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Chapter 1

Introduction

1.1 About Us

B-Human is a joint RoboCup team of the University of Bremen and the German Research Center
for Artificial Intelligence (DFKI). The team was founded in 2006 as a team in the Humanoid
League, but switched to participating in the Standard Platform League in 2009. Since then,
B-Human has won eight RoboCup German Open competitions, the RoboCup European Open
2016 competition, and has become RoboCup world champion six times.

After we had claimed the world champion title in two years in a row, we only came second in the
Champions Cup in Montréal, Canada. However, we again won the Mixed Team Competition,
in which we teamed up with rUNSWift from the University of New South Wales this year and
formed the joint team B-Swift. We also won this year’s Technical Challenge again.

The 2018 team consisted of the following persons (most of them are shown in Fig. 1.1):

Students: Andreas Baude, Jan Buschmann, Tryggve Gahrmann, Gerrit Felsch, Jan Fiedler,
Marvin Franke, Martin Gerken, Mario Grobler, Paul Luca Habermann, Arne Hasselbring,
Jannik Heyen, Markus Ihrig, Jan-Henrik Kasper, Jonah Klöckner, Daniel Krause, Gregor
Kuhn, Jonas Kuball, Florian Maaß, Bernd Poppinga, Lukas Post, Philip Reichenberg,
Enno Röhrig, René Schröder, Nicole Schrader, Lukas Schulze, Alexander Stöwing, Felix
Thielke, Timo Urban, Lars Wimmel.

Active Alumni: Alexis Tsogias.

Leaders: Tim Laue, Thomas Röfer.

Associated Researchers: Udo Frese, Jesse Richter-Klug.

1.2 About the Document

In this document, we give an overview of the changes that we made in our system since last
year and provide descriptions of the approaches used in the additional competitions. The most
comprehensive reference to our system remains our team report of 2017 [4].

The remainder of this document is organized as follows: Chapter 2 gives a short introduction on
how to build the code including the required software and how to run the NAO with our software.
The major changes made to the system since last year – in particular improvements of the
infrastructure, some of the perception and motions approaches, and our behavior implementation
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1.2. ABOUT THE DOCUMENT B-Human 2018

Figure 1.1: The majority of the B-Human team members for the RoboCup season 2018

– are described in Chapter 3. Finally, a brief description of our participation in the Penalty Shot
Challenge and the Mixed Team Competition is given in Chapter 4.
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Chapter 2

Getting Started

The goal of this chapter is to give an overview of the code release package and to give instructions
on how to enliven a NAO with our code. For the latter, several steps are necessary: downloading
the source code, compiling the code using Visual Studio on Windows, Xcode on macOS, or make
on Linux, setting up the NAO, copying the files to the robot, and starting the software. In
addition, all calibration procedures are described here.

This code release only supports NAO versions 4 and 5. The code will not run on other versions,
in particular not on NAO V6. Trying to set up an unsupported NAO with our software will not
work and may have negative effects on the robot.

2.1 Download

The code release can be downloaded from GitHub at https://github.com/bhuman. Store the
code release to any folder. After the download is finished, the chosen folder should contain
several subdirectories which are described below.

Build is the target directory for generated binaries and for temporary files created during the
compilation of the source code. It is initially missing and will be created by the build
system.

Config contains configuration files used to configure the B-Human software. A brief overview
of the organization of the configuration files can be found in Sect. 2.9.

Install contains all files needed to set up B-Human on a NAO.

Make contains Makefiles, other files needed to compile the code, the Copyfiles tool, and a script
to download log files from a NAO. In addition there are generate scripts that create the
project files for Xcode, Visual Studio, and CodeLite.

Src contains the source code of the B-Human software including the B-Human User Shell (cf. [4,
Chapter 10.2]).

Util contains auxiliary and third party libraries (cf. Sect. 5) as well as our simulator SimRobot
(cf. [4, Chapter 10.1]).

6

https://github.com/bhuman


2.2. COMPONENTS AND CONFIGURATIONS B-Human 2018

2.2 Components and Configurations

The B-Human software is usable on Windows, Linux, and macOS. It consists of two shared
libraries for NAOqi running on the real robot, an additional executable for the robot, the same
software running in our simulator SimRobot (without NAOqi), as well as some libraries and
tools. Therefore, the software is separated into the following components:

bush is a tool to deploy and manage multiple robots at the same time (cf. [4, Chapter 10.2]).

Controller is a static library that contains NAO-specific extensions of the simulator and the
interface to the robot code framework. It is also required for controlling and high level
debugging of code that runs on a NAO.

copyfiles is a tool for copying compiled code to the robot. For a more detailed explanation see
Sect. 2.5. In the Xcode project, this is called Deploy.

libbhuman is the shared library used by the B-Human executable to interact with NAOqi.

libgamectrl is a shared NAOqi library that communicates with the GameController. Addi-
tionally it implements the official button interface and sets the LEDs as specified in the
rules. More information can be found in our 2017 code release [4, Chapter 3.1].

libqxt is a static library that provides an additional widget for Qt on Windows and Linux. On
macOS, the same source files are simply part of the library Controller.

Nao is the B-Human executable for the NAO. It depends on libbhuman and libgamectrl.

qtpropertybrowser is a static library that implements a property browser in Qt.

SimRobot is the simulator executable for running and controlling the B-Human robot code. It
dynamically links against the components SimRobotCore2, SimRobotEditor, SimulatedNao,
and some third-party libraries. SimRobot is compilable in Release, Develop, and Debug
configurations. All these configurations contain debug code, but Release performs some
optimizations and strips debug symbols (Linux and macOS). Develop produces debuggable
robot code while linking against non-debuggable but faster Release libraries.

SimRobotCore2 is a shared library that contains the simulation engine of SimRobot.

SimRobotEditor is a shared library that contains the editor widget of the simulator.

SimulatedNao is a shared library containing the B-Human code for the simulator. It depends
on Controller, qtpropertybrowser and libqxt. It is statically linked against them.

All components can be built in the three configurations Release, Develop, and Debug. Release
is meant for “game code” and thus enables the highest optimizations; Debug provides full de-
bugging support and no optimization. Develop is a special case. It generates executables with
some debugging support for the components Nao and SimulatedNao (see the table below for
more specific information). For all other components it is identical to Release.

The different configurations for Nao and SimulatedNao can be looked up in Tab. 2.1.
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without debug symbols debug libs1 optimizations debugging
assertions (compiler ( DEBUG, (compiler support2

(NDEBUG) flags) compiler flags) flags)

Release
Nao X × × X ×
SimulatedNao X × × X X
Develop
Nao × × × X X
SimulatedNao × X × × X
Debug
Nao × X X × X
SimulatedNao × X X × X

1 - on Windows - https://docs.microsoft.com/en-us/cpp/c-runtime-library/debug
2 - See [4, Chapter 3.6]

Table 2.1: Effects of the different build configurations.

2.3 Building the Code

2.3.1 Project Generation

The scripts generate (or generate.cmd on Windows) in the Make/<OS/IDE> directories gen-
erate the platform or IDE specific files that are needed to compile the components. The script
collects all the source files, headers, and other resources if needed and packs them into a solution
matching the system (i. e. Visual Studio projects and a solution file for Windows, a CodeLite
project for Linux, and an Xcode project for macOS). It has to be called before any IDE can
be opened or any build process can be started and it has to be called again whenever files are
added or removed from the project. On Linux, the generate script is needed when working with
CodeLite. Building the code from the command line, via the provided Makefile, works without
calling generate on Linux.

2.3.2 Visual Studio on Windows

2.3.2.1 Required Software

• Windows 10 64 bit or later

• Visual Studio 20171 or later

• A Unix base system. There are two alternatives:

1. Windows Subsystem for Linux (WSL). Execute the PowerShell script
Make/VS2017/installWSL.ps1. The script will guide through the installation.
It will install the Windows Subsystem for Linux (unless it is already installed), then
the Windows installer will ask for a reboot of the computer. Then script has to be
executed again to download and install ”Ubuntu-WSL” with all required packages.

2. Cygwin x86 / x64 (available at http://www.cygwin.com) with the additional pack-
ages rsync, openssh, ccache, and clang. Let the installer add an icon to the start

1Visual Studio 2017 Community Edition Version 15.8 with only the “VC++ 2017 v141 Toolset (x86, x64)”
and “Windows 10 SDK” installed is sufficient.
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2.3. BUILDING THE CODE B-Human 2018

menu (the Cygwin Terminal). Add the . . . \cygwin64\bin directory to the beginning
of the PATH environment variable (before the Windows system directory, since there
are some commands that have the same names but work differently). Make sure to
start the Cygwin Terminal at least once, since it will create a home directory.

• alcommon – For the extraction of the required alcommon library and compatible boost
headers from the C++ SDK 2.1.4 Linux 32 (naoqi-sdk-2.1.4.13-linux32.tar.gz) the script
Install/installAlcommon can be used, which is delivered with the B-Human software. The
required package has to be downloaded manually and handed over to the script. It is
available at https://community.ald.softbankrobotics.com (account required). Please
note that this package is only required to compile the code for the actual NAO robot.

2.3.2.2 Compiling

Generate the Visual Studio project files using the script Make/VS2017/generate.cmd and open
the solution Make/VS2017/B-Human.sln in Visual Studio. Visual Studio will then list all the
components (cf. Sect. 2.2) of the software in the “Solution Explorer”. Select the desired con-
figuration (cf. Sect. 2.2, Develop would be a good choice for starters) and build the desired
project: SimRobot compiles every project used by the simulator, Nao compiles every project
used for working with a real NAO, and Utils/bush compiles the B-Human User Shell (cf. [4,
Chapter 10.2]). Either SimRobot or Utils/bush can be selected as “StartUp Project”.

2.3.3 Xcode on macOS

2.3.3.1 Required Software

The following components are required:

• macOS 10.13 or later

• Xcode 10 or later

• alcommon – For the extraction of the required alcommon library and compatible boost
headers from the C++ SDK 2.1.4 Linux 32 (naoqi-sdk-2.1.4.13-linux32.tar.gz) the script
Install/installAlcommon can be used, which is delivered with the B-Human software. The
required package has to be downloaded manually and handed over to the script. It is
available at https://community.ald.softbankrobotics.com (account required). Please
note that this package is only required to compile the code for the actual NAO robot.
Also note that installAlcommon expects the extension .tar.gz. If the NAOqi archive was
partially unpacked after the download, e. g., by Safari, repack it again before executing
the script.

2.3.3.2 Compiling

Generate the Xcode project by executing Make/macOS/generate.2 Open the Xcode project
Make/macOS/B-Human.xcodeproj. A number of schemes (selectable in the toolbar) allow build-
ing SimRobot in the configurations Debug, Develop, and Release, as well as the code for the NAO3

2Xcode must have been executed at least once before to accept its license and to install its components.
3Note that the cross compiler actually builds code for Linux, although the scheme says “My Mac”.
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in all three configurations (cf. Sect. 2.2). For both targets, Develop is a good choice. In addition,
the B-Human User Shell bush can be built.

When building for the NAO, a successful build will open a dialog to deploy the code to a robot
(using the copyfiles script, cf. Sect. 2.5).4 If the login script was used before to login to a
NAO, the IP address used will be provided as default. In addition, the option -b is provided by
default, which will restart the B-Human software on the NAO after it was deployed. Both the IP
address selected and the options specified are remembered for the next use of the deploy dialog.
The IP address is stored in the file Config/Scenes/Includes/connect.con that is also written
by the login script and used by the RemoteRobot simulator scene. The options are stored in
Make/macOS/copyfiles-options.txt. A special option is -a: If it is specified, the deploy dialog
is not shown anymore in the future. Instead, the previous settings will be reused, i. e. building
the code will automatically deploy it without any questions asked. To get the dialog back, hold
down the key Shift at the time the dialog would normally appear.

2.3.3.3 Support for Xcode

Calling the script Make/macOS/generate also installs various development supports for Xcode:

Data formatters. If the respective file does not already exist, a symbolic link is created to
formatters that let Xcode’s debugger display summaries of several Eigen datatypes.

Source file templates. Xcode’s context menu entry New File. . . contains a category B-
Human that allows to create some B-Human-specific source files.

Code snippets. Many code snippets are available that allow adding standard constructs fol-
lowing B-Human’s coding style as well as some of B-Human’s macros.

Source code formatter. A system text service for formatting B-Human code is available to
be used from Xcode’s menu Xcode→Services.

2.3.4 Linux

The following has been tested and works on Ubuntu 18.04 64-bit. It should also work on other
Linux distributions (as long as they are 64-bit); however, different or additional packages may
be required.

2.3.4.1 Required Software

The build has been tested using the software versions provided by the current Ubuntu distribu-
tion repositories. Earlier versions of, e. g., clang may work, but are untested.

Requirements (listed by common package names) for Ubuntu 18.04:

• clang

• make

• qtbase5-dev

• libqt5opengl5-dev

4Before this can be done, the NAO has to be set up first (cf. Sect. 2.4).
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2.4. SETTING UP THE NAO B-Human 2018

• libqt5svg5-dev

• libglew-dev

• net-tools

• graphviz – Optional, for generating module graphs and the behavior graph.

• xterm – Optional, for opening an ssh session from the B-Human User Shell bush.

• alcommon – For the extraction of the required alcommon library and compatible boost
headers from the C++ SDK 2.1.4 Linux 32 (naoqi-sdk-2.1.4.13-linux32.tar.gz) the script
Install/installAlcommon can be used, which is delivered with the B-Human software. The
required package has to be downloaded manually and handed over to the script. It is
available at https://community.ald.softbankrobotics.com (account required). Please
note that this package is only required to compile the code for the actual NAO robot.

On Ubuntu 18.04, the following command can be executed to install all requirements except for
alcommon:

sudo apt install clang make qtbase5 -dev libqt5opengl5 -dev libqt5svg5 -dev

libglew -dev net -tools graphviz xterm

2.3.4.2 Compiling

To compile one of the components described in Section 2.2 (except Copyfiles), simply select
Make/Linux as the current working directory and type:

make

to build the whole solution or

make <component > [CONFIG=<configuration >]

to build single components.

To clean up the whole solution, use:

make clean [CONFIG=<configuration >]

As an alternative, there is also support for the integrated development environment CodeLite
that works similar to Visual Studio for Windows (cf. Sect. 2.3.2.2).

To use CodeLite, execute Make/LinuxCodeLite/generate and open the B-Human.workspace
afterwards. Note that CodeLite 5 or later is required to open the workspace generated. Older
versions might crash. The latest reported compatible version of CodeLite is 10.0.0.

2.4 Setting Up the NAO

2.4.1 Requirements

First of all, the atom system image, e. g. version 2.1.4 (opennao-atom-system-image-
2.1.4.13 2015-08-27.opn), and the Flasher, e. g. version 2.1.0, must be downloaded for
the corresponding operating system from the download area of https://community.ald.

softbankrobotics.com (account required). In order to flash the robot, a USB flash drive
with at least 2 GB of free space and a network cable is required.
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To use the scripts in the directory Install, the following tools are required5:

sed, rsync.

Each script will check its requirements and will terminate with an error message if a required
tool is not found.

The commands in this chapter are shell commands. They must be executed inside a Unix shell,
i. e. on Windows, bash has to be started first. All shell commands should be executed from the
Install directory.

2.4.2 Installing the Operating System

After the robot specific configuration files were created (cf. Sect. 2.4.3 and Sect. 2.4.4), plug in
the USB flash drive and start the NAO flasher tool67. Select the opennao-atom-system-image-
2.1.4.13.opn and the USB flash drive. Enable “Factory reset” and click on the write button.

After the USB flash drive has been flashed, plug it into the NAO that is switched off and press
the chest button for about 5 seconds. Afterwards, the NAO will automatically install NAO OS
and reboot. While installing the basic operating system, connect the computer to the robot
using the network cable and configure the network for DHCP. Once the reboot is finished, the
NAO will do its usual wake-up procedure. Now the NAO will say its current IP address by
pressing the chest button.

2.4.3 Creating Robot Configuration Files for a NAO

Before the set up of the NAO is started, the configuration files for each robot to be set up must
be created. To create the configuration files, run createRobot followed by addRobotIds in the
Install directory. The first script expects a team id, a robot id and a robot name. The team id
is usually equal to the team number configured in Config/settings.cfg, but any number between
1 and 254 can be used. The given team id is used as third part of the IPv4 address of the robot
on both interfaces LAN and WLAN. All robots playing in the same team need the same team
id to be able to communicate with each other. The robot id is the last part of the IP address
and must be unique for each team id. The robot name identifies the robot and is used in the
system to load robot specific configurations. Furthermore, it is used as the host name of the
NAO operating system. The second file creates a table associating the headId and bodyId of each
NAO to the name used by createRobot. These ids are the serial-numbers SoftBank Robotics
uses for the NAO. Apart from the name this script expects either those ids, typed in manually,
or the current ip-address of the NAO, in which case the ids will be loaded from the robot.

Before creating the first robot configuration, check whether the network configuration template
files wireless and wired in Install/Network and default in Install/Network/Profiles match the
requirements of the local network configuration.

Here is an example for creating a new set of configuration files for a robot named Penny in team
three with IP xxx.xxx.3.25. It is assumed that the robot is already connected via an ethernet
connection and has reported its IP address to be 169.254.54.28 (via pressing the chest button):

5In the unlikely case that they are missing in a Linux distribution, execute sudo apt-get install sed openssh-
clients. On Windows and macOS, they are already installed at this point.

6On Linux and macOS the flasher has to be started with root permissions. Usually this can be done with sudo
./flasher

7On Linux there may be an error about a missing zlib version. This can be resolved by removing the three
files starting with libz in the lib directory
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cd Install

./ createRobot -t 3 -r 25 Penny

./ addRobotIds -ip 169.254.54.28 Penny

If the NAO is not available, the serial numbers can also be specified manually:

./ addRobotIds -ids ALDxxxxxxxxxxxx ALDxxxxxxxxxxxx Penny

Help for both scripts is available using the option -h. Running createRobot creates all needed files
to install the robot. This script also creates a directory with the robot’s name in Config/Robots.
addRobotIds will store the table in Config/Robots/robots.cfg.

Note: When upgrading from an older B-Human code release running createRobot is not nec-
essary. Nevertheless, the script addRobotIds has to be executed for robots that were installed
with code releases before 2016.

2.4.4 Managing Wireless Configurations

All wireless configurations are stored in Install/Network/Profiles. Additional configurations
must be placed here and will be installed alongside the default configuration. After the setup will
be completed, the NAO will always load the default configuration, when booting the operating
system.

Later, different configurations can be selected by calling the script setprofile on the NAO, which
overwrites the default configuration.

setprofile SPL_A

setprofile Home

Another way to switch between different configurations is by using the tools copyfiles (cf.
Sect. 2.5) or bush (cf. [4, Chapter 10.2]).

2.4.5 Installing the Robot

Finally, the script installRobot has to be executed in order to prepare the robot for the B-Human
software. This script only expects the current IP address of the robot. For example run:

./ installRobot 169.254.54.28

Follow the instructions on the screen until the robot reboots.8

Now copyfiles (cf. Sect. 2.5) or bush (cf. [4, Chapter 10.2]) can be used to copy compiled code
and configuration files to the NAO.

2.5 Copying the Compiled Code

The script copyfiles is used to copy compiled code and configuration files to the NAO. Although
copyfiles allows specifying the team number, it is usually better to configure the team number
and the UDP port used for team communication permanently in the file Config/settings.cfg.

On Windows as well as on macOS, an IDE can be used with copyfiles. In Visual Studio, the script
can be executed by “building” the project copyfiles, which can be built in all configurations. If

8The password nao will only be required to enter if the ssh key has not been copied yet, i. e. if neither
addRobotIds -ip nor installRobot ran before for this robot.
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the code is not up-to-date in the desired configuration, it will be built. After a successful build,
a promp to enter the parameters described below will appear. On macOS, a successful build for
the NAO always ends with a dialog asking for copyfiles’ command line options. The script can
also be executed at the command prompt, which is the only option for Linux users. The script
is located in the folder Make/<OS/IDE>.

copyfiles requires two mandatory parameters. First, the configuration the code was compiled
with (Debug, Develop, or Release)9, and second, the IP address of the robot. To adjust the
desired settings, it is possible to set the following optional parameters:

Option Description

-b Restarts bhuman (and naoqi if necessary) after copying.
-c <color> Sets the team color to blue, red, yellow, black, white, green, orange, purple,

brown, or gray replacing the value in the settings.cfg.
-d Removes all log files from the robot’s /home/nao/logs directory before

copying files.
-h | --help Prints the help.
-l <location> Sets the location, replacing the value in the settings.cfg.
-m <number> Sets the magic number. Robots with different magic numbers will ignore

each other when communicating.
-n Stops naoqi.
-nc Never compiles, even if binaries are outdated.
-nr Does not check whether the robot to deploy to is reachable.
-o <port> Overwrite team port (default is 10000 + team number).
-p <number> Sets the player number, replacing the value in the settings.cfg.
-r <n> <ip> Copies to IP address <ip> and sets the player number to n. This option

can be specified more than once to deploy to multiple robots.
-s <scenario> Sets the scenario, replacing the value in the settings.cfg.
-t <number> Sets team number, replacing the value in the settings.cfg.
-v <percent> Sets NAO’s sound volume.
-w <profile> Sets wireless profile.

Possible calls could be:

./ copyfiles Develop 134.102.204.229 -t 5 -c blue -p 3 -b

./ copyfiles Release -r 1 10.0.0.1 -r 3 10.0.0.2

The destination directory on the robot is /home/nao/Config. Alternatively, the B-Human User
Shell (cf. [4, Chapter 10.2]) can be used to copy the compiled code to several robots at once.

2.6 Working with the NAO

After pressing the chest button, it takes about 40 seconds until NAOqi is started. Currently,
the B-Human software consists of two shared libraries (libbhuman.so and libgamectrl.so) that
are loaded by NAOqi at startup, and one executable (bhuman), which is also loaded at startup.

To connect to the NAO, the subdirectories of Make contain a login script for each supported
platform. The only parameter of that script is the IP address of the robot to login. It automat-
ically uses the appropriate SSH key to login. In addition, the IP address specified is written to

9This parameter is automatically passed to the script when using IDE-based deployment.
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the file Config/Scenes/Includes/connect.con. Thus a later use of the SimRobot scene RemoteR-
obot.ros2 will automatically connect to the same robot. On macOS, the IP address is also the
default address for deployment in Xcode.

There are several scripts to start and stop NAOqi and bhuman via SSH. Those scripts are copied
to the NAO upon installing the B-Human software.

naoqi executes NAOqi in the foreground. Press Ctrl+C to terminate the process. Please note
that the process will automatically be terminated if the SSH connection is closed.

nao start|stop|restart starts, stops or restarts NAOqi. In case libbhuman or libgamectrl were
updated, copyfiles restarts NAOqi automatically.

bhuman executes the bhuman executable in the foreground. Press Ctrl+C to terminate the
process. Please note that the process will automatically be terminated if the SSH connec-
tion is closed.

bhumand start|stop|restart starts, stops or restarts the bhuman executable. Copyfiles al-
ways stops bhuman before deploying. If copyfiles is started with option -r, it will restart
bhuman after all files were copied.

status shows the status of NAOqi and bhuman.

stop stops running instances of NAOqi and bhuman.

halt shuts down the NAO. If NAOqi is running, this can also be done by pressing the chest
button longer than three seconds.

reboot reboots the NAO.

2.7 Starting SimRobot

On Windows and macOS, SimRobot can either be started from the development environment
or by starting a scene description file in Config/Scenes10. In the first case, a scene description
file has to be opened manually, whereas it will already be loaded in the latter case. On Linux,
just run Build/SimRobot/Linux/<configuration>/SimRobot, either from the shell or from a file
browser, and load a scene description file afterwards. When a simulation is opened for the first
time, only the scene graph is displayed. The simulation is already running, which can be noted
from the increasing number of simulation steps shown in the status bar. A scene view showing
the soccer field can be opened by double-clicking RoboCup. The view can be adjusted by using
the context menu of the window or the toolbar. Double-clicking Console will open a window
that shows the output of the robot code and that allows entering commands. All windows can
be docked in the main window.

After starting a simulation, a script file may automatically be executed, setting up the robot(s)
as desired. The name of the script file is the same as the name of the scene description file but
with the extension .con. Together with the ability of SimRobot to store the window layout, the
software can be configured to always start with a setup suitable for a certain task.

10On Windows, the first time starting such a file the SimRobot.exe must be manually chosen to open these files.
Note that both on Windows and macOS, starting a scene description file bears the risk of executing a different
version of SimRobot than the one that was just compiled.
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Although any object in the scene graph can be opened, only displaying certain entries in the ob-
ject tree makes sense, namely the main scene RoboCup, the objects in the group RoboCup/robots,
and all other views.

To connect to a real NAO, open the RemoteRobot scene Config/Scenes/RemoteRobot.ros2. A
promp will appear to enter the NAO’s IP address.11 In a remote connection, the simulation
scene is usually empty. Therefore, it is not necessary to open a scene view.

2.8 Calibrating the Robots

Correctly calibrated robots are very important since the software requires all parts of the NAO to
be at the expected locations. Otherwise the NAO will not be able to walk stable and projections
from image coordinates to world coordinates (and vice versa) will be wrong. In general, a lot
of calculations will be unreliable. Two physical components of the NAO can be calibrated
via SimRobot; the joints (cf. Sect. 2.8.2) and the cameras (cf. Sect. 2.8.3). Checking those
calibrations from time to time is important, especially for the joints. New robots come with
calibrated joints and are theoretically ready to play out of the box. However, over time and
usage, the joints wear out. This is especially noticeable with the hip joint.

In addition to that, the B-Human software uses four color classes (cf. [4, Chapter 4.1.4]) which
have to be calibrated as well (cf. Sect. 2.8.4). Changing locations or light conditions might
require them to be adjusted.

2.8.1 Overall Physical Calibration

The physical calibration process can be split into three steps with the overall goal of an upright
and straight standing robot and a correctly calibrated camera. The first step is to get both feet
in a planar position. This does not mean that the robot has to stand straight. It is done by
lifting the robot up so that the bottom of the feet can be seen. The joint offsets of feet and
legs are then changed until both feet are planar and the legs are parallel to one another. The
distance between the two legs can be measured at the gray parts of the legs. They should be
10 cm apart from center to center.

The second step is the camera calibration (cf. Sect. 2.8.3). This step also measures the tilt of
the body with respect to the feet. This measurement can then be used in the third step to
improve the joint calibration and straighten up the robot (cf. Sect. 2.8.2). In some cases it may
be necessary to repeat these steps, because big changes in the joint calibration may invalidate
the camera calibration.

2.8.2 Joint Calibration

The software supports two methods for calibrating the joints: either by manually adjusting
offsets for each joint, or by using the JointCalibrator module which uses an inverse kinematic
to do the same (cf. [4, Chapter 8.3.4]). The third step of the overall calibration process (cf.
Sect. 2.8.1) can only be done via the JointCalibrator. When switching between those two methods,
it is necessary to save the JointCalibration, redeploy the NAO and restart bhuman. Otherwise,
the changes done previously will not be used.

Before changing joint offsets, the robot has to be set in a standing position with fixed joint

11The script might instead automatically connect to the IP address that was last used for login or deployment.
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angles. Otherwise, the balancing mechanism of the motion engine might move the legs, messing
up the joint calibrations. This can be done with

get representation:MotionRequest

and then set motion = stand in the returned statement.

When the calibration is finished, it should be saved:

save representation:JointCalibration

Manually Adjusting Joint Offsets

First of all, the robot has to be switched to a stationary stand, otherwise the balancing mecha-
nism of the motion engine might move the legs, messing up the joint calibration:

mr StandArmRequest CalibrationStand

mr StandLegRequest CalibrationStand

There are two ways to adjust the joint offsets. Either by requesting the JointCalibration repre-
sentation with a get call:

get representation:JointCalibration

modifying the calibration returned and then setting it, or by using a Data View (cf. [4, Chap-
ter 10.1.4.5]):

vd representation:JointCalibration

which is more comfortable.

Using the JointCalibrator

First set the JointCalibrator to provide the JointCalibration and switch to the CalibrationStand:

call Calibrators/Joint

When a completely new calibration is desired, the JointCalibration can be reset:

dr module:JointCalibrator:reset

Afterwards, the translation and rotation of the feet can be modified. Again either with

get module:JointCalibrator:offsets

or with:

vd module:JointCalibrator:offsets

The units of the translations are in millimeters and the rotations are in degrees.

Straightening Up the NAO

The camera calibration (cf. Sect. 2.8.3) also calculates a rotation for the body rotation. These
values can be passed to the JointCalibrator that will then set the NAO in an upright position.
Call:

get representation:CameraCalibration

call Calibrators/Joint
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(a) (b)

Figure 2.1: Projected lines before (a) and after (b) the calibration procedure

Copy the values of bodyRotationCorrection (representation CameraCalibration) into bodyRotation
(representation JointCalibration). Afterwards, set bodyRotationCorrection (representation Cam-
eraCalibration) to zero. Another way to make these actions more or less automatically is possible
by using the AutomaticCameraCalibrator with the automation flag (cf. Sect. 2.8.3).

The last step is to adjust the translation of both feet at the same time (and most times in the
same direction) so they are perpendicular positioned below the torso. A plummet or line laser
is very useful for that task.

When all is done save the representations by executing

save representation:JointCalibration

save representation:CameraCalibration

Then redeploy the NAO and restart bhuman.

2.8.3 Camera Calibration

For calibrating the cameras (cf. [4, Chapter 4.1.2.1]) using the module AutomaticCameraCalibra-
tor, follow the steps below:

1. Connect the simulator to a robot on the field and place it on a defined spot (e. g. the
penalty mark).

2. Run the SimRobot configuration file Calibrators/Camera.con (in the console type call
Calibrators/Camera). This will initialize the calibration process and furthermore print
commands or help to the simulator console that will be needed later on.

3. Announce the robot’s position on the field (cf. [4, Chapter 4.1.2]) using the
AutomaticCameraCalibrator module (e. g. for setting the robot’s position to the penalty
mark of a field, type set module:AutomaticCameraCalibrator:robotPose rotation = 0;
translation = {x = -3200; y = 0;}; in the console).

4. To automatically generate the commands for the following joint calibration to correct the
body rotation, a flag can be set via set module:AutomaticCameraCalibrator:setJointOffsets
true. After finishing the optimization, the rotation can be corrected by entering the gen-
erated commands.
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(a) (b) (c)

Figure 2.2: The three interesting camera calibration stages. a) is the start of the calibrator. b)
is the view after the control start with gathered samples. c) is the stage after optimization.

5. To start the point collection, use the command dr module:AutomaticCameraCalibra-
tor:start and wait for the output “Accumulation finished. Waiting to optimize. . . ”. The
process includes both cameras and will collect samples for the calibration and make the
head motions to cover the whole field. The samples for the upper camera are drawn blue
and the samples for the lower camera red. A drawing above the images signalizes if the
sample amount is sufficient for optimization (green) or not (red).

6. If some specific samples should not be considered, they can now be deleted by left-clicking
onto the sample in the image in which it has been found. If there are some samples missing,
they can be added manually by Ctrl + left-clicking into the corresponding image.

7. Run the automatic calibration process using dr module:AutomaticCameraCalibrator:-
optimize and wait until the optimization has converged.

2.8.4 Color Calibration

Calibrating the color classes is split into two steps. First of all, the parameters of the camera
driver must be updated to the environment’s needs. The command:

get representation:CameraSettings

will return the current settings. Furthermore, the necessary set command will be generated.
The most important parameters are:

whiteBalanceTemperature: The white balance used. The available interval is [2700, 6500].

exposure: The exposure used. The available interval is [0, 1000]. Usually, an exposure of 140
is used, which equals 14 ms. Be aware that high exposures lead to blurred images.

gain: The gain used. The available interval is [0, 255]. Usually, the gain is set to 50 - 70. Be
aware that high gain values lead to noisy images.

autoWhiteBalance: Enable (true) / disable (false) the automatism for white balance. This
parameter should always be disabled since a change in the white balance can change the
color and mess up the color calibration. On the other hand, a real change in the color
temperature of the environment will have the same result.

autoExposure: Enable (true) / disable (false) the automatism for exposure. When playing
under static light conditions such as in the standard indoor tournament, this parameter
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Figure 2.3: The left figure shows an image with improper white balance. The right figure shows
the same image with better settings for white balance.

should always be disabled, since the automation will often choose higher values than
necessary, which will result in blurry images. However, for dynamic light conditions as
were present in the Outdoor Competition at RoboCup 2016, using the automatism of
the camera driver may be a necessity. In this case, its behavior can be altered using the
parameters autoExposureAlgorithm and brightness.

The camera driver can do a one-time auto white balance. This feature can be triggered with
the commands:

dr module:CameraProvider:doWhiteBalanceUpper

dr module:CameraProvider:doWhiteBalanceLower

After setting up the parameters of the camera driver, the parameters of the color classes must be
updated (cf. [4, Chapter 4.1.4]). To do so, one needs to open the views with the segmented upper
and lower camera images and the color calibration view (cf. [4, Chapter 10.1.4.1]). After finish-
ing the color class calibration and saving the current parameters, copyfiles/bush (cf. Sect. 2.5)
can be used to deploy the current settings. Ensure the updated files cameraSettingsV5.cfg (or
cameraSettingsV4.cfg if the NAO is a V4 model) and fieldColorsCalibrationV5.cfg (or fieldCol-
orsCalibrationV4.cfg) are stored in the correct location.

2.9 Configuration Files

Since the recompilation of the code takes a lot of time in some cases and each robot needs
a different configuration, the software uses a large amount of configuration files which can be
altered without causing recompilation. All the files that are used by the software12 are located
within the directory Config.

Scenarios can be used to configure the software for different independent tasks. They can be set
up by simply creating a new folder with the desired name within Config/Scenarios and placing
configuration files in it. Those configuration files are only taken into account if the scenario is
activated in the file Config/settings.cfg.

Locations can be used to configure the software for use in different locations, e. g. in the lab or at
different competitions. For instance, the field dimensions and the color calibration can depend

12There are also some configuration files for the operating system of the robots that are located in the directory
Install.
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on the location the robots are used in.

Robots. Besides the global configuration files, there are some files which depend on the robot’s
head, body, or both. To differentiate the locations of these files, the names of the head and
the body of each robot are used. They are defined in the file Config/Robots/robots.cfg that
maps the serial numbers of the heads and the bodies of the robots to their actual names. In the
Simulator, both names are always “Nao”.

To handle all these different configuration files, there are fall-back rules that are applied if a
requested configuration file is not found. The search sequence for a configuration file is:

1. Config/Robots/<head name>/Head/<filename>

• Used for files that only depend on the robot’s head

• e.g.: Robots/Amy/Head/cameraIntrinsics.cfg

2. Config/Robots/<body name>/Body/<filename>

• Used for files that only depend on the robot’s body

• e.g.: Robots/Alex/Body/walkingEngine.cfg

3. Config/Robots/<head name>/<body name>/<filename>

• Used for files that depend on both, the robot’s head and body.

• e.g.: Robots/Amy/Alex/cameraCalibration.cfg

4. Config/Locations/<current location>/<filename>

5. Config/Scenarios/<current scenario>/<filename>

6. Config/Robots/Default/<filename>

7. Config/Locations/Default/<filename>

8. Config/Scenarios/Default/<filename>

9. Config/<filename>

Whether a configuration file is robot-dependent, location-dependent, scenario-dependent, or
should always be available to the software, is just a matter of moving it between the directories
specified above. This allows for a maximum of flexibility. Directories that are searched earlier
might contain specialized versions of configuration files. Directories that are searched later can
provide fallback versions of these configuration files that are used if no specialization exists.

Using configuration files within our software requires very little effort, because loading them is
completely transparent for a developer when using parametrized modules (cf. [4, Chapter 3.3.5]).
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Chapter 3

Changes Since 2017

3.1 Infrastructure

3.1.1 Type Registration

Many datatypes in the B-Human system are streamable, i. e. they can be serialized to and
from data streams, e. g. for reading them from a file. This technique was originally developed
as part of the GermanTeam framework [8]. Part of the streaming architecture is the ability
to determine the specification of datatypes at runtime, for instance, to be able to read them
from a structured configuration file. However, in its original implementation, streaming was
mainly used as a debugging feature, e. g. to inspect data structures with an external PC at
runtime. Therefore, the approach that was selected to acquire the specification of datatypes did
not need to be very efficient, because it was rarely used when not debugging. As a result, the
specification was determined during streaming, i. e. while the data was serialized its specification
was recorded. In the current B-Human system, streaming is used much more often during the
normal execution than in the GermanTeam system. In particular, the robots log a lot of data
while they play soccer. It turned out that determining the specification over and over again
while logging created a significant overhead. For instance last year, logging took around 1 ms
per frame in the thread that performs image processing.1

Therefore, in the 2018 B-Human framework, the specification of all streamable datatypes is now
determined only once at the beginning of the program. This would normally require a larger
manual coding overhead, because a separate method is needed for each streamable datatype
to record the specification. However, since most streamable datatypes in the B-Human system
are generated from macros by the C++ preprocessor, this change did not require any manual
adaptation for most datatypes. The new approach simplifies the access to the specification
of datatypes, because it is now immediately available, while before, it was only available for
datatypes that had been streamed at least once. In addition, streaming the data to be logged
is now significantly faster, freeing up processing time for other tasks.

3.1.1.1 Registering

In case a class is not created using the macro STREAMABLE (cf. [4, Chapter 3.4.4]), its specification
must be registered manually. Therefore, a class-static method must be defined that registers
the class’s name as well as all of its attributes. By convention, that method is always called

1The actual writing to disk is performed in a separate thread in the background. Its speed is only limited by
the write speed of the target medium.
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reg. The class is registered with REG CLASS or – if it is derived from another registered class –
with REG CLASS WITH BASE. Each attribute is afterwards registered with REG. As the following
example shows, it is also possible to register virtual attributes, i. e. ones that are just created
during streaming (c in the example).

struct SimpleType : public Streamable

{

int a = 0;

int b = 0;

void serialize(In* in, Out* out) override

{

int& c = b;

STREAM(a);

STREAM(c);

}

private:

static void reg()

{

PUBLISH(reg);

REG_CLASS(SimpleType);

REG(a);

REG(int , c);

}

};

3.1.1.2 Publishing

To perform the actual type registration, the reg methods of all types must be executed. This
is accomplished by naming the method as the parameter of the macro PUBLISH. That macro
will add the address of the method to a global, template-based list that is executed once at the
beginning of the program. Methods passed to PUBLISH must have global linkage, i. e. they must
either be global or class-static, but not C-style static. As shown in the example, methods can
publish themselves, because it is the instantiation of a template that adds the method to the
list, not the execution of some local code. However, this only works if the method containing the
macro PUBLISH is actually linked into the final binary of the program. If the class is a template
or linked from a static library, the linker might ignore the method because there is no external
reference to it. So, the macro PUBLISH must be inside a method that is guaranteed to be linked.
In the example above, the method serialize would be a good alternative.

3.1.1.3 Storing

The TypeRegistry stores all the type information collected. This information is used for two
purposes: On the one hand, the names of enumeration constants can be looked up at runtime.
This is required for streaming enumeration types as text. On the other hand, a TypeInfo object
can be filled. TypeInfo objects contain the same information as the TypeRegistry, but in a
platform independent (demangled) representation, and TypeInfo is streamable. Thus it can be
sent from a robot to a PC or stored in log files.
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3.1.2 Inference of Neural Networks

With the new ball detector using a neural network for classification it became a necessity to
add the possibility of inferring neural networks to the B-Human code base. The functionality
for handling neural networks is split into three classes in Src/Tools/NeuralNetwork/ : Model,
CompiledNN and SimpleNN.

Instances of Model contain the architecture and the weights of a network as well as the function-
ality to load this information from a file. For storing neural network models, we use a simple
binary file format and created a Python script based on kerasify [6] to export Keras [2] models
into that format.

The class CompiledNN defines an interface for using neural networks at runtime. After a Model

was initially passed to its compile() method, a CompiledNN instance can later apply that
model on input data using the apply() method. Internally, the inference of the given model is
translated into pure x86 machine code.

This approach offers very good locality of code and data which is a good prerequisite for caching
and allows for low-level optimization of the generated code for the given purposes. Not only
can it utilize all SIMD features of the NAO’s CPU, but also exploit several static pieces of
information about a given model during compilation to generate faster code. For example,
depending on the size of kernels, inputs and outputs in a given layer, loops can be unrolled or
different strategies for accumulating results can be chosen. Optimizations on a larger scale are
possible as well, e. g. if a convolutional or dense layer does not have an activation function and
is followed by a batch normalization along the feature axis, the normalization can be integrated
into the layer by adjusting its weights accordingly.

Currently, the code generated by CompiledNN is mostly optimized for rather small data sizes
for every step in the network—e. g. convolutional layers perform best for at most 24 entries in
the feature dimension. While larger network architectures are supported, there is no special
handling for them as we supposed that the resulting runtime would still be unfeasible for real
time processing on the NAO’s CPU.

SimpleNN provides another means for inferring a neural network. However, unlike CompiledNN,
it uses plain C++ code as it was not optimized for speed. Instead, it primarily serves as a
reference implementation to test the results of the optimized implementation. Additionally,
SimpleNN is stateless; SimpleNN::apply() simply takes a model (or a single layer) and input
data and computes the result.

3.2 Perception

3.2.1 Controlling Camera Exposure

Under more natural lighting conditions, it is necessary to dynamically control the cameras’
exposures during the games. Otherwise it might be impossible to detect features on the field
if part of it is well lit while other parts are in the shadow. NAO’s cameras can determine the
exposure automatically. However, normally they will use the whole image as input. At least for
the upper camera, it can often happen that larger parts of the image are of no interest to the
robot, because they are outside the field. In general, the auto-exposure of the cameras cannot
know what parts of the image are very important for a soccer-playing robot and which are less
important. However, the cameras offer the possibility to convey such priorities by setting a
weighting table that splits the image into five by five rectangular regions (cf. Fig. 3.1). This
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Figure 3.1: Weights for exposure control of the upper and lower camera.

feature is supported by our version of the camera driver.

Therefore, our code makes use of this feature. Regions that depict parts of the field that are
further away than 3 m are ignored. Regions that overlap with the robot’s body are also ignored,
because the body might be well lit while the region in front of it is in a shadow. If the ball is
supposed to be in the image, the regions containing it are weighted in a way that they make up
50% of the overall weight (cf. Fig. 3.1).

Changing the parameters of the camera takes time (mainly waiting). Therefore, the code talking
with the camera driver runs in a separate thread to avoid slowing down our main computations.
It turned out that four values could be changed per image. Therefore, the weights are computed
in a way that they do not change that often by limiting the values for the field to 0 and 1 and
by only using different values for the ball. A maximum of four changes per frame is then sent
to the driver.

3.2.2 Detecting the Field Boundary

The rulebook of the Standard Platform League specifies in detail how a field and everything
allowed to be on it during a game look like. In contrast, very little is specified about the
appearance of the world outside the field. The only exception is that another field that is visible
must be at least three meters away. Given that everything that is relevant to soccer playing
robots is located on their field, it makes a lot of sense to limit image processing to the area of
the field they are playing on or at least to reject object detections that do not overlap with that
field. To be able to accomplish this, the extent of the field must be determined, i. e. its boundary
in the current camera image must be detected.
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(a) The normal robot view. (b) Vertical scan lines.

(c) Detected field boundary spots (red crosses). (d) The detected field boundary with the RANSAC
algorithm (orange line).

Figure 3.2: The main steps of the field boundary detection

3.2.2.1 Candidate Spots

The boundary of the field is basically an edge below which the image is mostly green and above
which the image is mostly not green. This rule is employed when searching for candidate spots
along vertical scan lines in the image (cf. Fig. 3.2b). These scan lines start at the lower border
of the image or – if the robot’s body is visible in the image – above the assumed contour of
the robot’s body. They end at the position in the image the boundary would appear when
being furthest away possible (i. e. assuming the robot standing in one corner of the field looking
towards the opposite corner.). For each scan along a vertical line, a score is maintained that
is increased for each field-colored pixel found and decreased for each non-field-colored pixel.
The position of the pixel where this score reached its maximum is used as a candidate spot for
the field boundary (cf. Fig. 3.2c). However, spots that are very close to the robot are ignored,
because it is assumed that it will always have a minimum distance to the actual field boundary.

3.2.2.2 Guessing a Model

Not all candidate spots are located on the actual field boundary, because it can be hidden by
other robots, goal posts, and referees. Therefore, it must be determined which spots are really
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located on the field boundary and which spots have to be ignored. Domain knowledge is used
to ease this decision process. The borders of the actual field consist of straight lines that are
perpendicular to each other. A robot can either see one, two, or three of these lines at the same
time. Since the case of seeing three lines is very rare and one of those three lines will often
appear as very short in the image, our implementation ignores this case and only models the
other two.

The approach chosen uses the RANSAC method. By random, three points are drawn from the
set of candidate spots in a way that they are ordered from left to right in the image. A straight
line is constructed from the first two points. A second line is determined by projecting all three
points to the field plane and dropping a perpendicular from the third point to the line spanned
by the first two points. If the intersection point of the two lines fulfills a number of criteria (e. g.
the corner must be convex and must be left of the third point), it is considered as a corner and
the second line is also used in the following step.

In that step, the squared sums are calculated of a) the distances of all points before the corner
to the first line, b) the distances of all points after the first corner to the first line, and c) the
distances of all points after the corner to the second line.2 Distances above a certain threshold are
clipped to that threshold to avoid that, e. g., spots resulting from objects that hide the boundary
significantly influence the outcome of the computation. In addition, distances of points above
a line are weighted more than points below the line, again, because of objects that might hide
the boundary. Two models are then considered: either the field boundary only consists of the
first line (sum (a) plus sum (b)) or it consists of the first and the second line (sum (a) plus sum
(c)). The model with the smaller sum is selected, i. e. the model that is supported more by the
point set, because the points deviate less from it.

This process is repeated several times and the best model is kept (cf. Fig. 3.2d). It is noteworthy
that summing up the distances can stop early whenever the current sum gets bigger than the
sum of the best model found so far, because the current model will definitely be worse. Thus,
quite a number of models can be checked in a short amount of time. The process ends when a
model with a deviation sum below a certain threshold is found or after a maximum number of
iterations is reached. On average, the process takes about 0.25ms on the NAO.

3.2.2.3 Projection between Camera Images

In a certain direction, the actual field boundary can usually only appear in one of the two
cameras (except for a small overlap between the images), i. e. either in the upper camera or in
the lower one. Therefore, the field boundary determined from the previous image is projected to
the current image before a new one is computed, considering odometry and head motion. Under
some conditions, candidate spots are simply computed from the projected field boundary, namely
if the projection is below the current image or if it is above and the search reached the upper
border of the current image.

3.2.3 Detecting Obstacles

On a field in the Standard Platform League, there are three kinds of obstacles that a robot
wants to avoid when walking or kicking: other robots, goal posts, and referees. Other robots
can either be part of the own team or of the opponent team. They can be upright or fallen to the
ground. Since 2014, our team has basically used the same approach to detect these objects. That
algorithm was well-suited for the task back then. However, the setup of the league has changed

2If there is no corner, only a single sum is computed.
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since then, which resulted in a number of problems. For instance, the algorithm considers
everything that is white and not a field line to be an obstacle. Although the black and white
ball that was introduced in 2016 is not detected as an obstacle when surrounded by green, it
is often considered to be an obstacle when appearing next to field lines or field line crossings.
Also, black regions were considered as obstacles (referees), but with the more dynamic lighting
used today, there are often dark shadows on the field, which should not be detected as obstacles.
Finally, robots were only allowed to wear the official magenta or cyan jerseys in 2014, while
teams can now design jerseys on their own from a wide range of colors.

While some of these issues have already been addressed in the past, the obstacle detection
module was completely rewritten this year. It still follows the same general approach, but uses
more refined solutions for some details. In general, it is distinguished between obstacle regions
detected in the image and obstacle positions in robot-centric field coordinates. While obstacle
regions in the image can always be computed, obstacles can only be projected to the field plane
if their lower end is visible in the image (e. g. a robot’s feet). On the other hand, if a robot
is visible in the lower camera image, its jersey is usually not, which prevents an immediate
distinction between teammate and opponent. Therefore, some information can be determined
from a single image while other information requires combining information from images taken
by both cameras.

3.2.3.1 Candidate Spots

Similar to our other object detection methods, candidate spots for the lower ends of obstacles
are determined by scanning along vertical grid lines. However, a different scan grid is used (cf.
Fig. 3.3). On the one hand, the grid has to be denser in horizontal direction to have a bigger
chance to find the feet of robots that are even further away and to reasonably distinguish them
from field lines. On the other hand, the grid can be less dense in vertical direction, because
the objects searched for are upright and do not get as small in the image as, e. g., horizontal
field lines would. Scans begin slightly below the field boundary (cf. Sect. 3.2.2) and continue
until the lower border of the image or the contour of the robot’s own body, whatever is reached
first. Two scores are maintained, and the lowest pixel in the image with both scores above
a certain threshold is used as candidate spot. A short range score is immediately reset when
a field-colored pixel is found (green or (shadow) black), while a long range score is decreased
more slowly. They are both increased with each non-field-colored pixel found. The effect is
that the scan recovers relatively quick from individual field-colored pixels, but it takes longer
to recover from sequences of non-obstacle-colored pixels. The candidate spots found are below
parts of robots (feet, torso, arms), the ball, when it appears below or above a field line, and
steep diagonal field lines (cf. Fig. 3.3).

3.2.3.2 Clustering Spots to Detect Obstacles

The basic idea of detecting the obstacles from the candidate spots is to cluster neighboring spots
that appear on a similar height in the image. If spots result from field lines, the field lines would
be diagonal in the image, i. e. neighboring spots would not be on the same height. In addition,
the sum of the long range scores of all clustered spots must be above a certain threshold, which
means that an obstacle must either be high (e. g. an upright robot) or wide (a fallen robot). The
clustering is performed from the lowest to the highest spot in the image. Starting from each
spot, spots to the left and to the right on a similar height are grouped together, accepting a
certain amount of gaps in between. If the set of spots is wide enough and dense enough, it is
accepted as an obstacle. Afterwards, all spots in the grouped range plus an addition range to
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Figure 3.3: Obstacle detection in upper and lower camera images. The thin yellow dots mark
pixels scanned from top to bottom. The orange and red crosses mark candidate spots. The red
ones were used as starting points for obstacle detection. The orange ones were removed after
an obstacle was successfully detected. The thick yellow, blue, and green dots mark the region
that was scanned for the jersey color. Yellow dots mark the own (black) team, blue ones the
opponent (red) team, and green ones were ignored. The obstacle found in the lower image is
marked as black, because a black jersey was detected in the upper image.

both sides are removed (cf. Fig. 3.3) and the algorithm continues with finding the next obstacle.
The additional range of spots is removed to prevent the arms of an already detected robot from
being detected as separate obstacles.

3.2.3.3 Determining the Jersey Color

The obstacle detection does not distinguish between different types of obstacles, i. e. robots,
goal post, and referees. In fact, it does not detect referees wearing black trousers at all, because
black is considered to be a possible color of the field. All obstacles found are treated as robots.
Therefore, it is tried to detect their jersey color. To avoid a calibration of the colors, a differential
approach is used. For each obstacle, the image is sampled at a certain height in the region of a
perspectively distorted rectangle.3 For each non-green pixel it is determined, whether it more
likely belongs to the own team color or to the opponent team color. These decisions are counted
and if there is a clear majority for one of the two possibilities, that jersey color is assigned to
the obstacle.

3If the lower end of the obstacle is not in the image, the position of the sample region is guessed from the
width of the obstacle.
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The color classification first distinguishes between saturated and non-saturated colors. If both
colors are saturated, the colors’ hue values are used. If they are both non-saturated, their
classification to either black or white is used. For gray, a region below the jersey is scanned
to get an estimate for the brightness of white. Then, gray is expected to be in a certain range
relative to that brightness. Please note that this approach will classify goal posts as robots with
jerseys if one of the two teams plays in white. Green jerseys will not be detected at all.

3.2.3.4 Propagating Information from Upper to Lower Image

If an obstacle is detected in the upper image, but its lower end is not inside the image, it is still
provided as an obstacle region in image coordinates, but it is not provided as a robot-centric
obstacle in field coordinates. Instead, it is reused when the next image from the lower camera is
processed. The scan scores at the lower end of the upper image are used as starting points in the
lower image to basically continue the scans that were started in the upper image. In addition,
the jersey colors of incomplete obstacles in the upper image will be assigned to obstacles in the
lower image if both detections were in the same direction (cf. Fig. 3.3).

3.2.4 Detecting the Ball

The Neural Network Ball Perceptor (NNBallPerceptor) takes the spots which are provided in the
representation BallSpots (cf. [4, Chapter 4.2.1]) and classifies them into balls and other objects.
To do this, for each spot the size is calculated which a ball would have at this particular position
in the camera image. Because the spots are not always in the middle of the ball a squared patch
with an edge length of 3.5 times the radius is used. The resulting area is then scaled to 32x32
pixels by leaving out pixels for downscaling and taking pixels several times for upscaling. The
resulting patch is committed to the neural network, if its projected position is on the field.

The core of the perceptor is the neural network (Table 3.1) which classifies the patches whether
they show a ball or not. There are three stages of classification:

• If the result of the neural network is at least 0.9 the loop over all spots stops immediately
and the spot is returned.

• Otherwise if the result of the neural network is at least 0.5 the patch is assumed to contain
a ball. The best patch of this category is returned if no better patch of a better category
is found.

• Otherwise if the result of the neural network is at least 0.3 the patch is assumed to contain
a guessed ball. This means it could be a ball but not necessarily. The best patch of this
category is returned if no better patch of a better category is found.

Sometimes the ball spot is not in the middle of the ball which leads to worse results in the
classification. However, most images get a really low rating, therefore a threshold of 0.1 is
used to consider spots for resampling. In the resampling procedure the spot is moved for the
half radius to the top, bottom, left and right and evaluated again. The maximum value of the
resampling is used to categorize the ball spot.

After the classification a Hough transformation is used to find the circle like ball in the patch
to refine its position.
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Typ Strides Output Size

Input 32x32x1
Batch Normalization 32x32x1
Convolutional (1,1) 30x30x4
Max Pooling 15x15x4
Batch Normalization 15x15x4
Convolutional (1,1) 13x13x8
Max Pooling 6x6x8
Batch Normalization 6x6x8
Convolutional (2,2) 2x2x8
Max Pooling 1x1x8
Flatten 8
Batch Normalization 8
Dense 1

Table 3.1: Net architecture of the ball classifier.

3.3 Motion Control

3.3.1 Enhancement of the Kick Range

To counter the increasing wear of our old robots and the subsequent decrease of the kick range,
we added a small extension to our KickEngine. Directly before a robot hits the ball, the leg
joints are set to their maximal values (Figure 3.4). This makes the joint controllers run with
maximal power, which increases the kick range about two meters.

Figure 3.4: Comparison of the requested and executed leg trajectory during kicking.

3.3.2 Getup Motions

During a game, robots might fall to the ground for many different reasons. They might bump
into other robots. Sometimes, the ground is not flat enough for stable walking or it gives way
when the robot steps on it. Some robots might even have so much play in their joints that
walking simply fails. In any of these cases, the robot must get up after it fell down. When
on the ground, the robot can either lie on its front or on its back, which requires two different
kinds of motions to get up. In addition, the robots might be in different states of wear and tear

31



B-Human 2018 3.3. MOTION CONTROL

and their motors are able to exert different amounts of torque, depending on their temperatures
estimated by their controllers. All this makes getting up a difficult task.

Last year, the success rate for a NAO to get up after falling was only about 70%. In addition,
up to three attempts with different kinds of motions were executed in a row to find one that
actually worked. They were ordered by their speed of execution. Since we wanted to have as
few motions as possible to work with and wanted to balance our motions better, we extended
our infrastructure to integrate similar motions into one, made changes to our balancing process,
and added a way to react to different situations based on sensor feedback. This was partially
successful and effectively increased the success rate of getting up to about 80% at RoboCup
2018.

We used the same motion control system as last year (cf. [4, Chapter 8]), but extended it with
a few extra features. To see how the get up motions work in general, see [4, Chapter 8.6].

3.3.2.1 The Different Motions

We reduced the number of get up motions to a total of five. We have two motions for getting up
when fallen to the front, two for getting up when fallen to the back and a fifth that is executed
as a follow-up motion by two of the other motions.

The fastest get up motion when fallen to the front is frontFast (cf. Fig. 3.5). The NAO moves
its arms to the side and pulls them together in front of the body to get on its feet. Then, it
pushes the torso up to a squatting position followed by straightening the legs to a standing
position. It takes between 3 and 4 seconds.

Figure 3.5: Fast get up motion from a fall to the front

A slower variant is frontFreeJoints (cf. Fig. 3.6). The NAO moves its arms to the back,
squeezes its legs to the front and swings over so it can get on its feet. At this point, the motion
sitDownFreeJoints will take over. In total, it takes about 6.5 seconds until the NAO stands
again.

Figure 3.6: Getting up from the front to a wide crouching position

The third motion is backFreeJoints (cf. Fig. 3.7), which is our slower motion to get the NAO
up from the back. The NAO moves its arms under its back, so it can swing over on its feet.
Again, the motion sitDownFreeJoints will be executed from here. In total, it takes about 5.3
seconds until the NAO stands.
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Figure 3.7: Getting up from the back to a wide crouching position

The motion sitDownFreeJoints (cf. Fig. 3.8) is always executed after either frontFreeJoints
or backFreeJoints. The NAO will transfer its weight on its left foot, then pull over its right
foot and pull together both knees. From the resulting squatting position, the robot can lift itself
up to a standing position.

Figure 3.8: Getting up from a wide crouching position

The final motion is backFast (cf. Fig. 3.9). It starts the same as the motion backFreeJoints.
However, instead of executing the motion sitDownFreeJoints it uses a different approach to
get from the wide crouching position to the stand. The NAO moves on its left foot, waits, then
moves on the right foot, waits, transitions into a sitting position and then stands up. This
motion takes about 4.7 seconds.

Figure 3.9: Alternative for getting up from the back

3.3.2.2 Configuring Motions

Not all getup motions work on all robots. Some of the faster ones might not always work.
Therefore, a sequence of getup motions can be configured that the robot will try one by one
until it successfully got up or until no motion is left. We prefer that the robot stops trying
to getup instead of damaging itself by trying over and over. The sequence of getup motions
to try can be configured in the file damageConfigurationBody.cfg that is usually located in the
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robot-specific directory Config/Robots/<robot name>/Body. The two fields getUpFront and
getUpBack specify the sequence of getup motions, using the names given in the section above.

3.3.2.3 Balancing

Since 2017, we have used a gyro-based PID controller (cf. [4, Chapter 8.6]) and a ZMP balancer
(cf. [4, Chapter 8.7]) to balance our robots. To improve the success rate of getting up, the
gyro-based controller can be activated or deactivated for each individual phase of each getup
motion. Two different levels of impact can even be chosen for each balancing direction, i. e.
forwards and sideways.

We still use the same ZMP balancer as last year (cf. [4, Chapter 8.7]) that uses the arms and/or
legs to balance the robot. It can be activated from a certain phase in each getup motion and it
runs until the motion is finished. Different parameter sets can be selected in different phases.

3.4 Behavior Control

3.4.1 Behavior Infrastructure

Since 2013, B-Human has used CABSL [7] to describe the robot behavior as a hierarchy of
finite state machines. In addition, so-called libraries provide functionality that is called from
the state machine but does not fit into the dataflow oriented framework of representations.
However, the behavior hierarchy is still completely contained in a single state machine. This has
some disadvantages: These components cannot be exchanged easily or load their own numeric
parameters from configuration files. It is also hard to create coordinated team plans for specific
situations, such as set plays. This is especially important due to the new free kick rules.

In the RoboCup Small Size League, an architecture called “Skills, Tactics, and Plays” has been
established for many years [1] and recently been employed in the Mid Size League [3]. To
implement a similar system based on these ideas and to solve some of the problems mentioned
above, another abstraction called behavior option has been introduced. Behavior options are
declared similarly to modules (cf. [4, Chapter 3.3.2]), such that they can specify their own
requirements for representations and parameter sets. However, all behavior options are executed
in the context of a single module which inherits the requirements of all of them. A behavior
option can contain a CABSL state machine, a simple switch-case-block or a completely different
representation of a behavior.

The most important addition to the old system is the PlaySelector. It is invoked one level above
the normal role selection (cf. [4, Chapter 6.2.1]), so team-wide special situations can override
the normal play. The playbook configures the set of plays among which can be chosen during
the game. The selection method is based on binary applicability conditions and a numeric value
specified by each play to compare them. Team coordination is achieved by letting each robot
send its currently active play in its WiFi message. On each robot, the PlaySelector checks if
there is another robot leading a play and, in that case, checks whether that play is possible to
execute according to the own world model.

3.4.2 Free Kicks

A particular instance of situations in which the standard behavior must be overridden are the
free kicks that have been introduced in the SPL this year. As their behaviors are completely
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independent of each other, there are different plays for free kicks executed by our team (own
free kicks) and free kicks executed by the opponent team (opponent free kicks).

3.4.2.1 Own Free Kick

Our own free kick behavior firstly determines the task that a robot has in the free kick. This
can be either playing the ball, positioning to receive a pass or falling back to normal behavior.
A robot should play the ball if it has the Striker or Keeper role, depending on whether the ball
is near the own penalty area. The robot that walks to the pass reception position is the one
with the Supporter role, in case that it is currently present on the field. All other robots execute
their normal behavior (i. e. the defenders or the keeper if it does not play the ball) by invoking
the RoleSelector behavior option.

Figure 3.10: Visualization of the pass reception pose calculation. The ball is shown as orange
circle. The red sectors are occupied by robots or a goal and thus not further considered in the
calculation. The black crosses mark the points at which the potential pass rays intersect with
the boundary polygon. The red crosses mark potential pass reception poses. The white line
connects the robot to its selected target.

The free kick striker has the choice between two options: Attempting a direct kick towards the
goal or passing to a teammate. If there is a large enough free part of the goal according to the
KickPose (cf. [4, Chapter 6.5]), a fast forward kick in that direction is performed immediately.
Simultaneously, the module PassPoseProvider provides the representation PassSelection which
contains the number of a pass candidate. This calculation uses the amount and distance of
opponent robots to the line between the ball and the pass candidate and the distance of the
potential target to the opponent goal. If the striker thinks that the pass candidate will reach its
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target before the free kick ends, it waits for this teammate and then kicks the ball in its direction.
If after some time (depending on obstacles near of the ball that are likely to be removed due
to the Illegal Defender rule) there is still no pass candidate and there is no free part of the
goal, a fast forward kick in the direction that is indicated by the KickPose is performed. All the
free kick pass receiver does is to walk to a position that is contained in the PassReceptionPose
representation. This position should suggest the free kick striker to choose it as a pass receiver.
It is calculated in polar coordinates from the point of view of the ball. Sectors that are occupied
by robots or a goal are discarded. For each remaining sector a ray is intersected with a boundary
polygon and a position between it and the ball is evaluated according to a scoring function. This
function depends, among other factors, on the opening angle of the containing sector, the angular
distance to the goal, whether the robot would need to pass the line between the ball and the
goal to get there, and the distance to the current position of the robot. The position with the
best score (combined with the orientation towards the ball) is chosen as the final pass reception
pose. The calculation of the pass reception pose is visualized in Fig. 3.10.

3.4.2.2 Opponent Free Kick

Another new play implements a behavior to defend opponent free kicks. The main concept is to
keep the positioning as near to the regular positioning as possible, but also to prevent a possible
shot at the goal. The solution was a wall in a one meter distance (75cm + tolerance) to the
ball, blocking the direct path to the goal. Depending of how many players are close to the free
kick area, the wall can consist of one or two robots. Players that are not part of the wall use
their usual positioning and behavior. The goalkeeper has its own behavior option in the play,
as it does not have to keep a distance while standing in the penalty area. If the free kick is far
away, the keeper follows its regular behavior and positions itself accordingly. Near the penalty
area, the goal keeper tries to prevent a goal by standing as close as possible in front of the ball.

3.4.3 Kick Pose Provider

Since we were able to expand the range of our kicks, we rewrote our kick selection module to
handle wide range kicks considering the position of all teammates and opponents.

We start with the computation of all openings between other robots and the goalposts (Fig-
ure 3.11). They are combined with all possible kicks to get all reachable targets. For each
target, a score is computed, which represents an estimation of the time until we could score a
goal. The fastest way to score is to kick directly into the opponent’s goal. If this is possible,
we always try it, which corresponds to our previous strategy. Otherwise we would have kicked
as close as possible to the goal. We replaced this with a more sophisticated approach, which
consists of the following components. In Figure 3.12 is an example of a score with the described
components.

Position of Teammates. The time the next teammate needs to reach and kick the ball in the
direction of the goal.

Position of Opponents. We add a penalty depending on the distance of the next opponent
in the view area of of which the ball could stop considering the kick inaccuracy. As we do not
know the orientation of opponents, we assume that they are aligned towards our goal, which is
mostly the case. Otherwise they would need a lot of time to turn around the ball, which makes
them unimportant.

Distance to the Goal. We consider the distance to the goal as the time a robot needs to
walk that far. This perfectly balances dribble kicks and wide range kicks if no other teammates
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Figure 3.11: Visualization of all openings between other robots.

are around. If the target is inside the goal, we reset the previously calculated score, because the
position of teammates and opponents is not relevant. If the ball will reach the goal even with
the maximal kick deviation, there is an extra bonus to prefer these kicks.

Time to Kick. The relative position to the ball depends on the kick type and the direction.
That is why the time to reach this position, which we call KickPose, differs. Some kick types
need a preparation time, which is also considered. In case of a free kick, the time to score is
ignored.

Penalties. There are penalties for some cases: The target is outside the field or inside the
own penalty area, the opening angle is smaller than the deviation of the kick direction, or the
selected kick type or direction differs from the last choice.

Special Situation: Own Penalty Area. In the case the ball is inside the own penalty area,
it is most important to kick very fast, instead of considering teammate positions or the distance
to the opponent’s goal.
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Figure 3.12: Example of the scoring from selected target positions. The right side shows the
composition of the scoring for different target positions, which are marked on the left side. The
blue rectangle next above the ball represents our robot. In front of it is an opponent (orange
rectangle) and next to the goal is a teammate.
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Chapter 4

Technical Challenge and
Mixed-Team Competition

In addition to the main soccer competition, B-Human also participated in the General Penalty
Kick Challenge as well as in the Mixed Team Competition. For these competitions, all standard
modules that have been described in the previous chapters have been used and only a few minor
adaptions have been necessary.

4.1 General Penalty Kick Challenge

As in 2017, the technical challenge at RoboCup 2018 was a penalty shootout tournament. The
general penalty kick challenge differed from a usual penalty shootout in the way that penalty
taker is placed randomly at five possible angles one meter behind the ball. This required some
minor adaptions in our normal penalty shootout behavior and localization: In order to avoid
touching the ball when starting from one of the outer positions, the penalty taker first walks an
arc to a position that is on the line through the center of the goal and the penalty mark. From
then on, the situation is the same for all starting positions and the normal penalty shootout
behavior is used (cf. [4, Chapter 6.3]). Furthermore, the different positions are handled in the
localization by resetting the samples of the particle filter (cf. [4, Chapter 5.1]) to the five possible
poses.

The penalty taker has been improved using the kick engine enhancements described in Sect. 3.3.1.
As a result, our penalty taker was able to successfully score at all but one attempts during the
General Penalty Kick Challenge, scoring 9 goals in 4 games, where in the missed attempt the
opponent’s keeper was in a blocking pose before our taker even kicked the ball. Figure 4.1 shows
a successful attempt.

For the penalty keeper, we increased the robustness in our detection of the kick instance and
direction against balls that do not lie exactly on the penalty mark. Our keeper is currently fast
and reliable enough to block all shots that are kicked with medium speed. One example from
the quarter final challenge shootout is shown in Fig. 4.2. Due to its reactivity, our keeper let
only three shots pass during the whole challenge. A weak point is the gap beneath the robot’s
body that forms shortly before the robot reaches the ground when jumping, even when the arm
is already blocking parts of the goal that are further to the side of the goal.

An overview of the games is given at the league’s web site at http://spl.robocup.org/

standard-platform-league-results-2018/.
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Figure 4.1: B-Human penalty taker in the quarter final of the General Penalty Kick Challenge
against UT Austin Villa

Figure 4.2: B-Human penalty keeper blocking the ball in the quarter final of the General Penalty
Kick Challenge against UT Austin Villa

40



4.2. B-SWIFT IN THE MIXED TEAM COMPETITION B-Human 2018

4.2 B-Swift in the Mixed Team Competition

In 2018, the Mixed Team Competition was held for the second time. After the successful partic-
ipation in 2017 together with the HULKs, we were looking for a different challenge which would
not allow for extensive tests before the competition. In contrast to choosing the geographically
closest team as our partner, we therefore decided for rUNSWift from the University of New
South Wales, Sydney, Australia. Together, we are B-Swift. Most team members are shown in
Fig. 4.3.

As opposed to last year’s strategy of the B-HULKs [5], we did not develop a shared commu-
nication protocol beyond what is mandated by the SPL standard message. We had a basic
agreement that rUNSWift robots would be responsible for defense (including the goalkeeper)
and B-Human’s constitute the offense. Thus, the main challenge consisted in selecting the ball
playing robot among the mixed team members. Since the SPL standard message does not con-
tain any field to communicate information like this, but both teams have their own mechanisms
to assign roles, we agreed on a two-stage solution: Each robot would calculate an approximated
time to reach the ball for itself and all team members only using information that is available
from the SPL standard message. If the robot with the lowest time is from the same team as the
calculating robot, it would then run the usual role assignment algorithm using data from the
custom message part. Otherwise it would be assumed that a robot of the other team plays the
ball. This protocol does not inhibit frequent role switches or multiple robots going to the ball
(e. g. when two robots have almost the same approximated time to reach the ball), but provides
a reasonable solution in the absence of other data.

Furthermore, in addition to any technical issues, we would like to highlight the fact that B-
Swift has been the only team that used custom robot jerseys in this competition. The orange
color combines black and yellow which are the colors usually worn by B-Human and rUNSWift,
respectively. The jerseys are shown in Fig. 4.4.

During the competition at RoboCup 2018, B-Swift played four games and won all of them. As
both teams have robust implementations of all required basic abilities, such as stable walking,
ball recognition, and self-localization, all robots on the field were able to play together reliably
according to the previously defined strategy. To sum up, one could say that the robots from
B-Human and rUNSWift equally contributed to our success in this competition.

An overview of the results is given at the league’s web site at http://spl.robocup.org/

standard-platform-league-results-2018/.
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B-Human 2018 4.2. B-SWIFT IN THE MIXED TEAM COMPETITION

Figure 4.3: The human team members of B-Swift who participated in RoboCup 2018 in Montréal

Figure 4.4: The robot team members of B-Swift before kickoff

42



Chapter 5

Acknowledgements

We gratefully acknowledge the support given by SoftBank Robotics. We also would like to thank
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In addition, we want to thank the authors of the following software that is used in our code:

Artistic Style: Source code formatting in the AStyle for B-Human text service on macOS.
(http://astyle.sourceforge.net)

AsmJit: A JIT assembler for C++.
(https://github.com/asmjit/asmjit)

AT&T Graphviz: For generating the graphs shown in the options view and the module view
of the simulator.
(http://www.graphviz.org)

ccache: A fast C/C++ compiler cache.
(http://ccache.samba.org)

Eigen: A C++ template library for linear algebra: matrices, vectors, numerical solvers, and
related algorithms.
(http://eigen.tuxfamily.org)

FFTW: For performing the Fourier transform when recognizing the sounds of whistles.
(http://www.fftw.org)

getModKey: For checking whether the shift key is pressed in the Deploy target on macOS.
(http://allancraig.net/index.php?option=com_docman&Itemid=100, not available
anymore)

gtest: A very powerful test framework.
(https://code.google.com/p/googletest/)

ld: The GNU linker is used for cross linking on Windows and macOS.
(http://sourceware.org/binutils/docs-2.21/ld)
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B-Human 2018

libjpeg: Used to compress and decompress images from the robot’s camera.
(http://www.ijg.org)

libjpeg-turbo: For the NAO we use an optimized version of the libjpeg library.
(http://libjpeg-turbo.virtualgl.org)

libqxt: For showing the sliders in the camera calibration view of the simulator.
(https://bitbucket.org/libqxt/libqxt/wiki/Home)

mare: Build automation tool and project file generator.
(http://github.com/craflin/mare)

ODE: For providing physics in the simulator.
(http://www.ode.org)

OpenGL Extension Wrangler Library: For determining which OpenGL extensions are
supported by the platform.
(http://glew.sourceforge.net)

Qt: The GUI framework of the simulator.
(http://www.qt.io)

qtpropertybrowser: Extends the Qt framework with a property browser.
(https://github.com/qtproject/qt-solutions/tree/master/qtpropertybrowser)

snappy: Used for the compression of log files.
(http://google.github.io/snappy)

Walk2014Generator: The module Walk2014Generator is based on the class of the same name
released by the team UNSW Australia as part of their code release. The team kindly gave
us the permission to release our derived module under our license.
(https://github.com/UNSWComputing/rUNSWift-2016-release)
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