the value look like gray.

maxRangeH & maxRangeS & maxRangel: specifies how big the differences between the
hue, saturation, or intensity of the found pixel and the searched color can be to count the
pixel.

colors: Prototypical HSI color values for all team colors.

3.4 Motion Selection and Combination

In contrast to the B-Human code release of 2013 [12], the arms are considered more indepen-
dently. There is now an option to control the arms and legs by using different motion engines.

30

3.5. BEHAVIOR B-Human 2015

The MotionSelector determines for all (whole-body and arm) motion engines how intense their
output defines the final joint angle request, which is sent to the NAO. Therefore, a whole-body
engine (which provides joint angles for legs and arms) will be selected and the interpolation
ratios are calculated in order to switch between the whole-body engines. Afterwards, the same
will happen per arm for the arm motion engines. Additionally, the selected whole-body engine
can force the selection of a placeholder, which means that this whole-body engine also defines
the arm joint angles. The GetUpEngine is an example for this since it needs full control over the
whole body to accomplish its purpose.

The MotionSelector’s decision is based on the behavior requirements, which are defined in the
MotionRequest and the ArmMotionRequest, as well as the interruptibility of the current motion,
which is handled by the associated motion engine on purpose to guarantee a motion that is
not exited or changed in an unstable situation. The decisions and ratios are stored in the
MotionSelection and the ArmMotionSelection.

The MotionCombinator takes these information and merges the joint angles, provided by the
different motion engines, accordingly. The interpolation is linear. If no interpolation between
different motions is needed, the output of the engine will be only copied. In addition to filling
the final target joint angles, the MotionCombinator also fills the representations Motioninfo,
ArmMotionInfo, and OdometryData, which are holding information about the current motion(s),
e. g. the current position in the walk cycle, the stability of the motion, and the odometry position.

The MotionCombinator, as the last instance before the joint angle will be sent to the NAO, also
performs emergency actions in case the robot is falling. This includes centering the head and
the arms as well as reducing the joint stiffness.

3.5 Behavior

The intention of this year’s major behavior changes were to play more defensivly and to let the
robots move less. To accomplish this, we played with the following lineup:

1. One Keeper: The goalkeeper robot.

2. Two Defenders: Robots that are positioned defensively to help the Keeper by defending
their own goal.

3. One Striker: The ball-playing robot.

4. One Supporter: A robot that is positioned offensively to help the Striker.

In a lineup with less than five robots, at least one robot should be the Defender. The ideas behind
the changes are to prevent dribbling teams from gaining a goal and to save battery power and
avoid joint heat. Saving battery power is important for us since we had issues to play multiple
long games on a tournament day with the batteries avalable to us. In the same scenario, it is
important to avoid joint heat and the consequential joint stiffness loss to perform motions on
the highest possible level if they are really needed.

These major changes did not affect the Striker and the Keeper. Thus, the remainder of this
section describes the Defender in more detail. The Supporter has been created by combining
some of the old roles.

31

B-Human 2015 3.5. BEHAVIOR

3.5.1 Defender

A Defender has five modes, which differ only slightly by occurrence. These are: back-left, back-
middle, back-right, forward-left, and forward-right — the areas where they position themselves.
Whereas the role Defender is taken upon consultation with the robot’s team members, the
decision of the taken mode is made by the Defender alone. It bases its decision on the received
pose of the second Defender (or on the absence of such data). If there are two Defenders, they
must be left or right and never on the same side. In addition, one of them must hold a back-
mode but the other may be forward. Otherwise, if there is just one defending robot, it must be
a back one.

In each frame, the Defender recomputes

1. if it is left or right (or in special case middle),
2. if it is forward,
3. which position it should take, and

4. if it should move.

3.5.1.1 The Left / Right Decision

If the Defender is left, it means that it will calculate a position on the left side of the virtual line
between the goalkeeper and the ball. If the goalkeeper is not on the field (or not in the penalty
area), the line origin is based in the middle of the own goal. A middle defending position means
that the Defender stands on this line. This position is just a special case if neither a Keeper is
inside the penalty area nor a team member performs a second Defender. In all other cases, you
do not want to interfere with the direct goalkeeper sight of the ball.

e Being a single Defender (with a present Keeper), a robot will always decide for the same
side like last frame as long as the ball is not too far on the other side.

e In the case of two Defenders, each robot will compare its (signed) distance to the goalkeeper-
ball line and the distance of the last known position of the other Defender to that line. If
the robot can clearly decide if it is more left of the line, it takes the decision. If this is
not the case, it tries to decide by looking up which of the both poses is clearly more left
on the field (left on the field means if you are standing in your own goal and looking in
direction of the opponent ones). If the robot still does not know which side it belongs to,
it uses the decision of the last frame.

3.5.1.2 The Back / Forward Decision

A back position is defined as a position directly outside the penalty area, a forward position
could be farther away. In the case of a single defending robot, the position will be back as
mentioned above. In the other case, the robot decides on the basis of its actual position, if it is
distinctly forward or back. It does the same for the position of the second Defender. The robot
will hold its decision, if it differs from the position about the second Defender or if it is back
and the ball is not far away. If both cases are not applicable and the robots are clearly looking
in different directions, the robot that is looking in the direction of the opponent goal will move
forward. If none of the cases were applicable and the Defender robot is on the same side as the
ball, it is moving forward. If the ball side is not clear, both Defenders stay back.

32

3.5. BEHAVIOR B-Human 2015

3.5.1.3 The Position Selection

All selected positions for the Defender are lying on a semicircle, which is centered around the
center of the own goalposts. The radius is decided by the previously described back / forward
mode. If it is back, the semicircle goes barely around the penalty area, but the maximum
semicircle for a forward Defender makes a wide bow around the own goal. As long as the ball is
not inside the own penalty area, the forward radius is always smaller than the distance of the
semicircle origin to the ball. The Defender will take a position on the selected semicircle with a
specific angle distance to the goalkeeper-ball line, which let the robots, which are more in the
back, stay closer to the line than the others. To avoid that the distance of the back-standing
robots to the penalty area gets to great, the semicircles may be cut along the lines of the penalty
area. There is also a special handling when the ball is entering the penalty area or is lying close
to the own ground line.

3.5.1.4 The Decision to Move

Because of the aim to avoid unnecessary movements, it would be counterproductive to move
to every new calculated position. In account to this, the robot will always decide after the
position calculation if it should move or could wait. The decision is based on the distance to
the new position, the distance to the ball, the distance to the angle and the distance to the
goalkeeper-ball line. The threshold for this may vary if the robot was moving before or not.

It is important that the Defender is doing its job, but as the last instance, between opponent
scoring or a successful defense, there is still the goalkeeper. To give him time for a in time
reaction, it must see the ball early enough. To maximize this time, the Defenders are also
performing arm movements to make themselves as tiny as possible, if the goalkeeper-ball line
comes close to the robot.

33

Chapter 4

Technical Challenges

In this chapter, we describe our contributions to the three Technical Challenges of the 2015 SPL
competition, i. e. the Corner Kicks Challenge, the Many Carpets Challenge, and the Realistic Ball
Challenge. We placed second in each challenge which lead to the win of the overall competition
[5]. The detailed rules of each challenge can be found in [6].

4.1 Corner Kicks Challenge

To handle this challenge, we used our normal vision and walking modules and replaced the
behavior as well as our kick engine. In contrast to our normal kick engine the one used in this
challenge is capable of kicking the ball at arbitrary speeds, thus it is ideal for playing precise
passes which where necessary to successfully compete in this challenge. The reason for this is
that we did not know the positions of the opponent robots in advance and had to pass the ball to
a position where it could be kicked in to the goal quickly by the second robot. The kick engine
used in this challenge was developed as part of a master thesis, which hasn’t been published [3].
A quick overview is given in 4.1.1.

Furthermore, this challenge was used to test the implementation of a new self-localization module
(which is not yet finished and not part of the code release). Due to the field’s symmetry,
a robot’s self-localization cannot rely on field elements only to determine the team’s current
playing direction. Therefore, additional resetting mechanisms that derive the current field half
from transitions of game states (for instance, a robot is definitely in its own half, if the game
state changes from SET to PLAY) are common. However, for most technical challenges, the
game states are used in a different way. This means that for each technical challenge, a copy
of the normal self-localization, which contains a set of workarounds, is necessary. The new
implementation is based on a state machine that models the transitions between game states as
well as certain robot states. Thereby, the adaption to a different rule set can be done easily by
adding a few simple states. The underlying state estimation process is still based on a set of
Unscented Kalman filters.

4.1.1 A Kick Engine based on Dynamic Movement Primitives
The kick engine consists of three logical modules: A mathematical model of the motor behavior

which is used to predict the current joint positions, a ZMP-based balancer that keeps the robot
stable while kicking, and an execution module that executes the kick trajectory.

34

4.2. MANY CARPETS CHALLENGE B-Human 2015

4.1.1.1 Prediction of Motor Behavior

The NAQO’s motors react to commands with a delay of approximately 30 ms. This delay greatly
complicates any closed loop control approach. To avoid the delay, the behavior of each motor is
modeled using a second degree linear time invariant system:

Tj(t) + 2DTmin(§(t), Vinas) + y(t) = Kult) (4.1)

where y(t) is the angle of the motor, u(t) is the target angle, K and D are dampening constants,
T is the time constant and V4, is the maximum velocity of the motor. Using this model, the
current position of the NAO’s motors can be estimated and used for closed loop control.

4.1.1.2 Balancing

To keep the robot dynamically balanced while kicking, a ZMP-based balancer similar to the ones
presented in [7] and [16] is used. This approach assumes that the support foot does not move
or tilt while executing the kick, i.e. the sole of the support foot is fully connect to the ground
plane. This is not always the case, especially when executing strong kicks, the robot might tilt
around the edges of the support foot. To improve balancing in that case, an augmented center
of mass is used as foundation of the ZMP calculation as shown in [2].

4.1.1.3 Modeling of the Kick Trajectory

The kick trajectory is modeled in Cartesian space using Dynamic Movement Primitives (DMPs).
A general introduction to DMPs can be found in [9] and [14]. The original DMP formulation
does not allow for an end velocity other than zero. Therefore, the NAO’s kick trajectory is
based on extended DMP formulations by Katharina Miilling [11] and Jens Kober [10], which
have been specifically designed for hitting and batting movements and allow for an end velocity
other than zero:

7 = as(Belgp — y) + 7dp —)+ 72 + 8 (5)B (42)
TY =2 (4.3)
T§ = —QsS (4.4)

Where o, = 6.25 and 5, = 25 are dampening constants set up for critical dampening, 7 is the
point in time at which the final position should be reached, g,, gy, and g, are the target position,
velocity, and acceleration, s is the phase and f is the forcing term.

The original formulation by Miilling contains a scaling factor 1 which is used to ensure that the
trajectory scales well when changing the target position. This factor is replaced by the novel
scaling factor B = W where gg is the start position of the trajectory, ggemo is the
 demo_

goal position of the demonstrated trajectory, and ggem" is the start position of the demonstrated

movement. It ensures that the trajectory scales well when changing the target velocity g.

4.2 Many Carpets Challenge

Although being intended as a walking challenge, the actual tasks to solve were the behavior and
the localization. For this challenge, we were able to use our normal walking engine with slightly

35

B-Human 2015 4.3. REALISTIC BALL CHALLENGE

modified parameters. We wrote a behavior which observes the surroundings to get an initial
localization, then walks to the perceived ball and then tries to localize again by searching for the
goal. If the robot is certain that the localisation is correct enough or a certain time threshold
has been exceeded, a kick is performed.

The performance of our robot at the challenge was filmed and can be viewed online at https:
//www.youtube.com/watch?v=bq3Y70fQWVI.

4.3 Realistic Ball Challenge

The aim of the Realistic Ball Challenge was to make robots play with arbitrary balls different
from the standard orange one, similar to the Any Ball Challenge in 2009. In this challenge, five
arbitrary balls that were provided by the participating teams as well as two robots were placed
within an area of 4 x 4 meters around the center of the field and the competing robot had to
move the balls into or at least towards any of the goals.

In order to compete in this challenge, we replaced the modules for perception of the ball and
adjusted the behavior to conform to the rules of the challenge. Concretely, the BallPercept is not
provided by the BallPerceptor, but instead by the new RealisticBallPerceptSelector which fills it
with one of the balls contained in the representation RealisticBallPercepts. This representation
is provided by the new perception module RealisticBallPerceptor and contains all balls seen in
the current camera image. By using this method, it is possible to use the normal BallLocator
to provide the BallModel that is used by the behavior, always targeting one ball at a time.

The performance of our robot at the challenge was filmed and can be viewed online at https:
//www.youtube.com/watch?v=V0OtVxfKCspw.

4.3.1 RealisticBallPerceptor

As stated above, the main task of finding balls in the camera images is done by the Realis-
ticBallPerceptor. This is done in the following steps:

1. Create an edge map of the image.
2. Use the FRHT algorithm described in [4] to find circles and circular arcs.

3. Perform validation checks to keep only candidates that probably correspond to actual
balls.

In order to perform the first step, three different methods were implemented and can be selected
via the parameter edgeDetectMode. All of these first apply the Sobel operator to the image.
The first method then obtains an edge map by simply marking all pixels with a gradient higher
than a set threshold as edge pixels. The second method additionally classifies the direction of
the edge through each pixel and based on this performs a simple non-maximum suppression.
The most complex of the methods is the third which is an implementation of the Edge Drawing
algorithm described in [15]. While the first method is the fastest, the edges in the resulting edge
map are usually multiple pixels thick, leading to many pixels being checked in step two, so the
overall computation time is highest with this method. The third method gives perfect one pixel
thick edges which are ideal for circle detection, however it needs longer to compute the edges.
As a tradeoff between these two, the second method was implemented and ultimately used in
the challenge. Its output can be seen in figure 4.1. In order to save computation power and

36

https://www.youtube.com/watch?v=bq3Y7OfQWVI
https://www.youtube.com/watch?v=bq3Y7OfQWVI
https://www.youtube.com/watch?v=V0tVxfKCspw
https://www.youtube.com/watch?v=V0tVxfKCspw

4.3. REALISTIC BALL CHALLENGE B-Human 2015

S
P

Figure 4.1: On the left side, the edge map created by the RealisticBallPerceptor can be seen.
Here, the second method of creating the map was used, i.e. applying the Sobel operator and
performing a simple non-maximum suppression. The image on the right shows the ball percepts
found by the RealisticBallPerceptor.

prevent false positives, the edge detection is only done on parts of the image that lie within the
FieldBoundary and not within the BodyContour computed for the current frame.

For step two, the FRHT algorithm was extended by merging the found circle candidates if their
centers are within a specified distance from each other and they have roughly the same radius
in order to not have multiple circles detected from one circle, which the algorithm often does
when the edge maps do not contain perfect circles.

In step three, the following is done for each circle:

e Assert that the center of the circle lies within the image.

e Scan horizontally, vertically and diagonally from the center of the circle to its arc and
check if the percentage of pixels that are green according to the color table is either below
a set threshold or over another so that the circle can either be assumed to be a non-green
ball or a completely green ball. This check exists to prevent from detecting balls in the
center circle.

e Compute the position and the radius of the ball on the field.
e Check that the computed radius of the ball is reasonable and the ball lies inside the field.

e If the center pixel of the ball is white according to the color table, assert that the ball does
not lie on one of the field lines or the penalty mark. This check is necessary as the FRHT
algorithm, which only needs three fitting points to form a circle candidate, sometimes
detects circles in field lines.

4.3.2 RealisticBallPerceptSelector
As previously written, the RealisticBallPerceptSelector is responsible for selecting one of the

percepts that the RealisticBallPerceptor found for giving it to the BallLocator via the normal
BallPercept representation.

37

B-Human 2015 4.3. REALISTIC BALL CHALLENGE

In order to do so, it first compares the positions of the percepts to those of the PlayersPerceptor
and the positions of known obstacles to avoid running into an obstacle when a false positive ball
detection occured in a robot.

If the last percept was selected within a given timespan (during the competition, this was two
seconds), it searches the percepts for one that lies near the last position of the ball model and
selects this percept. Otherwise, it selects the percept that is nearest to the robot.

In Fig. 4.1, the selected percept is the circle nearest to the robot, it is filled with a light red
color.

38

Chapter 5

Team Communication Monitor

With the start of the Drop-in Player Competition in 2014, a standard communication protocol,
i.e. the SPLStandardMessage, was introduced to allow robots of different teams to exchange
information. While implementing the standard protocol correctly is a necessity for the Drop-in
Player Competition to work, it is also an opportunity for teams to lower the amount of coding
they have to do to develop debugging tools, because when all teams use the same communication
protocol, the tools they wrote could also be shared more easily. Therefore, B-Human developed
the TeamCommunicationMonitor (TCM) as a standard tool to monitor the network traffic
during SPL games. This project has been partially funded by the RoboCup Federation.

The TCM visualizes all data currently sent by the robots and highlights illegal messages. Fur-
thermore, it uses knowledge about the contents of SPLStandardMessages in order to visualize
them in a 3-D view of the playing field. This makes it also suitable for teams to debug their
network code. Visualized properties of robots are their position and orientation, their fallen and
penalty states (the latter is received from the GameController), where they last saw the ball,
and their player numbers. A screenshot of the TCM can be seen in Fig. 5.1.

In order to display all messages of robots sending packets, the TCM binds sockets to all UDP
ports that may be used by a team as their team number, i.e. ports 10000 to 10099, and listens
for any incoming packets. When a packet is received, it is parsed as an SPLStandardMessage,
marking all fields as invalid that do not contain legal values according to the definition of the
SPLStandardMessage. As the TCM only listens and does not send anything, it may run on
multiple computers in the same network at once without any interferences.

The TCM identifies robots using their IP address and assumes them to be sending on the
port that matches their team number. The team number sent by the robots as part of the
SPLStandardMessage is marked as invalid if it does not match the port on which the messages
are received. For each robot, the TCM holds an internal state containing the last received
message as well as the timestamps of the most recently received messages in order to calculate
the number of messages per second. A robot’s state is discarded if no message was received from
the robot for at least two seconds.

Displaying the 3-D view is done with OpenGL using the JOGL library [1]. The visualization
subsystem is also extensible to enable teams to write plug-ins containing drawings that visualize
data from the non-standardized part of their messages. We have written a plugin to display
perceptions of goals, obstacles, and whistles as well as basic status information of the robots
which our team communicates via the non-standardized message part.

Besides just visualizing received messages, the TCM also stores all received messages both from
robots and the GameController in log files. These can be replayed later, allowing teams and

39

B-Human 2015

| £ TeamCommunicationMonitor - a x
File View
N 'T"”’a 1st half
e 06:05 B-Human
“vsa* " |eipzig Playing
10.0.13.98- g 10.0.5.13

Player no: 0 ‘ Player no: 1 o
Messages: 1 Messages: 1209

Per second: 1 Per second: 0,63782

llegal: 1 (100%) ——— iliegal: 0 (0%)

10.0.13.26: i 10.0.5.12:
Player no: 1 Player no: 2 o
Messages: 1663 Messages: 1574
Per second: 1,52362 ¥ H Per second: 1,51362
egal: 0 (0%) llegal: 0 (0%)

10.0.13.40- 2] 10.0.5.11
Player no: 2 7 A Player no: 3 o

1679 1 1 Messages: 1246
Per second: 083342 Per second: 0,61237
lllegal: 0 (0%) A SR b Iliegal: 0 (0%)
3 ' 3

10.0.13.47 v_ : 7 100514
Player no: 3 3 Player no: 4 o
Messages: 1606 Messages: 1336
Per second: 0,63782 Per second: 1,1
llegal: 0 (0%) lliegal: 0 (0%)
10,0510
Player no: 5
Messages: 1266
Per second: 0,87298
lliegat: 0 (0%)

Figure 5.1: Display of the TeamCommunicationMonitor during a game between the teams Nao-
Team HTWK and B-Human

organizers to check the communication of robots after the game is over.

The TCM is developed as part of the repository of the GameController (https://github.com/
bhuman/GameController), which is the standard referee tool of the SPL and Humanoid leagues
developed mostly by B-Human team members since 2012, and it shares parts of its code.

After having been successfully used at the RoboCup German Open 2015 to ensure valid messages
from all teams during the Drop-in games, the TCM was publicly released in early June and was
installed on the referee PC on each SPL field at RoboCup 2015.

40

https://github.com/bhuman/GameController
https://github.com/bhuman/GameController

Chapter 6

Acknowledgements

We gratefully acknowledge the support given by Aldebaran Robotics. We thank our current
sponsors IGUS, TME, and Wirtschaftsforderung Bremen (WFB) as well as our supporters from
the unifreunde Bremen for funding parts of our project. Since B-Human 2015 did not start its
software from scratch, we also want to thank the previous team members as well as the members
of the GermanTeam and of B-Smart for developing parts of the software we use.

In addition, we want to thank the authors of the following software that is used in our code:

AT&T Graphviz: For generating the graphs shown in the options view and the module view
of the simulator.
(http://www.graphviz.org)

ccache: A fast C/C++ compiler cache.
(http://ccache.samba.org)

clang: A compiler front end for the C, C++, Objective-C, and Objective-C++ programming
languages.
(http://clang.1llvm.org)

Eigen: A C++ template library for linear algebra: matrices, vectors, numerical solvers, and
related algorithms.
(http://eigen.tuxfamily.org)

FFTW: For performing the Fourier transform when recognizing the sounds of whistles.
(http://www.fftw.org)

getModKey: For checking whether the shift key is pressed in the Deploy target on OS X.
(by Allan Craig, no download link available anymore)

gtest: A very powerful test framework.
(https://code.google.com/p/googletest/)

Id: The GNU linker is used for cross linking on Windows and OS X.
(https://sourceware.org/binutils/docs-2.21/1d)

libjpeg: Used to compress and decompress images from the robot’s camera.
(http://www.ijg.org)

libjpeg-turbo: For the NAO we use an optimized version of the libjpeg library.
(http://libjpeg-turbo.virtualgl.org)

41

http://www.graphviz.org
http://ccache.samba.org
http://clang.llvm.org
http://eigen.tuxfamily.org
http://www.fftw.org
https://code.google.com/p/googletest/
https://sourceware.org/binutils/docs-2.21/ld
http://www.ijg.org
http://libjpeg-turbo.virtualgl.org

B-Human 2015

libgxt: For showing the sliders in the camera calibration view of the simulator.
(https://bitbucket.org/libqxt/libgxt/wiki/Home)

libxml2: For reading simulator’s scene description files.
(http://xmlsoft.org)

mare: Build automation tool and project file generator.
(http://github.com/craflin/mare)

ODE: For providing physics in the simulator.
(http://www.ode.org)

OpenGL Extension Wrangler Library: For determining, which OpenGL extensions are
supported by the platform.
(http://glew.sourceforge.net)

Qt: The GUI framework of the simulator.
(http://www.qt.1io0)

qtpropertybrowser: Extends the Qt framework with a property browser.
(https://github.com/commontk/QtPropertyBrowser)

snappy: Used for the compression of log files.
(http://google.github.io/snappy)

42

https://bitbucket.org/libqxt/libqxt/wiki/Home
http://xmlsoft.org
http://github.com/craflin/mare
http://www.ode.org
http://glew.sourceforge.net
http://www.qt.io
https://github.com/commontk/QtPropertyBrowser
http://google.github.io/snappy

Bibliography

1]
2]

[10]

[11]

[12]

Jogl - java binding for the opengl api. http://jogamp.org/jogl/wwu/.

J. J. Alcaraz-Jiménez, D Herrero-Pérez, and H Martinez-Barbera. Robust feedback control
of zmp-based gait for the humanoid robot nao. The International Journal of Robotics
Research, 32(9-10):1074-1088, 2013.

Arne Bockmann. Entwicklung einer dynamischen schussbewegung mit dem humanoiden
roboter nao. Master thesis, University of Bremen, 2015.

Shih-Hsuan Chiu, Jiun-Jian Liaw, and Kuo-Hung Lin. A fast randomized hough transform
for circle/circular arc recognition. IJPRAI, 24(3):457-474, 2010.

RoboCup Technical Committee. Results2015 — Standard Platform League, 2015. Only
available online: http://www.informatik.uni-bremen.de/spl/bin/view/Website/
Results2015#Technical_Challenges.

RoboCup Technical Committee. RoboCup Standard Platform League (NAO) technical
challenges, 2015. Only available online: http://www.informatik.uni-bremen.de/spl/
pub/Website/Downloads/Challenges2015.pdf.

Stefan Czarnetzki, Séren Kerner, and Oliver Urbann. Applying dynamic walking control
for biped robots. In Jacky Baltes, Michail G. Lagoudakis, Tadashi Naruse, and SaeedShiry
Ghidary, editors, RoboCup 2009: Robot Soccer World Cup XIII, volume 5949 of Lecture
Notes in Computer Science, pages 69-80. Springer, 2010.

Gaél Guennebaud, Benoit Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal. Dy-
namical Movement Primitives: Learning Attractor Models for Motor Behaviors. Neural
Computation, 25(2):328-373, 2012.

Jens Kober, Katharina Miilling, Oliver Kromer, Christoph H. Lampert, Bernhard
Scholkopf, and Jan Peters. Movement templates for learning of hitting and batting. In Pro-
ceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA
2010), pages 853-858, 2010.

Katharina Miilling, Jens Kober, Oliver Kromer, and Jan Peters. Learning to select and
generalize striking movements in robot table tennis. The International Journal of Robotics
Research, 32(3):263-279, 2013.

Thomas Rofer, Tim Laue, Judith Miiller, Michel Bartsch, Malte Jonas Batram, Arne
Bockmann, Martin Boschen, Martin Kroker, Florian Maaf3, Thomas Miinder, Marcel Stein-
beck, Andreas Stolpmann, Simon Taddiken, Alexis Tsogias, and Felix Wenk. B-Human

43

http://jogamp.org/jogl/www/
http://www.informatik.uni-bremen.de/spl/bin/view/Website/Results2015#Technical_Challenges
http://www.informatik.uni-bremen.de/spl/bin/view/Website/Results2015#Technical_Challenges
http://www.informatik.uni-bremen.de/spl/pub/Website/Downloads/Challenges2015.pdf
http://www.informatik.uni-bremen.de/spl/pub/Website/Downloads/Challenges2015.pdf
http://eigen.tuxfamily.org

B-Human 2015 BIBLIOGRAPHY

44

team report and code release 2013, 2013. Only available online: http://www.b-human.de/
downloads/publications/2013/CodeRelease2013.pdf.

Thomas Rofer, Tim Laue, Judith Miiller, Dennis Schiithe, Michel Bartsch, Arne
Bockmann, Dana Jenett, Sebastian Koralewski, Florian Maaf}, Elena Maier, Caren Siemer,
Alexis Tsogias, and Jan-Bernd Vosteen. B-Human team report and code release 2014,
2014. Only available online: https://www.b-human.de/downloads/publications/2014/
CodeRelease2014.pdf.

Stefan Schaal. Dynamic movement primitives — a framework for motor control in humans
and humanoid robotics. In Hiroshi Kimura, Kazuo Tsuchiya, Akio Ishiguro, and Hartmut
Witte, editors, Adaptive Motion of Animals and Machines, pages 261-280. Springer Tokyo,
2006.

Cihan Topal, Cuneyt Akinlar, Ling Tian, Yimin Zhou, and Yu Sun. Edge drawing: A
combined real-time edge and segment detector. Journal of Visual Communication and
Image Representation, 23(6):862-872, 2012.

Oliver Urbann and Stefan Tasse. Observer based biped walking control, a sensor fusion
approach. Autonomous Robots, 35(1):37-49, 2013.

http://www.b-human.de/downloads/publications/2013/CodeRelease2013.pdf
http://www.b-human.de/downloads/publications/2013/CodeRelease2013.pdf
https://www.b-human.de/downloads/publications/2014/CodeRelease2014.pdf
https://www.b-human.de/downloads/publications/2014/CodeRelease2014.pdf

	1 Introduction
	1.1 About Us
	1.2 About this Document

	2 Getting Started
	2.1 Download
	2.2 Components and Configurations
	2.3 Building the Code
	2.3.1 Project Generation
	2.3.2 Visual Studio on Windows
	2.3.2.1 Required Software
	2.3.2.2 Compiling

	2.3.3 Xcode on OS X
	2.3.3.1 Required Software
	2.3.3.2 Compiling

	2.3.4 Linux
	2.3.4.1 Required Software
	2.3.4.2 Compiling

	2.4 Setting Up the NAO
	2.4.1 Requirements
	2.4.2 Creating a Robot Configuration
	2.4.3 Managing Wireless Configurations
	2.4.4 Setup

	2.5 Copying the Compiled Code
	2.6 Working with the NAO
	2.7 Starting SimRobot
	2.8 Calibrating the Robots
	2.8.1 Overall Physical Calibration
	2.8.2 Joint Calibration
	2.8.3 Camera Calibration
	2.8.4 Color Calibration

	2.9 Configuration Files

	3 Changes Since 2014
	3.1 Infrastructure
	3.1.1 Modules and Representations
	3.1.2 Log Files
	3.1.3 C-based Agent Behavior Specification Language (CABSL)
	3.1.4 Eigen
	3.1.5 Wrist and Hand Joints, Tactile Sensors, and Head LED
	3.1.6 Additional Changes

	3.2 Tools
	3.2.1 Automatic Camera Calibrator

	3.3 Perception
	3.3.1 Goal Perception
	3.3.2 Penalty Mark Perception
	3.3.3 Players Perception

	3.4 Motion Selection and Combination
	3.5 Behavior
	3.5.1 Defender
	3.5.1.1 The Left / Right Decision
	3.5.1.2 The Back / Forward Decision
	3.5.1.3 The Position Selection
	3.5.1.4 The Decision to Move

	4 Technical Challenges
	4.1 Corner Kicks Challenge
	4.1.1 A Kick Engine based on Dynamic Movement Primitives
	4.1.1.1 Prediction of Motor Behavior
	4.1.1.2 Balancing
	4.1.1.3 Modeling of the Kick Trajectory

	4.2 Many Carpets Challenge
	4.3 Realistic Ball Challenge
	4.3.1 RealisticBallPerceptor
	4.3.2 RealisticBallPerceptSelector

	5 Team Communication Monitor
	6 Acknowledgements
	Bibliography

