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Chapter 1
Introduction

1.1 About Us

B-Human is a joint RoboCup team of the Universität Bremen and the German Research Center
for Artificial Intelligence (DFKI). The team was founded in 2006 as a team in the Humanoid
League, but switched to participating in the Standard Platform League in 2009. Since then,
B-Human has won nine RoboCup German Open competitions, the RoboCup European Open
2016 competition, and has become RoboCup world champion seven times.

After becoming the runner-up world champion in 2018, we regained the world champion title at
RoboCup 2019 in Sydney, Australia. We won all matches in the Champions Cup competition,
achieving a goal difference of 46 : 1. Furthermore, we won the Mixed Team Tournament for the
third time in a row, in which we teamed up with Berlin United – Nao Team Humboldt from the
Humboldt University of Berlin this year and formed the joint team B&B. In addition, we became
the runner up in the overall ranking of this year’s Technical Challenges.

The 2019 team consisted of the following persons (most of them are shown above):

Students: Andreas Baude, Jan Blumenkamp, Jan Buschmann, Gerrit Felsch, Jan Fiedler,
Tim Haß, Arne Hasselbring, Lam Duy Le, Jan Oppermann, Philip Reichenberg, Simon
Schirrmacher, Nicole Schrader, Dennis Weiß, Lars Wimmel.

Active Alumni: Jonas Kuball, Lukas Post, Jesse Richter-Klug, Felix Thielke.

Leaders: Tim Laue, Thomas Röfer.

Associated Researcher: Udo Frese.
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1.2 About the Document

This document provides a survey of this year’s code release, continuing the tradition of annual
releases that was started several years ago. This document is based on the code releases of
the last two years [23, 24] and aims to provide a complete description of the system that we
used at RoboCup 2019. The major changes made to the system since last year are shortly
enumerated in Section 1.3.

The remainder of this document is organized as follows: Chapter 2 gives a short introduction
on how to build the code including the required software and how to run the NAO with our soft-
ware. Chapter 3 describes our framework’s architecture. Our image processing approaches
are presented in Chapter 4, followed by the state estimation approaches in Chapter 5. Chap-
ter 6 explains the use of our behavior description system based on skills and cards and gives
an overview of the behavior used at RoboCup 2019. Surveys of the sensor reading and motion
control parts of the system are given in Chapter 7 and Chapter 8 respectively. A description
of our participation in the Technical Challenges and the Mixed Team Tournament is given in
Chapter 9. Finally, in Chapter 10, our simulation and remote control environment SimRobot
and the B-Human User Shell are presented.

1.3 Major Changes Since 2018

The major changes made since RoboCup 2018 are described in the following sections:

2 NAO V6
Our software works exclusively on the NAO V6.

3.2 Thread Layout
In order to exploit the four processor cores of the NAO V6, our framework has been made
more flexible and the number of threads in our system was increased from two to four.

3.7 Logging
There is only a single online logger for all threads. Therefore, only a single log file is
created and merging is not necessary.

4.1.2.1 Automatic Camera Calibration
A new camera calibration procedure based on the penalty area has been introduced.

4.2.2 Ball Detection
We use a new neural network architecture for detecting the ball, including prediction of
the center of the ball within an image patch.

4.4 Detecting Other Robots
A deep neural network for detecting robots in the upper camera image has been devel-
oped. Furthermore, a new analytic method for the lower camera is used.

5.2.1 Local Ball Model
The distinction between stationary and moving balls and the integration of ball contacts
with the own body have been improved.

5.2.3 Team Ball Model
The combined team ball model now features clustering in order to reject outliers.
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5.5 Whistle Recognition
The whistle recognition has been changed to be more robust against loud noise. The
vote of each robot in the team decision has been turned into a continuous number.

6.1 Skills and Cards
A new system for behavior specification has been introduced.

6.2 Behavior of 2019
Using the new behavior framework, much of its content has been rewritten with a focus
on handling uncertainty and team play.

7.7 Foot Bumper Recognition
Collision detections with the foot bumpers are filtered based on the foot movement to
prevent false positives.

7.8 Foot Pressure
After some time, the maximum values for the measured pressures are reinitialized. Also
a prediction for the support foot switch is calculated.

7.9 Gyro Offset Detection
Offsets in the gyro values and a disconnect to the robot’s hardware are detected and
handled.

8.3 Walking
Smaller improvements in the odometry calculation and overall stability. Also, the balanc-
ing parameters are automatically adjusted.

8.6 Getting Up
A new get up module with a very high reliability without further adjustments needed to
work on different NAOs.

8.9 Energy Saving Stand
Joints are automatically adjusted while standing to prevent overheating.

8.10 Kicks
Stability and accuracy improvements for our long distance kicks with less calibration
needed.

9 Technical Challenges and Mixed Team Tournament
In addition to the main soccer competition, we also participated in the Directional Whistle
Challenge, Open Research Challenge, and – together with Berlin United – in the Mixed
Team Tournament.
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Chapter 2Getting Started

This chapter describes how to use or code on Windows, macOS, and Linux. The code can be
built for our simulator and for the actual robot (NAO V6 only). We first show how to compile the
code before we describe how to setup a NAO robot to be used with our software. If you want
to setup a NAO and run our code, you will need access to the RoboCup-only version of the
operation system (currently version 2.8.5). The RoboCup Standard Platform League Technical
Committee can give you access if you already joined the league or plan to do so. Without that
special version of the operating system, our installation routine for the actual NAO will not work.

This manual assumes that you cloned the B-Human repository or downloaded a working copy.
All paths mentioned in this description will be relative to the main directory of the working copy.
The version numbers of software that we specify are the ones we currently use. That does not
mean that newer or older versions will not work, but it is not guaranteed that they will.

2.1 Targets and Configurations

The B-Human project consists of the main build targets SimRobot, Nao, bush, and Tests (cf.
Table 2.1). These targets can all be built in three different configurations1 (cf. Table 2.2). The
general idea is that Debug contains all debugging support, but is slow, Release sacrifices
debugging support for speed, and Develop is a reasonable compromise between the two. The
actual selection of features depends on the platform.

1For the bush, the configurations Develop and Release are identical. That’s why the Xcode project does not offer
a scheme to build the target in the configuration Develop.
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Target Description
SimRobot The code is built to run in simulation. The whole build consists of our simulator

SimRobot together with its libraries SimRobotCore2 and SimRobotEditor and
the robot control program SimulatedNao. The connection between the robot
control program and the simulator is implemented in the library Controller, which
also relies on building the two libraries libqxt2 and qtpropertybrowser.

Nao The code is built to run on the NAO.
bush The B-Human User Shell is a tool to deploy and manage multiple robots at the

same time.
Tests Some unit tests.3 Can be ignored.

Table 2.1: Build targets of the B-Human system.

without
assertions
(NDEBUG)

debug
symbols
(compiler

flags)

debug libs4

( DEBUG,
compiler flags)

optimiza-
tions

(compiler
flags)

debug-
ging
sup-
port5

Release
Nao X × × X ×
SimulatedNao X × × X X
SimRobot X × × X X

Develop
Nao × × × X X
SimulatedNao × X × × X
SimRobot X × × X X

Debug
Nao × X X × X
SimulatedNao × X X × X
SimRobot × X X × X

Table 2.2: Effects of the different build configurations. SimRobot represents everything in the
simulation except for SimulatedNao.

2.2 Building the Code

2.2.1 Microsoft Windows

2.2.1.1 Prerequisites

• Microsoft Windows 10 64 bit Version 1903

• Microsoft Visual Studio Community 2019 Version 16.2.5. Installing the workload Desktop
development with C++ as well as the packages MSVC v142 - VS 2019 C++ x86/x64 build
tools, Windows 10 SDK 10.0.18362.0, and C++-ATL for v142 build tools (x86 & x64) is
sufficient.

2On macOS, it is compiled as a part of Controller.
3On macOS, this target is compiled and run through Xcode’s Test Navigator.
4On Windows, see this link �↗
5See Chapter 3
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• Windows Subsystem for Linux (WSL). Execute the PowerShell script
Make/VS2019/installWSL.ps1. You have to confirm that executing the script is al-
lowed. The script will install the Windows Subsystem for Linux (unless it is already
installed) and ask for a reboot of the computer. Afterwards, the script has to be executed
again to download and install Ubuntu 18.04 into Util/WSL with all packages required.

2.2.1.2 Compiling

Run Make/VS2019/generate.cmd and open the solution Make/VS2019/B-Human.sln in Visual
Studio. Select the desired configuration (Develop is a good start) and build one of the targets
mentioned in Section 2.16. Either SimRobot or Utils/bush can be selected as StartUp Project
to run it.

2.2.2 macOS

2.2.2.1 Prerequisites

• macOS 10.14

• Xcode 11

2.2.2.2 Compiling

Xcode must have been executed at least once before to accept its license and to install
its components. Run Make/macOS/generate and open the Xcode project Make/macOS/B-
Human.xcodeproj. The schemes in the toolbar allow building the targets mentioned in Sec-
tion 2.1 in different configurations.

When building for the NAO, a successful build will open a dialog to deploy the code to a robot
(which will only work if the robot was already set up to work with our software). If the script
Make/macOS/login was used before to login to a NAO, the IP address used will be provided
as default. Both the IP address selected and the options specified are remembered for the
next use of the deploy dialog. The IP address is stored in the file Config/Scenes/Includes/-
connect.con that is also written by the script Make/macOS/login and used by the simulator
scene Config/Scenes/RemoteRobot.ros2. The options are stored in Make/macOS/copyfiles-
options.txt.

2.2.2.3 Support for Xcode

Calling the script Make/macOS/generate also installs various development supports for Xcode:

Data formatters. If the respective file does not already exist, a symbolic link is created to
formatters that let Xcode’s debugger display summaries of several Eigen datatypes.

Source file templates. Xcode’s context menu entry New File. . . contains a category B-Human
that allows to create some B-Human-specific source files.

Code snippets. Many code snippets are available that allow adding standard constructs fol-
lowing B-Human’s coding style as well as some of B-Human’s macros.

6Instead of Nao, you can also build Utils/copyfiles, which allows to directly deploy the code to a NAO robot, if it
is already set up for deploying our software.
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Source code formatter. A system text service for formatting the currently selected text is avail-
able in the menu Xcode→Services→AStyle for B-Human.

2.2.3 Linux

2.2.3.1 Prerequisites

• Ubuntu 18.04

• Run the following command to install additional packages:

sudo apt install clang make qtbase5 -dev libqt5opengl5 -dev libqt5svg5 -dev

libglew -dev libasound -dev ocl -icd -opencl -dev net -tools graphviz xterm

2.2.3.2 Compiling

To compile one of the targets mentioned above, enter the directory Make/Linux and run to
following command for one combination of target and configuration mentioned in Section 2.1
(Develop is the default configuration):

make <target > [CONFIG=<configuration >]

As an alternative, there is also support for the integrated development environment CodeLite
(sudo apt install codelite) that works similar to Visual Studio for Windows. To use it,
run Make/LinuxCodeLite/generate and open Make/LinuxCodeLite/B-Human.workspace after-
wards.

2.3 Setting Up the NAO

In the Standard Platform League, each team is assigned a unique team number. This number
is used to identify the team in the GameController application, but it is also used to avoid
conflicts in IP addresses and UDP ports. In the B-Human system, the team number must be
entered into the file Config/settings.cfg as well as the team port (team number plus 10000).
When deploying with the bush, the team number can also be specified there, but scripts usually
look it up in the file Config/settings.cfg.

2.3.1 Subnet Configuration

All NAOs will be set up to use specific subnet addresses for wired and wireless communica-
tion. The two files Install/Network/wired.service and Install/Network/wireless.service are the
templates that will be instantiated when creating individual configuration files for each robot.
By default, they are set up to use the network 192.168.x.y for wired and 10.0.x.y for wireless
communication (usually the setup used at RoboCup events). You have to edit these files if you
want to use different subnets before you create configurations for individual robots.

2.3.2 Wireless Network Configuration

Wireless configurations are stored in Install/Network/Profiles. The one named default will be
used after the initial setup. Other profiles can be selected later, when deploying the software
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to the robot. The profiles will not only be copied to the NAO during its initial setup, but also be
updated while deploying our software, i. e. the contents of the directory can be changed later.

2.3.3 Installing the RoboCup-only Operating System

Follow these instructions �↗ to flash the NAO with the RoboCup-only operating system image
(use the option Factory reset). When the installation is complete, connect your computer to
the NAO with an Ethernet cable and press the chest button to determine NAO’s ip address. It
usually takes a while until it has selected one that follows the pattern 169.254.x.y.

2.3.4 Creating a Robot Configuration

Only once for each NAO and while being connected to that NAO, run

Install/createRobot [-t <team >] -r <robot > -i <ip > <name >

<team> is your team’s number (the third number of the robot’s target ip address). If omitted, the
team number from the file Config/settings.cfg is used. <robot> is the number of the robot (the
fourth number of its target ip address). <ip> is its current ip address. <name> is the name you
will use to refer to the NAO in the future. The script will create files in Install/Robots/<name>
and Config/Robots/<name> and update some existing configuration files.

2.3.5 Installing the NAO

To actually install a NAO, run

Install/installRobot <ip >

<ip> is the current ip address of the robot. Follow the instructions on the screen. When the
script is done, it will reboot the robot. The NAO is now fully set up to be used with our software.
Please note that the robot will have different ip addresses after the reboot, e. g. the Ethernet
adapter will use 192.168.<team>.<robot> if you did not change the subnet configuration.

2.4 Deploying the Software

Deploying the software to a NAO means copying the directory Config (without the subdirec-
tories Images, Keys, Logs, and Scenes) together with the executable bhuman to /home/nao/-
Config on the robot. In addition, the network profiles in Install/Network/Profiles are copied to
/home/nao/Profiles. The latter does not automatically update the current network profile.

The software is deployed by executing the script Make/Common/copyfiles that is also linked
from some other subdirectories under Make:

usage: copyfiles [Release|Develop|Debug] [<ipaddress >|(-r <playernumber >

<ipaddress >)*] {options}

options:

-b restart bhuman

-c <color > set team color to blue , red , yellow , black , white ,

orange , purple , brown , or gray

-d delete all log files before copying

-h | --help | /h | /? print this text

-l <location > set location

-m <number > set magic number for teamcomm (0 -255). Set -1 for
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random.

-nc never compile

-nr do not check whether target is reachable

-o <port > overwrite team port

-p <number > set player number

-r <n> <ip > copy to <ip>, and set playernumber to <n> (one -r

per robot)

-s <scenario > set scenario

-t <number > set team number

-v <percent > set NAO ’s volume

-w <profile > set wireless profile

examples:

./ copyfiles Develop 192.168.5.14 -p 1

./ copyfiles Release -r 1 10.0.5.14 -r 3 10.0.0.2

Without the option -nc, copyfiles will build the code before deploying it. The script is also
called by Visual Studio when building the project Utils/copyfiles and by Xcode when building
the scheme Nao. In both cases, the configuration (Debug/Develop/Release) is automatically
provided to the script. In Xcode, there is an additional option -a, which prevents the deploy
dialog from being shown in the future. Instead, the current parameters will be reused, i. e.
building the code will automatically deploy it without any questions asked. To get the dialog
back, hold down the key Shift at the time the dialog would normally appear.

The standard method for deploying our software to multiple NAOs is the B-Human User Shell
(bush, see Section 10.2). It is a graphical frontend for copyfiles with a lot of additional function-
ality.

2.5 Working with the NAO

After pressing the chest button to turn on the NAO, it takes about 25 seconds until our software
runs. It is important not to move the NAO while it is booting up, because NAOqi calibrates the
gyroscopes during this time. Our software will give an acoustic alarm if the gyroscope was not
calibrated correctly. In that case, the robot has to be rebooted.

To connect to the NAO, the subdirectories of Make contain a login script for each supported
platform. The only parameter of that script is the IP address of the robot to login. It automat-
ically uses the appropriate SSH key to login. In addition, the IP address specified is written
to the file Config/Scenes/Includes/connect.con. Thus a later use of the SimRobot scene Re-
moteRobot.ros2 will automatically connect to the same robot. On macOS, the IP address is
also the default address for deployment in Xcode.

There are several scripts to start and stop bhuman via SSH. Those scripts are copied to the
NAO upon installing the B-Human software.

bhuman executes the bhuman executable in the foreground. Press Ctrl+C to terminate the
process. Please note that the process will automatically be terminated if the SSH con-
nection is closed.

bhumand start|stop|restart starts, stops, or restarts the bhuman executable as a background
service. The script Make/Common/copyfiles always stops bhuman before deploying. If
copyfiles is started with option -b, it will restart bhuman after all files were copied.

halt shuts down the NAO. If bhuman and NAOqi are running, this can also be done by pressing
the chest button longer than three seconds.

reboot reboots the NAO.
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2.6 Working with SimRobot

On Windows and macOS, SimRobot can either be started from the development environment
or by starting a scene description file in Config/Scenes7. In the first case, a scene description
file has to be opened manually, whereas it will already be loaded in the latter case. On Linux,
just run Build/SimRobot/Linux/<configuration>/SimRobot, either from the shell or from a file
browser, and load a scene description file afterwards. When a simulation is opened for the first
time, only the scene graph is displayed. The simulation is already running, which can be noted
from the increasing number of simulation steps shown in the status bar. A scene view showing
the soccer field can be opened by double-clicking RoboCup. The view can be adjusted by using
the context menu of the window or the toolbar. Double-clicking Console will open a window that
shows the output of the robot code and that allows entering commands. All windows can be
docked in the main window.

After starting a simulation, a script file is automatically executed if it exists, setting up the
robot(s) as desired. The name of the script file is the same as the name of the scene de-
scription file but with the extension .con. Together with the ability of SimRobot to store the
window layout, the software can be configured to always start with a setup suitable for a certain
task.

Although any object in the scene graph can be opened, only displaying certain entries in
the object tree makes sense, namely the main scene RoboCup, the objects in the group
RoboCup/robots, and all other views, which can be found under the tree roots that are marked
with the B-Human-Logo.

To connect to a real NAO, open the scene Config/Scenes/RemoteRobot.ros2. A prompt will
appear to enter the NAO’s IP address.8 In a remote connection, the simulation scene is usually
empty. Therefore, it is not necessary to open a scene view, but you can open any of the other
views.

2.7 Calibrating the Robots

Correctly calibrated robots are very important since the software requires all parts of the NAO to
be at the expected locations. Otherwise the NAO will not be able to walk stable and projections
from image coordinates to world coordinates (and vice versa) will be wrong. In general, a lot
of calculations will be unreliable. Two physical components of the NAO can be calibrated via
SimRobot: the joints (cf. Section 2.7.2) and the cameras (cf. Section 2.7.3). Checking those
calibrations from time to time is important, especially after a repair.

In addition to that, the B-Human software uses four color classes (cf. Section 4.1.5) which have
to be calibrated, too (cf. Section 2.7.4). Changing locations or lighting conditions might require
them to be adjusted.

2.7.1 Overall Physical Calibration

The physical calibration process can be split into two steps with the overall goal of an upright
and straight standing robot, and a correctly calibrated camera. The first step is to get both feet

7On Windows, the first time starting such a file the SimRobot.exe must be manually chosen to open these files.
Note that both on Windows and macOS, starting a scene description file bears the risk of executing a different
version of SimRobot than the one that was just compiled.

8The script might instead automatically connect to the IP address that was last used for login or deployment.
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in correct position. Our software assumes that the centers of the feet are 10 cm apart from
each other. The feet should not be rotated when the robot is in the calibration stand, and its
standing height should be 23.5 cm (cf. Section 2.7.2). The second step is the camera calibration
(cf. Section 2.7.3). This step also measures the tilt of the body with respect to the feet.

2.7.2 Joint Calibration

The software supports two methods for calibrating the joints; either by manually adjusting off-
sets for each joint, or by using the JointCalibrator module which uses inverse kinematics to
do the same (cf. Section 8.3.5). When switching between those two methods, it is necessary to
save the JointCalibration, redeploy the NAO and restart bhuman. Otherwise, the changes
done previously will not be used.

Before changing joint offsets, the robot has to be set in a standing position with fixed joint an-
gles. Otherwise, the balancing mechanism of the motion engine might move the legs, messing
up the joint calibrations. Using the JointCalibrator this happens automatically, for manually
adjusting the offsets this can be done with:

mr StandArmRequest CalibrationStand Motion

mr StandLegRequest CalibrationStand Motion

Either way, when the calibration is finished it should be saved:
save representation:JointCalibration

Manually Adjusting Joint Offsets

There are two ways to adjust the joint offsets: either by requesting the JointCalibration repre-
sentation with a get command:

get representation:JointCalibration

modifying the calibration returned and then setting it, or by using a data view (cf. Sec-
tion 10.1.4.5)

vd representation:JointCalibration

which is more comfortable.

Using the JointCalibrator

First set the JointCalibrator to provide the JointCalibration and switch to the
CalibrationStand:

call Calibrators/Joint

When a completely new calibration is desired, the JointCalibration can be reset:
dr module:JointCalibrator:reset

Afterwards, the translation and rotation of the feet can be modified. Again either with
get module:JointCalibrator:offsets

or with:
vd module:JointCalibrator:offsets

The units of the translations are in millimeters and the rotations are in degrees.
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(a) Projected field lines before calibration. (b) Projected field lines after calibration.

Figure 2.1: Effect of a camera calibration to the projection between world and image coordi-
nates.

2.7.3 Camera Calibration

For calibrating the cameras (cf. Section 4.1.2.1), one of the modules
AutomaticCameraCalibratorPA or AutomaticCameraCalibrator can be used. The first
one requires only a penalty area including the penalty mark for the calibration, the second one
a complete half of the field. Figure 2.1 illustrates the importance of calibrating the camera with
any one of the two.

Using the AutomaticCameraCalibratorPA

For calibration with the AutomaticCameraCalibratorPA, the NAO must be initially positioned
next to one of the two corners of the penalty area and look diagonally at it. Figure 2.2a shows
this initial position. After the NAO is positioned correctly, the calibration can be performed by
following the procedure below.

1. Initialize the calibration process with:

call Calibrators/CameraPA

Furthermore this will print commands to the simulator console that will be needed later
on.

2. To start the collection of samples use the command:

dr module:AutomaticCameraCalibratorPA:start

Sampling is always performed in the upper camera first and when the necessary samples
are collected the head is tilted upwards to also search for samples in the lower camera.
When samples were found with both cameras, the NAO turns its head to the next position.
Pick up the NAO and place it such that all required lines are inside its field of view again.
These are the baseline, the front penalty area line and the closer short connecting line.

3. As soon as the NAO has turned its head forward again, the second calibration step be-
gins. Now the robot has to see the penalty mark as well as the baseline and the front
penalty area line. Place the NAO so that he can see these features, e. g. as shown in
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(a) Calibration position for the first step. (b) Calibration position for the second step.

Figure 2.2: The different calibration positions using the AutomaticCameraCalibratorPA

Fig. 2.2b. Again, pick up the NAO and realign it as soon as the head has turned to a new
position.

4. A blinking head LED during sampling indicates that not all necessary features are visible
and the NAO has to be realigned. If the left eye is red (normally it is white), all necessary
features are seen but discarded. In this case some waiting is needed before they are
accepted.

5. After all necessary samples have been collected, the optimization process begins. Wait
until it converges and save the calibration using:

save representation:CameraCalibration

Using the AutomaticCameraCalibrator

For calibration with the AutomaticCameraCalibrator, the NAO must be positioned in the mid-
dle of the own half of the center circle, facing the opponent’s goal. The inner tips of the heels
must correspond to the rear edge of the line. Figure 2.3a shows this initial position. After the
NAO is positioned correctly, the calibration can be performed by following the procedure below.

1. Initialize the calibration process with:
call Calibrators/Camera

Furthermore this will print commands and help to the simulator console that will be
needed later on.

2. To start collecting sample points use:
dr module:AutomaticCameraCalibrator:start

Wait for the console output “Accumulation finished. Waiting to optimize. . . ”. The process
includes both cameras and will collect samples for the calibration and make the head
motions to cover the whole field. The samples for the upper camera are drawn blue and
the samples for the lower camera red. A drawing above the images signalizes if the
sample amount is sufficient for optimization (green) or not (red) (cf. Fig. 2.3b).
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(a) The initial calibration position.

(b) The view after the control start with gathered samples.

(c) The stage after optimization.

Figure 2.3: The interesting camera calibration stages using the AutomaticCameraCalibrator.

3. If you are unhappy with the collection of some specific samples you are now able to delete
samples by left-clicking onto the sample in the image in which it has been found. If there
are some samples missing you can manually add them by Ctrl + left-clicking into the
corresponding image.

4. Run the automatic calibration process, wait until the optimization has converged, and
finally save the calibration using following commands:

dr module:AutomaticCameraCalibrator:optimize

save representation:CameraCalibration

2.7.4 Color Calibration

Calibrating the color classes is split into two steps. First of all, the parameters of the camera
driver must be updated to the environment’s needs. The command

get representation:CameraSettings

will return the current settings. Furthermore, the necessary set command will be generated.
Alternatively it is possible to use a data view (cf. Section 10.1.4.5):

vd representation:CameraSettings

The most important parameters are:
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autoExposure: Enable (true) / disable (false) the automatism for exposure. When playing
under static lighting conditions, this parameter should always be disabled, since the au-
tomation will often choose higher values than necessary, which will result in blurry images.
However, for dynamic lighting conditions, using the automatism of the camera driver may
be a necessity.

autoExposureBrightness: The brightness the auto exposure tries to achieve. The available
interval is [-255, 255].

exposure: The exposure time used when auto exposure is disabled. The available interval is
[0, 1048575]. Be aware that high exposures lead to blurred images.

gain: The gain in the range [0, 1023]. Brightens the image and has only an effect when the
automatism for exposure is disabled. Be aware that high gain values lead to noisy images.

saturation: The saturation in the range [0, 255]. Adjusts the color intensity and should be set
such that the green in the image looks natural.

contrast: The contrast in the range [0, 255].

autoWhiteBalance: Enable (true) / disable (false) the automatism for white balance.

Furthermore the camera driver can do a one-time auto white balance. This feature can be
triggered with the commands:

dr module:CameraProvider:doWhiteBalanceUpper

dr module:CameraProvider:doWhiteBalanceLower

After executing one of the commands, new parameters for the white balance are printed to
the console. These have to be copied to the parameters (red|green|blue)Gain. Ensure that
the automatic white balance is deactivated, otherwise it will have no effect. Alternatively to the
one-time auto white balance, these parameters can also be used to adjust the white balance
manually.

(a) Image with improper white balance. (b) Image with better settings for white balance.

Figure 2.4: The effect of the white balance to the obtained camera image.

After setting up the parameters of the camera driver, the parameters of the color classes must
be updated (cf. Section 4.1.5). To do so, one needs to open the views with the segmented
upper and lower camera images and the color calibration view (cf. Section 10.1.4.1 and Sec-
tion 10.1.4.1). After finishing the color class calibration and saving the current parameters,
copyfiles/bush (cf. Section 2.4) can be used to deploy the current settings. Ensure the updated
files cameraSettings.cfg and fieldColors.cfg are stored in the correct location.
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2.8 Directory Structure

2.8.1 Main Directories

Directory Contents
Build All files created during builds are located in this directory. The directory structure

follows the pattern Build/<os>/<target>/<configuration>. Deleting the directory
will remove all build files. The directory initially does not exist.

Config All configuration files are located in this directory. Some of the subdirectories
are described in Section 2.8.2. Config/Scenes contains the simulation scenes
(.ros2) together with the console scripts that are executed when the simulation
is started (.con)

Install Scripts and other files for setting up the NAO robot.
Make Scripts and project files for software development. Make/<os/ide> contains

project files for a specific IDE or build system. Make/Common contains the
shared part of the build system. It also contains scripts for deploying the code
and downloading log files that are used by other tools. Make/Hooks/install-
Hooks[.cmd] can be used to install git hooks that will automatically call the script
Make/<os/ide>/generate after most git operations.

Src All source files of the B-Human system.
Util 3rd-party code that is not part of the B-Human system.

2.8.2 Configuration File Search Path

All configuration files are searched along a path that contains directories that can depend on
the name of a robot (separately for head and body, so mixing those is possible), the location
where the robot is used (e. g. outdoor field vs. indoor field), and the scenario in which it is used
(e. g. normal game vs. technical challenge):

• Config/Robots/<head name>/Head

• Config/Robots/<body name>/Body

• Config/Robots/<head name>/<body name>

• Config/Locations/<location>

• Config/Scenarios/<scenario>

• Config/Robots/Default

• Config/Locations/Default

• Config/Scenarios/Default

• Config

In simulation, the name of both head and body is Nao. The current location and scenario are
defined in the file Config/settings.cfg. They can also be changed while deploying the code to
an actual NAO (cf. Section 2.4).
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Chapter 3
Architecture

The B-Human architecture [22] is based on the framework of the GermanTeam 2007 [21],
adapted to the NAO. This chapter summarizes the major features of the architecture: binding,
threads, modules and representations, communication, and debugging support.

3.1 Binding

On the NAO, the B-Human software consists of a single binary file and a number of configura-
tion files, all located in /home/nao/Config. When the program is started, it first contacts LoLA
to retrieve the serial number of the body that is then mapped to a body name using the file
Config/Robots/robots.cfg. The Unix hostname is used as the robot’s head name. Then, the
connection to LoLA is closed again and the program forks itself to start the main robot control
program. After that has terminated, another connection to LoLA is established to sit down the
robot if necessary, switch off all joints, and display the exit status of the main program in the
eyes (blue: terminated normally, red: crashed).

In the main robot control program, the module NaoProvider exchanges data with LoLA fol-
lowing the protocol defined by SoftBank Robotics for RoboCup teams. For efficiency, only the
first packet received is actually parsed, determining the addresses of all relevant data in that
packet and using these addresses for later packets rather than parsing them again. Similarly,
a template for packets sent to LoLA is only created once and the actual data is patched in in
each frame. The NaoProvider uses blocking communication, i. e. the whole thread Motion (cf.
Section 3.2) waits until a packet from LoLA is received before it continues.
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3.2 Threads

Most robot control programs use concurrent processes and threads. Of those, we only use
threads in order to have a single shared memory context. The number of parallel threads is
best dictated by external requirements coming from the robot itself or its operating system.
The NAO provides images from each camera at a frequency of 30Hz and accepts new joint
angle commands at 83Hz. For handling the camera images, there would actually have been
two options: either to have two threads each of which processes the images of one of the two
cameras and a third one that collects the results of the image processing and executes world
modeling and behavior control, or to have a single thread that alternately processes the images
of both cameras and also performs all further steps. We are currently using the first approach
in order to better exploit the multi-core hardware of the robot. This makes it possible to process
both images in parallel and leads to significantly more available computation time per image.
These threads run at 30Hz and handle one camera image each. They both trigger a third
thread, which processes the results as described above. This one runs with 60Hz in parallel to
the image processing. In addition, there is a thread that runs at the motion frame rate of the
NAO, i. e. at 83Hz. Another thread performs the TCP communication with a host PC for the
purpose of debugging.

This results in the five threads Upper, Lower, Cognition, Motion and Debug actually used in
the B-Human system (cf. Fig. 3.1). The perception threads Upper and Lower receive camera
images from Video for Linux. In addition, they receive data from the thread Cognition about the
world model as well as sensor data from the thread Motion. They processes the images and
send the detection results to the thread Cognition. This thread actually uses this information
together with sensor data from the thread Motion for world modeling and behavior control and
sends high-level motion commands to the thread Motion. This one actually executes these
commands by generating the target angles for the 25 joints of the NAO. It sends these target
angles through the NaoProvider to the NAO’s interface LoLA, and it receives sensor readings
such as the actual joint angles, body acceleration and gyro measurements, etc. In addition,
Motion reports about the motion of the robot, e. g. by providing the results of dead reckoning.
The thread Debug communicates with the host PC. It distributes the data received from it to
the other threads and it collects the data provided by them and forwards it back to the host
machine. It is inactive during actual games.

3.3 Modules and Representations

A robot control program usually consists of several modules, each performing a certain task,
e. g. image processing, self-localization, or walking. Modules require a certain input and pro-
duce a certain output (so-called representations). Therefore, they have to be executed in a
specific order to make the whole system work. The module framework introduced in [21] sim-
plifies the definition of the interfaces of modules and automatically determines the sequence in
which the modules must be executed. It consists of the blackboard, the module definition, and
a visualization component (cf. Section 10.1.4.5).

3.3.1 Blackboard

The blackboard [10] is the central storage for information, i. e. for the representations. Each
thread is associated with its own instance of the blackboard. Representations are transmitted
through inter-thread communication if a module in one thread requires a representation that is
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Figure 3.1: The threads used on the NAO

provided by a module in another thread. The blackboard itself is a map that associates names
of representations to reference-counted instances of these representations. It only contains
entries for the representations that at least one of the modules in associated thread actually
requires or provides.

3.3.2 Module Definition

The definition of a module consists of three parts: the module interface, its actual implementa-
tion, and a statement that allows instantiating the module. Here is an example:

MODULE(SimpleBallLocator ,

{,

REQUIRES(BallPercept),

REQUIRES(FrameInfo),

PROVIDES(BallModel),

DEFINES_PARAMETERS(

{,

(Vector2f)(5.f, 0.f) offset ,

(float)(1.1f) scale ,

}),

});

class SimpleBallLocator : public SimpleBallLocatorBase

{

void update(BallModel& ballModel)

{

if(theBallPercept.wasSeen)

{

ballModel.position = theBallPercept.position * scale + offset;

ballModel.wasLastSeen = theFrameInfo.time;

}

}

}

MAKE_MODULE(SimpleBallLocator , modeling);

The module interface defines the name of the module (e. g. SimpleBallLocator), the repre-
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sentations that are required to perform its task, the representations provided by the module,
and the parameters of the module, the values of which can either be defined in place or loaded
from a file. The interface basically creates a base class for the actual module following the
naming scheme <ModuleName>Base. The actual implementation of the module is a class that
is derived from that base class. The following statements are available in a module definition:

REQUIRES declares that this module has read-only access to this representation in the black-
board (and only to this) via the<representationName>. As is described in Section 3.3.3,
modules can expect that all their required representations have been updated before any
of their provider methods is called. If a required representation is provided by multiple
threads, a so-called alias must be used to specify which representation it uses. An
alias is a representation that has a thread name prefix before the actual name, e. g.
<thread><representation>. The representation must be derived from the actual rep-
resentation without adding members to it.

USES declares that this module accesses a representation, which does not necessarily have to
be updated before the module is run. This should only be used to resolve conflicts in the
configuration. Note that USES is not considered when exchanging data between threads.

PROVIDES declares that this module will update this representation. It must define an update

method for each representation that is provided. For each representation the execution
time can be determined (cf. Section 3.6.7) and it can be sent to a host PC or even altered
by it.

PROVIDES WITHOUT MODIFY does exactly the same as PROVIDES, except that the representation
can not be inspected or altered by the host PC.

DEFINES PARAMETERS and LOADS PARAMETERS allow the modifiable parameterization of mod-
ules, as described in Section 3.3.5. It is recommended to use this for all parameters.

Finally, the MAKE MODULE statement allows the module to be instantiated. Its second parameter
defines a category that is used for a more structured visualization of the module configuration
(cf. Section 10.1.4.5). The optional third parameter can override the static function that delivers
the list of required and provided representations to the system (cf. Section 3.3.3). This can
be used to add requirements to a module that can not be part of the module definition, as is
needed by the behavior framework (cf. Section 6.1). While the module interface is usually part
of the header file, the MAKE MODULE statement has to be part of the implementation file.

MODULE is a macro that gets all the information about the module as parameters, i. e. they are
all separated by commas. The macro ignores its second and its last parameter, because by
convention, these are used for opening and closing curly brackets. These let some source
code formatting tools indent the definitions as a block. Currently, MODULE is limited to up to 90
definitions between the curly brackets. When the macro is expanded, it creates a lot of hidden
functionality. Each entry that references a representation makes sure that it is created in the
blackboard when the module is constructed and freed when the module is destroyed. The
information that a module has certain requirements and provides certain representations is not
only used to generate a base class for that module, but is also available for sorting the providers,
and can be requested by a host PC. On a host PC, the information can be used to change the
configuration and for visualization (cf. Section 10.1.4.5). If a MessageID id<representation>
exists, the representation can also be logged (cf. Section 3.7).

If a representation provided defines a parameterless method draw, that method will be called
after the representation was updated. The method is intended to visualize the representation
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using the techniques described in Section 3.6.3. If the representation defines a parameterless
method verify, that method will be called in Debug and Develop builds after the representation
was updated as well. A verify method should contain ASSERTs that check whether the contents
of the representation are plausible. Both methods are only called if they are defined in the
representation itself and not if they are inherited from its base class.

3.3.3 Configuring Providers and Threads

Since modules can provide more than a single representation, the configuration has to be
performed on the level of providers. For each representation, it can be selected which module
provides it or that it is not provided at all. Normally, the configuration is read from the file
Config/Scenarios/<scenario>/threads.cfg during the start-up of the robot control program, but
it can also be changed interactively when the robot has a debug connection to a host PC using
the command mr (cf. Section 10.1.6.3). This file defines which threads exist at all and which
providers run in them. This allows for completely different configurations in different scenarios.

The configuration does not specify the sequence in which the providers are executed. This
sequence is automatically determined at runtime based on the rule that all representations
required by a provider must already have been provided by other providers before, i. e. those
providers have to be executed earlier. This is calculated in the thread Debug. Only valid
configurations are then sent to all other threads.

In some situations, it is required that a certain representation is provided by a module before any
other representation is provided by the same module, e. g., when the main task of the module
is performed in the update method of that representation, and the other update methods rely
on results computed in the first one. Such a case can be implemented by both requiring and
providing a representation in the same module.

3.3.4 Default Representations

During the development of the robot control software, it is sometimes desirable to simply de-
activate a certain provider or module. As mentioned above, it can always be decided not to
provide a certain representation, i. e. all providers generating the representation are switched
off. However, not providing a representation typically makes the set of providers inconsistent,
because other providers rely on that representation, so they would have to be deactivated as
well. This has a cascading effect. In many situations, it would be better to be able to deacti-
vate a provider without any effect on the dependencies between the modules. In this case it is
possible to enter representations to a separate list in the thread configuration file. It will never
change any of the representations – so they basically remain in their initial state – but it will
make sure that they exist, and thereby, all dependencies can be resolved. However, in terms of
functionality, a configuration using that list is not complete.

3.3.5 Parameterizing Modules

Modules usually need some parameters to function properly. Those parameters can also be
defined in the module’s interface description. Parameters behave like protected class members
and can be accessed in the same way. Additionally, they can be manipulated from the console
using the commands get parameters:<ModuleName> or vd parameters:<ModuleName> (cf.
Section 10.1.6.3).
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There are two different parameter initialization methods. In the hard-coded approach, the ini-
tialization values are specified as part of the module definition. They are defined using the
DEFINES PARAMETERS macro. This macro is intended for parameters that may change during
development but will never change again afterwards. In contrast, loadable parameters are
initialized to values that are loaded from a configuration file upon module creation, i. e. the ini-
tialization values are not specified in the source file. These parameters are defined using the
LOADS PARAMETERS macro. By default, parameters are loaded from a file with the same base
name as the module, but starting with a lowercase letter1 and the extension .cfg. For instance
if a module is named SimpleBallLocator, its configuration file is simpleBallLocator.cfg. This
file can be placed anywhere in the usual configuration file search path (cf. Section 2.8.2). It is
also possible to assign a custom name to a module’s configuration file by passing the name as
a parameter to the constructor of the module’s base class.

Only either DEFINES PARAMETERS or LOADS PARAMETERS can be used in a module definition.
They can both only be used once. Their syntax follows the definition of generated streamable
classes (cf. Section 3.4.3). Parameters may have any data type as long as it is streamable (cf.
Section 3.4.5).

3.4 Serialization

In most applications, it is necessary that data can be serialized, i. e. transformed into a se-
quence of bytes. While this is straightforward for data structures that already consist of a single
block of memory, it is a more complex task for dynamic structures, e. g. lists, trees, or graphs.
Our implementation for streaming data follows the ideas introduced by the C++ iostreams li-
brary, i. e., the operators << and >> are used to implement the process of serialization. In
contrast to the iostreams library, our implementation guarantees that data is streamed in a way
that it can be read back without any special handling, even when streaming into and from text
files, i. e. the user of a stream does not need to know about the representation that is used for
the serialized data (cf. Section 3.4.1).

On top of the basic streaming class hierarchy, it is also possible to derive classes from class
Streamable and implement the mandatory method serialize(In*, Out*). In addition, the
basic concept of streaming data was extended by a mechanism to register information on the
structure of serializable datatypes. This information is used to translate between the data in
binary form and a human-readable format that reflects the hierarchy of a data structure, its
variables, and their actual values.

As a third layer of serialization, two macros allow defining classes that automatically implement
the method serialize(In*, Out*) and datatype registration.

3.4.1 Streams

The foundation of B-Human’s implementation of serialization is a hierarchy of streams. As a
convention, all classes that write data into a stream have a name starting with “Out”, while
classes that read data from a stream start with “In”. In fact, all writing classes are derived
from the class Out, and all reading classes are derivations of the class In. All classes support
reading or writing basic datatypes with the exceptions of long, unsigned long, and size t.
They also provide the ability to read or write raw binary data.

1Actually, if a module name begins with more than one uppercase letter, all initial uppercase letters but the last
one are transformed to lowercase, e. g. the module LEDHandler would read the file ledHandler.cfg if it would read
its parameters from a file.
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All streaming classes derived from In and Out are composed of two components: One for
reading/writing the data from/to a physical medium and one for formatting the data from/to a
specific format. Classes writing to physical media derive from PhysicalOutStream, classes
for reading derive from PhysicalInStream. Classes for formatted writing of data derive from
StreamWriter, classes for reading derive from StreamReader. The composition is done by the
OutStream and InStream class templates.

A special case are the OutMap and the InMap streams. They only work together with classes
that are derived from the class Streamable, because they use the structural information that is
gathered in the serialize method. They are both directly derived from Out and In, respec-
tively.

Currently, the following classes are implemented:

PhysicalOutStream: Abstract class

OutFile: Writing into files

OutMemory: Writing into memory

OutMemoryForText: Writing into memory, ensuring that it is null-terminated

OutMessageQueue: Writing into a MessageQueue

StreamWriter: Abstract class

OutBinary: Formats data binary

OutText: Formats data as text

OutTextRaw: Formats data as raw text (same output as “cout”)

Out: Abstract class

OutStream<PhysicalOutStream, StreamWriter>: Abstract template class

OutBinaryFile: Writing into binary files
OutTextFile: Writing into text files
OutTextRawFile: Writing into raw text files
OutBinaryMemory: Writing binary into memory
OutTextMemory: Writing into memory as text
OutTextRawMemory: Writing into memory as raw text
OutBinaryMessage: Writing binary into a MessageQueue
OutTextMessage: Writing into a MessageQueue as text
OutTextRawMessage: Writing into a MessageQueue as raw text

OutMap: Writing into a stream in configuration map format (cf. Section 3.4.6). This only
works together with serialization (cf. Section 3.4.5), i. e. a streamable object has to
be written. This class cannot be used directly.

OutMapFile: Writing into a file in configuration map format
OutMapMemory: Writing into a memory area in configuration map format

PhysicalInStream: Abstract class

InFile: Reading from files

InMemory: Reading from memory

InMessageQueue: Reading from a MessageQueue
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StreamReader: Abstract class

InBinary: Binary reading

InText: Reading data as text

InConfig: Reading configuration file data from streams

In: Abstract class

InStream<PhysicalInStream, StreamReader>: Abstract class template

InBinaryFile: Reading from binary files
InTextFile: Reading from text files
InConfigFile: Reading from configuration files
InBinaryMemory: Reading binary data from memory
InTextMemory: Reading text data from memory
InConfigMemory: Reading config-file-style text data from memory
InBinaryMessage: Reading binary data from a MessageQueue
InTextMessage: Reading text data from a MessageQueue

InMap: Reading from a stream in configuration map format (cf. Section 3.4.6). This only
works together with serialization (cf. Section 3.4.5), i. e. a streamable object has to
be read. This class cannot be used directly.

InMapFile: Reading from a file in configuration map format
InMapMemory: Reading from a memory area in configuration map format

3.4.2 Streaming Data

To write data into a stream, Tools/Streams/OutStreams.h must be included, a stream must be
constructed, and the data must be written into the stream. For example, to write data into a text
file, the following code would be appropriate:

#include "Tools/Streams/OutStreams.h"

// ...

OutTextFile stream("MyFile.txt");

stream << 1 << 3.14 << "Hello Dolly" << endl << 42;

The file will be written into the configuration directory, e. g. Config/MyFile.txt on the PC. It will
look like this:

1 3.14 "Hello Dolly"

42

As spaces are used to separate entries in text files, the string “Hello Dolly” is enclosed in double
quotes. The data can be read back using the following code:

#include "Tools/Streams/InStreams.h"

// ...

InTextFile stream("MyFile.txt");

int a, d;

double b;

std:: string c;

stream >> a >> b >> c >> d;

It is not necessary to read the symbol endl here, although it would also work, i. e. it would be
ignored.
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For writing to text streams without the separation of entries and the addition of double quotes,
OutTextRawFile can be used instead of OutTextFile. It formats the data such as known from
the ANSI C++ cout stream. The example above is formatted as following:

13.14 Hello Dolly

42

To make streaming independent of the kind of the stream used, it could be encapsulated in
functions. In this case, only the abstract base classes In and Out should be used to pass
streams as parameters, because this makes the functions usable independently from the type
of the streams:

#include "Tools/Streams/InOut.h"

void write(Out& stream)

{

stream << 1 << 3.14 << "Hello Dolly" << endl << 42;

}

void read(In& stream)

{

int a, d;

double b;

std:: string c;

stream >> a >> b >> c >> d;

}

// ...

OutTextFile stream("MyFile.txt");

write(stream);

// ...

InTextFile stream("MyFile.txt");

read(stream);

3.4.3 Generating Streamable Classes

Values of basic types are not the only kind of data that can be streamed. Instances of classes
can be streamed as well. However, in contrast to basic data types, the streaming framework
cannot know how to stream an object that is composed of several member variables. Therefore,
additional information must be provided that allows serializing and de-serializing the instances
of a class and even transmitting and querying its specification. The underlying details are
given in Section 3.4.5. Here, we only describe how two macros (defined in Tools/Streams/Au-
toStreamable.h) generate this extra information for a streamable struct2 and optionally also
initialize its member variables. The first is:

STREAMABLE(<class >,

{ <header >,

<comma -separated -declarations >,

});

The second is very similar:

STREAMABLE_WITH_BASE(<class >, <base >, ...

The parameters have the following meaning:

class: The name of the struct to be declared.
2Meaning, the default access for member variables is public.
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base: Its base class. It must be streamable itself.

header: Everything that can be part of a class body except for the member variables that
should be streamable. Please note that this part must not contain commas that are not
surrounded by parentheses, because C++ would consider it to be more than a single
macro parameter otherwise. A workaround is to use the macro COMMA instead of an actual
comma. However, the use of that macro should be avoided if possible, e. g. by defining
constructors with comma-separated initializer lists outside of the STREAMABLE’s body.

comma-separated-declarations: Declarations of the streamable member variables3 in two
possible forms:

(<type >) <var >

(<type >)(<init >) <var >

type: The type of the member variable that is declared.

var: The name of the member variable that is declared.

init: The initial value of the member variable, or if an object is declared, the parameter(s)
passed to its constructor.

Please note that all these parts, including each declaration of a streamable member variable,
are separated by commas, since they are parameters of a macro. Here is an example:

STREAMABLE(Example ,

{

ENUM(ABC ,

{,

a,

b,

c,

});

Example ()

{

std:: memset(array , 0, sizeof(array));

},

(int) anInt ,

(float)(3.14f) pi ,

(int [4]) array ,

(Vector2f)(1.f, 2.f) aVector ,

(ABC) aLetter ,

(MotionRequest :: Motion)(MotionRequest :: stand) motionId ,

});

In this example, all member variables except for anInt and aLetter would be initialized when
an instance of the class is created.

Instances of Example can now be streamed like any basic data type. Since it is sometimes
necessary to do some post-processing after an object was read from a stream, e. g. to recom-
pute member variables that were not streamed, a method onRead() can be defined within the
STREAMABLE, which is called after all streamed member variables were read.

3Currently, the macros support up to 119 entries.
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3.4.4 Type Registry

The class TypeRegistry stores the specification of all streamable data types. It is automatically
filled at the start of the program and is not changed afterwards. It has mainly three purposes:

1. Sending the type specifications to a remote PC. Thereby, the PC can exchange and
visualize data, even if it is not running the same version of the B-Human software.

2. Providing the specification of all types for logging. This allows to replay log files even if
some of the type specifications have changed since the file was recorded.

3. Mapping between the values and names of enumeration constants when streaming data
as text.

The specification of a type is recorded through a static or global function. For instance, the
STREAMABLE used as an example in Section 3.4.3 generated a function like this:

static void reg()

{

REG_CLASS(Example);

REG(int , anInt);

REG(float , pi);

REG(int[4], array);

REG(Vector2f , aVector);

REG(ABC , aLetter);

REG(MotionRequest ::Motion , motionId);

}

If the class that is registered has a streamable base class, it must be registered with another
macro, because otherwise the type registry cannot know about this relation:

REG_CLASS_WITH_BASE(Example , SomeBaseClass);

To execute the function at the start of the program, it must be published:

PUBLISH(reg);

PUBLISH must be placed in a position of the code that is guaranteed to be linked. It publishes
the registration function through its pure existence4, not by being run through the normal flow of
execution. In most cases, PUBLISH can just be placed in the registration function itself. However,
for templates, it must be written into a function that is actually referenced from somewhere,
otherwise it will never be executed, because it is not part of the executable. The same is true
for code that is linked in from a static library.

The TypeRegistry is optimized for performance. It mostly stores addresses of names rather
than the whole strings. Type names are kept in the mangled form the compiler generated. This
means the data is only valid for the current execution of the program. To store the information
into a file or to transmit it to another computer, an instance of the class TypeInfo must be
filled first, which can then be streamed. TypeInfo can represent specification data that is
independent from the current executable, e. g., it can contain the type specifications read from
an older log file. All type names are de-mangled in a platform-independent way.

4Technically, a template is instantiated that adds itself to a linked list of all registration functions at the start of the
program.
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3.4.5 Streamable Classes

A class is made streamable by deriving it from the class Streamable, implementing the ab-
stract method serialize(In* in, Out* out), and adding a method that registers its type (cf.
Section 3.4.4). For data types derived from Streamable, streaming operators are provided,
meaning they may be used as any other data type with standard streaming operators imple-
mented. The following two macros can be used to specify the data to stream in the method
serialize. Both expect that the parameters of serialize are actually called in and out:

STREAM BASE(<class>) streams the base class. If present, it must be the first STREAM
statement in the serialize method.

STREAM(<member>) streams a member variable.

For instance, the STREAMABLE used as an example in Section 3.4.3 generated a function like
this:

virtual void serialize(In* in , Out* out)

{

STREAM(anInt);

STREAM(pi);

STREAM(array);

STREAM(aVector);

STREAM(aLetter);

STREAM(motionId);

}

In addition to these two macros there is also a version to be used in streaming operators, i. e. in
operator<< and operator>>. These macros do not expect that the stream has a pre-defined
name. Instead, the stream is passed as their first parameter:

template <typename T> Out& operator <<(Out& out , const Range <T>& range)

{

STREAM_EXT(out , range.min);

STREAM_EXT(out , range.max);

return out;

}

3.4.6 Configuration Maps

Configuration maps introduce the ability to handle serialized data from files in an arbitrary order.
The sequence of entries in the file does not have to match the order of the member variables
in the C++ data structure that is filled with them. In contrast to most streams presented in
Section 3.4.1, configuration maps do not contain a serialization of a data structure, but rather a
hierarchical representation.

Since configuration maps can be read from and be written to files, there is a special syntax
for such files. A file consists of an arbitrary number of pairs of keys and values, separated
by an equality sign, and completed by a semicolon. Values can be lists (encased by square
brackets), structured values (encased by curly brackets), or plain values. If a plain value does
not contain any whitespaces, periods, semicolons, commas, or equality signs, it can be written
without quotation marks, otherwise it has to be encased in double quotes. Configuration map
files have to follow this grammar:

map ::= record

record ::= field ’;’ { field ’;’ }
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field ::= literal ’=’ ( literal | ’{’ record ’}’ | array )

array ::= ’[’ element { ’,’ element } [ ’,’ ] ’]’

element ::= literal | ’{’ record ’}’

literal ::= ’"’ { anychar1 } ’"’ | { anychar2 }

anychar1 must escape doublequotes and the backslash with a backslash. anychar2 cannot
contain whitespace and other characters used by the grammar. However, when such a config-
uration map is read, each literal must be a valid literal for the datatype of the variable it is
read into. As in C++, comments can be denoted either by // for a single line or by /* . . . */ for
multiple lines. Here is an example:

// A record

defensiveGoaliePose = {

rotation = 0;

translation = {x = -4300; y = 0;};

};

/* An array of

* three records

*/

kickoffTargets = [

{x = 2100; y = 0;},

{x = 1500; y = -1350;},

{x = 1500; y = 1350;}

];

// Some individual values

outOfCenterCircleTolerance = 150.0;

ballCounterThreshold = 10;

Configuration maps can only be read or written through the streams derived from OutMap and
InMap. Accordingly, they require an object of a streamable class to either parse the data in map
format or to produce it. Here is an example of code that reads the file shown above:

STREAMABLE(KickOffInfo ,

{,

(Pose2f) defensiveGoaliePose ,

(std::vector <Vector2f >) kickoffTargets ,

(float) outOfCenterCircleTolerance ,

(int) ballCounterThreshold ,

});

InMapFile stream("kickOffInfo.cfg");

KickOffInfo info;

if(stream.exists ())

stream >> info;

3.4.7 Enumerations

To support streaming, enumeration types should be defined using the macro ENUM defined
in Src/Tools/Streams/Enum.h rather than using the C++ enum keyword directly. The macro’s
first parameter is the name of the enumeration type. The second and the last parameter are
reserved for curly brackets and are ignored. All other parameters are the elements of the
enumeration type defined. It is not allowed to assign specific integer values to the elements of
the enumeration type, with one exception: It is allowed to initialize an element with the symbolic
value of the element that has immediately been defined before (see example below). The
macro automatically registers the enumeration type and its elements (except for elements used
to initialize other elements) in the TypeRegistry (cf. Section 3.4.4).
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The macro also automatically defines a constant numOf<Typename>s, which reflects the num-
ber of elements in the enumeration type. Since the name of that constant has an added “s” at
the end, enumeration type names should be singular. If the enumeration type name already
ends with an “s”, it might be a good idea to define a constant outside the enumeration type that
can be used instead, e. g. static constexpr unsigned char numOfClasses = numOfClasss

for an enumeration type with the name Class.

The following example defines an enumeration type Letter with the “real” enumeration ele-
ments a, b, c, and d, a user-defined helper constant numOfLettersBeforeC, and an automati-
cally defined helper constant numOfLetters. The numerical values of these elements are a =

0, b = 1, c = 2, d = 3, numOfLettersBeforeC = 2, numOfLetters = 4.

ENUM(Letter ,

{,

a,

b,

numOfLettersBeforeC ,

c = numOfLettersBeforeC ,

d,

});

3.4.7.1 Iterating over Enumerations

It is often necessary to enumerate all constants defined in an enumeration type. This can easily
be done using the FOREACH ENUM macro:

FOREACH_ENUM(Letter , letter , numOfLettersBeforeC)

{

// do something with "letter", which is of type "Letter"

}

The third parameter is optional. If specified, it defines a different upper limit than the end of the
enumeration.

3.4.7.2 Enumerations as Array Indices

In the B-Human code, enumerations are often used as indices for arrays, because this gives
entries a name, but still allows to iterate over these entries. However, in configuration files and
in the UI, it is hard to find specific entries in arrays, in particular if they have a larger number
of elements. For instance, the arrays of all joint angles have 26 elements, making it hard to
identify the angle of a specific joint. Therefore, a special macro (defined in Src/Tools/Stream-
s/EnumIndexedArray.h) that is backed by a template class allows to define an array indexed by
an enumeration type that solves this problem by streaming such an array as if it were a struc-
ture with a member variable for each of its elements named after the respective enumeration
constant. Technically, such an array is derived from std::array and simply defines the method
serialize (cf. Section 3.4.5). For example, an array of all joint angles could be defined by
using the enumeration Joints::Joint as index:

ENUM_INDEXED_ARRAY(Angle , Joints :: Joint) jointAngles;

jointAngles still behaves like an array, i. e. it is derived from std::array<Angle,
Joints::numOfJoints>, but when, e. g., written to a file using OutMapFile (cf. Section 3.4.6),
it would appear differently:

headYaw = 0deg;
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headPitch = 0deg;

lShoulderPitch = 0deg;

...

3.4.8 Functions

Not all data in a representation can reasonably be computed before it is used. This would
lead to a certain overhead, because the data has to be computed in advance without knowing
whether it will actually be required in the current situation. In addition, there is a lot of data
that cannot be computed in advance, because its computation depends on external values. For
instance, a path planner must know the target to which it has to plan a path before it can be
executed. However, in many situations a path planner is not needed at all, because the motion
is generated reactively.

Functions in representations allow modules that require the representation to execute code
of the module that provided that representation at any time and they allow to pass parame-
ters to that implementation. These modules can be switched to other implementations as all
other B-Human modules can, giving a greater flexibility when improving the functionality of the
system.

These functions are based on std::function from the C++ runtime library and the assigned
implementations are usually lambda expressions. However, to make them more compliant with
the general B-Human architecture, they differ from the normal standard implementation in their
behavior if no value was assigned to them (their default behavior). Instead of throwing an
exception as std::function would do when called, they simply do nothing. If they have a
return value, they return the default value of the type returned or Zero() in case of Eigen types.

However, there are some specialties to functions in representations:

• Functions cannot be streamed in any way, although they must be part of a class that
is derived from the class Streamable. This also means that a module cannot call a
function of a representation the provider of which is executed in another thread. However,
representations containing functions can be streamed, but the functions cannot be part
of the data that is streamed, i. e. they must be ignored during streaming.

• Representations containing functions are treated in a special way. They are always reset
when their provider is switched. The reason is that the function object would otherwise
still contain a reference to the module that originally provided the implementation, but the
module does not exist anymore. In order to make this work with classes derived from
classes containing functions, but not declaring functions themselves, the derived class
has to contain the macro BASE HAS FUNCTION in its body.

For instance, the path planner provides its functionality through the representation
PathPlanner:

STREAMABLE(PathPlanner ,

{

FUNCTION(MotionRequest(const Pose2f& target , const Pose2f& speed ,

bool excludePenaltyArea)) plan ,

});

It assigns the function in its method update:
pathPlanner.plan = [this](const Pose2f& target , const Pose2f& speed ,

bool excludePenaltyArea) -> MotionRequest
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{ // ...

};

In the behavior control, the path planner is executed by this call:

theMotionRequest = thePathPlanner.plan(target , Pose2f(speed , speed , speed),

avoidOwnPenaltyArea);

3.5 Communication

Three kinds of communication are implemented in the B-Human framework: inter-thread com-
munication, debug communication, and team communication.

3.5.1 Inter-thread Communication

The representations sent back and forth between the threads (so-called shared represen-
tations) are automatically calculated by the ModuleGraphCreator based on the representa-
tions required by modules loaded in the respective thread but not provided by modules in the
same thread. The directions in which they are sent are also automatically determined by the
ModuleGraphCreator.

All inter-thread communication is triple-buffered. Thus, threads never block each other, because
they never access the same memory blocks at the same time. In addition, a receiving thread
always gets the most current version of a packet sent by another thread.

3.5.2 Message Queues

The debug communication, parts of the team communication, and logging are all based on the
same technology: message queues. The class MessageQueue allows storing and transmitting a
sequence of messages. Each message has a type (defined in Src/Tools/MessageQueue/Mes-
sageIDs.h) and a content. Each queue has a maximum size, which is defined in advance. On
the robot, the amount of memory required is pre-allocated to avoid allocations during runtime.
On the PC, the memory is allocated on demand, because several sets of robot threads can be
instantiated at the same time, and the maximum size of the queues is rarely needed.

Since almost all data types are streamable (cf. Section 3.4), it is easy to store them in message
queues. The class MessageQueue provides different write streams for different formats: mes-
sages that are stored through out.bin are formatted binary. The stream out.text formats data
as text and out.textRaw as raw text. After all data of a message was streamed into a queue,
the message must be finished with out.finishMessage(MessageID), giving it a message id,
i. e. a type.

MessageQueue m;

m.setSize (1000); // can be omitted on PC

m.out.text << "Hello world!";

m.out.finishMessage(idText);

To declare a new message type, an id for the message must be added to the enumeration
type MessageID in Src/Tools/MessageQueue/MessageIDs.h. The enumeration type has two
sections: the first for representations that should be recorded in log files, and the second for
infrastructure messages.
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Messages are read from a queue through a message handler that is passed to the queue’s
method handleAllMessages(MessageHandler&). Such a handler must implement the method
handleMessage(InMessage&) that is called for each message in the queue. It must be imple-
mented in a way as the following example shows:

class MyClass : public MessageHandler

{

protected:

bool handleMessage(InMessage& message)

{

switch(message.getMessageID ())

{

default:

return false;

case idText:

{

std:: string text;

message.text >> text;

return true;

}

}

}

};

The handler has to return whether it handled the message or not. Messages are read from a
MessageQueue via streams. Thereto, message.bin provides a binary stream, message.text a
text stream, and message.config a text stream that skips comments.

3.5.3 Debug Communication

For debugging purposes, there is a communication infrastructure between the threads and the
PC. This is accomplished by message queues. Each thread has two of them: theDebugSender
and theDebugReceiver. The macro OUTPUT(<id>, <format>, <sequence>) defined in
Src/Tools/Debugging/Debugging.h simplifies writing data to the outgoing debug message
queue. id is a valid message id, format is text, bin, or textRaw, and sequence is a streamable
expression, i. e. an expression that contains streamable objects, which – if more than one – are
separated by the streaming operator <<.

OUTPUT(idText , text , "Could not load file " << filename << " from " << path);

OUTPUT(idCameraImage , bin , CameraImage ());

For receiving debugging information from the PC, each thread also has a message handler, i. e.
it implements the method handleMessage to distribute the data received.

The thread Debug manages the communication of the robot control program with the tools
on the PC. For each of the other threads, it has a sender and a receiver for their debug
message queues (cf. Fig. 3.1). Messages that arrive via Wi-Fi or Ethernet from the PC are
stored in debugIn. The method Debug::handleMessage(InMessage&) distributes all messages
in debugIn to the other threads. The messages received from Upper, Lower, Cognition and
Motion are stored in debugOut. When a Wi-Fi or Ethernet connection is established, they are
sent to the PC via TCP/IP.

The debug communication and the thread Debug are not available on the actual NAO when the
software deployed was compiled in the configuration Release.
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3.5.4 Team Communication

The purpose of the team communication is to send messages to the other robots in the team.
These messages are always broadcasted via UDP, so all teammates can receive them. Send-
ing and receiving team messages is done in the thread Cognition using the representations
TeamData for handling received messages and BHumanMessageOutputGenerator for generating
messages to send. These representations are both generated and filled with their functionality
by the module TeamMessageHandler.

The format of team messages is given by the SPLStandardMessage, which consists of a stan-
dardized and a non-standard part. The custom data part is subdivided into three sections:
The first one is the MixedTeamHeader that enables sharing some data with our mixed team
partner (cf. Section 9.3). It is followed by the BHumanStandardMessage, which contains many
representations in a compressed version, e. g. timestamps are quantized and made relative to
the timestamp when the message is sent to use fewer bits and some floating point numbers
are quantized, too. Finally, the BHumanArbitraryMessage is a message queue that is used
especially for variable-length representations that may not fit into the message at all.

In order to be transmitted by the TeamMessageHandler, a representation has to extend the
struct BHumanMessageParticle and provide implementations for reading and writing its data
to or from a message. If a representation is only supposed to be included in the message
queue and does not fill in any standardized fields of the SPLStandardMessage, it can also just
extend the struct PureBHumanArbitraryMessageParticle. The representation has to be added
in three locations: the handleMessage method of the Teammate struct and the generateMessage

and parseMessageIntoBMate methods of the TeamMessageHandler.

According to the rules, team communication packets are only broadcasted once every sec-
ond. The BHumanMessageOutputGenerator contains a flag set by the TeamMessageHandler

that states whether a team communication packet will be sent out in the current frame or not.
The TeamMessageHandler also implements the network time protocol (NTP) and translates time
stamps contained in the messages it receives into the local time of the robot.

3.6 Debugging Support

Debugging mechanisms are an integral part of the B-Human framework. They are all based
on the debug message queues already described in Section 3.5.3. These mechanisms are
available in all project configurations except for Release on the actual NAO.

3.6.1 Debug Requests

Debug requests are used to enable and disable parts of the source code. They can be seen as
runtime switches for debugging.

The debug requests can be used to trigger certain debug messages to be sent as well as to
switch on certain parts of algorithms. They can be sent using the SimRobot software when
connected to a NAO (cf. command dr in Section 10.1.6.3). The following macros ease the use
of the mechanism as well as hide its implementation details:

DEBUG RESPONSE(<id>) executes the following statement or block if the debug request
with the name id is enabled.

DEBUG RESPONSE ONCE(<id>) executes the following statement or block once when the
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debug request with the name id is enabled.

DEBUG RESPONSE NOT(<id>) executes the following statement or block if the debug re-
quest with the name id is not enabled.

These macros can be used anywhere in the source code, allowing for easy debugging. For
example:

DEBUG_RESPONSE("test") test();

This statement calls the method test() if the debug request with the identifier “test” is enabled.
Debug requests are commonly used to send messages on request as the following example
shows:

DEBUG_RESPONSE("sayHello") OUTPUT(idText , text , "Hello");

This statement sends the text “Hello” if the debug request with the name "sayHello" is acti-
vated. Please note that only those debug requests are usable that are in the current path of
execution. This means that only debug requests in those modules can be activated that are cur-
rently executed. To determine which debug requests are currently available, a method called
polling is employed. It asks each debug response to report the name of the debug request
that would activate it. This information is collected and sent to the PC (cf. command poll in
Section 10.1.6.3).

3.6.2 Debug Images

Debug images are used for low level visualization of image processing debug data. They
can either be displayed as background image of an image view (cf. Section 10.1.4.1) or in a
color space view (cf. Section 10.1.4.1). Each debug image consists of pixels in one of the
formats RGB, BGRA, YUYV, YUV, Grayscale, Colored, Hue, Binary, and Edge2, which are
defined in Src/Tools/ImageProcessing/PixelTypes.h. In the RGB, RGBA, BGRA, YUYV, and
YUV formats, pixels are made up of four unsigned byte values, each representing one of the
color channels of the format. The YUYV format is special as one word of the debug image
describes two image pixels by specifying two luminance values, but only one value per U and V
channel. Thus, it resembles the YUV422 format of the images supplied by the NAO’s cameras.
Debug images in the Grayscale format only contain a single channel of unsigned byte values
describing the luminance of the associated pixel. The Colored, Hue, and Binary formats consist
of only one channel, too. Values in the Colored channel are entries of the FieldColors::Color

enumeration, which contains identifiers for the color classes used for image processing (cf.
Section 4.1.5). The Edge2 format has one channel each for the intensity in x and y direction.

Debug images are supposed to be declared as instances of the template class Image, instanti-
ated with one of the pixel formats named above, or the CameraImage class, which is only used
for images provided by the NAO’s cameras. The following macros are used to transfer debug
images to a connected PC.

SEND DEBUG IMAGE(<id>, <image>, [<method>]) sends the debug image to the PC.
The identifier given to this macro is the name by which the image can be requested.
The optional parameter is a pixel type that allows to apply a special drawing method for
the image.

COMPLEX IMAGE(<id>) only executes the following statement if the creation of a certain
debug image is requested. For debug images that require complex instructions to paint, it

43



B-Human 2019 3.6. DEBUGGING SUPPORT

can significantly improve the performance to encapsulate the drawing instructions in this
macro (and maybe additionally in a separate method).

These macros can be used anywhere in the source code, allowing for easy creation of debug
images. For example:

class Test

{

private:

Image <GrayscaledPixel > testImage;

public:

void doSomething ()

{

// [...]

COMPLEX_IMAGE("test") draw();

// [...]

}

void draw()

{

testImage.setResolution (640, 480);

memset(testImage [0], 0x7F , testImage.width * testImage.height);

SEND_DEBUG_IMAGE("test", testImage);

}

};

The example calls the draw() method if the "test" image was requested, which then initializes
a grayscale debug image, paints it gray, and sends it to the PC.

3.6.3 Debug Drawings

Debug drawings provide a virtual 2-D drawing canvas and a number of drawing primitives, as
well as mechanisms for requesting, sending, and drawing these primitives to the screen of the
PC. In contrast to debug images, which are raster-based, debug drawings are vector-based,
i. e., they store drawing instructions instead of a rasterized image. Each drawing has an iden-
tifier and an associated type that enables the application on the PC to render the drawing to
the right kind of drawing canvas. In the B-Human system, two standard drawing canvases are
provided, called “drawingOnImage” and “drawingOnField”. This refers to the two standard ap-
plications of debug drawings, namely drawing in the system of coordinates of an image and
drawing in the system of coordinates of the field. Hence, all debug drawings of type “drawingO-
nImage” can be displayed in an image view (cf. Section 10.1.4.1) and all drawings of type
“drawingOnField” can be rendered into a field view (cf. Section 10.1.4.1).

The creation of debug drawings is encapsulated in a number of macros in Src/Tools/Debug-
ging/DebugDrawings.h. Most of the drawing macros have parameters such as pen style, fill
style, or color. Available pen styles (solidPen, dashedPen, dottedPen, and noPen) and fill styles
(solidBrush and noBrush) are part of the namespace Drawings. Colors can be specified as
ColorRGBA. The class also contains a number of predefined colors such as ColorRGBA::red. A
few examples for drawing macros are:

DECLARE DEBUG DRAWING(<id>, <type>) declares a debug drawing with the specified
id and type.

COMPLEX DRAWING(<id>) only executes the following statement or block if the creation of
a certain debug drawing is requested. This can significantly improve the performance
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when a debug drawing is not requested, because for each drawing instruction it has to
be tested whether it is currently required or not. By encapsulating them in this macro
(and maybe in addition in a separate method), only a single test is required. However, the
macro DECLARE DEBUG DRAWING must be placed outside of COMPLEX DRAWING.

DEBUG DRAWING(<id>, <type>) is a combination of DECLARE DEBUG DRAWING and
COMPLEX DRAWING. It declares a debug drawing with the specified id and type. It also
executes the following statement or block if the debug drawing is requested.

CIRCLE(<id>, <x>, <y>, <radius>, <penWidth>, <penStyle>, <penColor>,
<fillStyle>, <fillColor>) draws a circle with the specified radius, pen width, pen
style, pen color, fill style, and fill color at the coordinates (x, y) on the virtual drawing
canvas.

LINE(<id>, <x1>, <y1>, <x2>, <y2>, <penWidth>, <penStyle>, <penColor>) draws
a line with the pen color, width, and style from the point (x1, y1) to the point (x2, y2) on
the virtual drawing canvas.

DOT(<id>, <x>, <y>, <penColor>, <fillColor>) draws a dot with the pen color and fill
color at the coordinates (x, y) on the virtual drawing canvas. There also exist two macros
MID DOT and LARGE DOT with the same parameters that draw dots of larger size.

DRAWTEXT(<id>, <x>, <y>, <fontSize>, <color>, <text>) writes a text with a font size
in a color to a virtual drawing canvas. The left end of the baseline of the text will be at
coordinates (x, y).

TIP(<id>, <x>, <y>, <radius>, <text>) adds a tool tip to the drawing that will pop up when
the mouse cursor is closer to the coordinates (x, y) than the given radius.

ORIGIN(<id>, <x>, <y>, <angle>) changes the system of coordinates. The new origin will
be at (x, y) and the system of coordinates will be rotated by angle (given in radians). All
further drawing instructions, even in other debug drawings that are rendered afterwards
in the same view, will be relative to the new system of coordinates, until the next origin
is set. The origin itself is always absolute, i. e. a new origin is not relative to the previous
one.

THREAD(<id>, <thread>) defines as part of which thread a drawing should be managed.
The default is the thread that contains the drawing. However, if a drawing in a thread
belongs to data that was received from another thread, it should be linked to that thread
by using this macro. This is particularly true for image drawings that always have to be
linked to one of the two image processing threads, i. e. Upper and Lower, but it can also
be necessary for field drawings.

These macros can be used wherever statements are allowed in the source code. For example:

DECLARE_DEBUG_DRAWING("test", "drawingOnField");

CIRCLE("test", 0, 0, 1000, 10, Drawings ::solidPen , ColorRGBA ::blue ,

Drawings ::solidBrush , ColorRGBA (0, 0, 255, 128));

This example initializes a drawing called test of type drawingOnField that draws a blue circle
with a solid border and a semi-transparent inner area.
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3.6.4 3-D Debug Drawings

In addition to the aforementioned two-dimensional debug drawings, there is a second set of
macros in Src/Tools/Debugging/DebugDrawings3D.h, which provides the ability to create three-
dimensional debug drawings.

3-D debug drawings can be declared with the macro DECLARE DEBUG DRAWING3D(<id>,
<type>). The id can then be used to add three dimensional shapes to this drawing. type

defines the coordinate system in which the drawing is displayed. It can be set to “field”, “robot”,
“camera”, or any named part of the robot model in the scene description. Note that drawings
directly attached to hinges will be drawn relative to the base of the hinge, not relative to the
moving part. Drawings of the type “field” are drawn relative to the center of the field, whereas
drawings of the type “robot” are drawn relative to the origin of the robot, i. e. the middle be-
tween the two hip joints. It is often used as reference frame for 3-D debug drawings in the
current code. The type “camera” is an alias for the camera of the perception thread from which
the drawing is generated.

The parameters of macros adding shapes to a 3-D debug drawing start with the id of the
drawing this shape will be added to, followed, e. g., by the coordinates defining a set of reference
points (such as corners of a rectangle), and finally the drawing color. Some shapes also have
other parameters such as the thickness of a line. Here are a few examples for shapes that can
be used in 3-D debug drawings:

LINE3D(<id>, <fromX>, <fromY>, <fromZ>, <toX>, <toY>, <toZ>, <size>, <color>
) draws a line between the given points.

QUAD3D(<id>, <corner1>, <corner2>, <corner3>, <corner4>, <color>) draws a
quadrangle with its four corner points given as 3-D vectors and specified color.

SPHERE3D(<id>, <x>, <y>, <z>, <radius>, <color>) draws a sphere with specified ra-
dius and color at the coordinates (x, y, z).

COORDINATES3D(<id>, <length>, <width>) draws the axes of the coordinate system with
specified length and width into positive direction.

COMPLEX DRAWING3D(<id>) only executes the following statement or block if the creation
of the debug drawing is requested (similar to COMPLEX DRAWING(<id>) for 2-D drawings).

DEBUG DRAWING3D(<id>, <type>) is a combination of DECLARE DEBUG DRAWING3D and
COMPLEX DRAWING3D. It declares a debug drawing with the specified id and type. It also
executes the following statement or block if the debug drawing is requested.

The header file furthermore defines some macros to scale, rotate, and translate an entire 3-D
debug drawing:

SCALE3D(<id>, <x>, <y>, <z>) scales all drawing elements by given factors for x, y, and
z axis.

ROTATE3D(<id>, <x>, <y>, <z>) rotates the drawing counterclockwise around the three
axes by given radians.

TRANSLATE3D(<id>, <x>, <y>, <z>) translates the drawing according to the given coor-
dinates.

An example for 3-D debug drawings (analogous to the example for regular 2-D debug drawings):
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DECLARE_DEBUG_DRAWING3D("test3D", "field");

SPHERE3D("test3D", 0, 0, 250, 75, ColorRGBA ::blue);

This example initializes a 3-D debug drawing called test3D, which draws a blue sphere. Be-
cause the drawing is of type field and the origin of the field coordinate system is located in
the center of the field, the sphere’s center will appear 250mm above the center point.

In order to add a drawing to the scene, a debug request (cf. Section 10.1.6.3) for a 3-D de-
bug drawing with the ID of the desired drawing prefixed by “debugDrawing3d:” must be sent.
For example, to see the drawing generated by the code above, the command would be dr de-
bugDrawing3d:test3D. The rendering of debug drawings can be configured for individual scene
views by right-clicking on the view and selecting the desired shading and occlusion mode in the
“Drawings Rendering” submenu.

3.6.5 Plots

The macro PLOT(<id>, <number>) allows plotting data over time. The plot view (cf. Sec-
tion 10.1.4.5) will keep a history of predefined size of the values sent by the macro PLOT and
plot them in different colors. Hence, the previous development of certain values can be ob-
served as a time series. Each plot has an identifier that is used to distinguish the different
plots from each other. A plot view can be created with the console commands vp and vpd (cf.
Section 10.1.6.3).

For example, the following code statement plots the measurements of the gyro for the pitch axis
in degrees. It should be placed in a part of the code that is executed regularly, e. g. inside the
update method of a module.

PLOT("gyroY", theInertialSensorData.gyro.y().toDegrees ());

The macro DECLARE PLOT(<id>) allows using the PLOT(<id>, <number>) macro within a
part of code that is not regularly executed as long as the DECLARE PLOT(<id>) macro is exe-
cuted regularly.

3.6.6 Modify

The macro MODIFY(<id>, <object>) allows inspecting and modifying data on the actual
robot during runtime. Every streamable data type (cf. Section 3.4.5) can be manipulated and
read, because its inner structure was gathered in the TypeRegistry (cf. Section 3.4.4). This
allows generic manipulation of runtime data using the console commands get and set (cf.
Section 10.1.6.3). The first parameter of MODIFY specifies the identifier that is used to refer to
the object from the PC, the second parameter is the object to be manipulated itself. When an
object is modified using the console command set, it will be overridden each time the MODIFY

macro is executed.
int i = 3;

MODIFY("i", i);

MotionRequest m;

MODIFY("representation:MotionRequest", m);

The macro PROVIDES of the module framework (cf. Section 3.3) includes the MODIFY macro
for the representation provided. For instance, if a representation Foo is provided by
PROVIDES(Foo), it is modifiable under the name representation:Foo. If a representation pro-
vided should not be modifiable, e. g., because its serialization does not register all member
variables, it must be provided using PROVIDES WITHOUT MODIFY.
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3.6.7 Stopwatches

Stopwatches allow the measurement of the execution time of parts of the code. The macro
STOPWATCH(<id>) (declared in Src/Tools/Debugging/Stopwatch.h) measures the runtime of
the statement or block that follows. id is a string used to identify the time measurement. To
activate the time measurement of all stopwatches, the debug request dr timing has to be
sent. The measured times can be seen in the timing view (cf. Section 10.1.4.5). By default,
a stopwatch is already defined for each representation that is currently provided, and for the
overall execution of all modules in each thread.

An example to measure the runtime of a method called myCode:

STOPWATCH("myCode") myCode ();

Using the STOPWATCH macro also adds a plot with the stopwatch identifier prefixed by “stop-
watch:”.

3.7 Logging

The B-Human framework offers sophisticated logging functionality that can be used to log the
values of selected representations while the robot is playing. There are two different ways of
logging data: online logging and remote logging.

3.7.1 Online Logging

The online logging feature can be used to log data directly on the robot during regular games.
It is implemented as part of the robot control program and is designed to log representations
in real-time. Log files are written into the directory /home/nao/logs or – if available – into /me-
dia/usb/logs, i. e. a USB flash drive on which the directory called logs will be created automat-
ically. To use a USB flash drive for logging, it must already have been plugged in when the
B-Human software is started.

Online logging starts as soon as the robot enters the ready state and stops upon entering the
finished state. The log files are compressed on the fly using Google’s Snappy compression [7].
The name of the log file consists of the names of the head and body of the robot as well as its
player number, the scenario, and the location. If connected to the GameController, the name of
the opponent team and the half are also added to the log file name. Otherwise, “Testing” is used
instead. If a log file with the given name already exists, a number is added that is incremented
for each duplicate.

To retain the real-time properties of the threads, the heavy lifting, i. e. compression and writ-
ing of the file, is done in a separate thread without real-time scheduling. This thread uses the
remaining processor time that is not used by one of the real-time parts of the system. Commu-
nication with this thread is realized using a very large ring buffer (usually around 2.4GB). Each
element of the ring buffer represents one frame of data. If a buffer is full, the current frame
cannot be logged.

Due to the limited buffer size, the logging of very large representations such as the CameraImage

is not possible. It would cause a buffer overflow within less than two minutes rendering the
resulting log file unusable. However, without images a log file is nearly useless, therefore
loggable thumbnail images (cf. Section 3.7.7) or JPEG images are generated and used instead.
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In addition to the logged representations, online log files also contain timing data, which can be
seen using the TimingView (cf. Section 10.1.4.5).

3.7.2 Configuring the Online Logger

The online logger can be configured by changing the following values in the file
Config/Scenarios/<scenario>/logger.cfg:

enabled: The logger is enabled if this is true. Note that it is not possible to enable the logger
inside the simulator.

path: Log files will be stored in this path on the NAO.

numOfBuffers: The number of buffers allocated.

sizeOfBuffer: The size of each buffer in bytes. Note that numOfBuffers×sizeOfBuffer is always
allocated if the logger is enabled.

writePriority: Priority of the logging thread. Priorities greater than zero use the real-time
scheduler, zero uses the normal scheduler, and negative values (−1 and −2) use idle
priorities.

minFreeDriveSpace: The minimum amount of disk space that should always be left on the
target device in MB. If the free space falls below this value the logger will cease operation.

representationsPerThread: List of all representations that should be logged per thread.

3.7.3 Remote Logging

Online logging provides the maximum possible amount of debugging information that can be
collected without breaking the real-time capability. However in some situations one is interested
in high precision data (i. e. full resolution images) and does not care about real-time. The
remote logging feature provides this kind of log files. It utilizes the debugging connection (cf.
Section 3.5.3) to a remote computer and logs all requested representations on that computer.
This way the heavy lifting is outsourced to a computer with much more processing power and
a bigger hard drive. However sending large representations over the network severely impacts
the NAO’s performance and can result in a loss of the real-time capability.

To reduce the network load, it is usually a good idea to limit the number of representations
to the ones that are really needed for the task at hand. The follow listing shows the com-
mands that need to be entered into SimRobot to record a minimal vision log. Alternatively, call
Includes/VisionLog can be executed.

dr off

dr representation:BodyContour

dr representation:CameraImage

dr representation:CameraInfo

dr representation:CameraMatrix

dr representation:ImageCoordinateSystem

dr representation:OdometryData

log start

log stop

log save <filename >
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3.7.4 Log File Format

In general, log files consist of serialized message queues (cf. Section 3.5.2). Each log file
consists of up to three chunks. Each chunk is prefixed by a single byte defining its type. The
enum LogFileFormat in Src/Tools/Logging/LoggingTools.h defines these chunk identifiers in
the namespace LoggingTools that have to appear in the given sequence in the log file if they
appear at all:

Id
1 Byte

Message Size
3 Byte

Payload
<Message Size> Bytes

Size
4 Byte

Num of messages
4 Byte

Message

Log File

Frame

Log Data ...

Frame ...

FrameBegin FrameFinished

Figure 3.2: The format of a chunk of the type logFileUncompressed. Updated from [31].

logFileMessageIDs: This chunk contains a string representation of the MessageIDs (cf. Sec-
tion 3.5.2) stored in this log file. It is used to convert the MessageIDs from the log file to
the ones defined in the version of SimRobot (cf. Section 10.1) that is replaying the log
file. Thereby, log files still remain usable after the enumeration MessageID was changed.

logFileTypeInfo: This chunk contains the specification of all datatypes used in the log file. It
is used to convert the logged data to the specifications that are defined in the version
of SimRobot that is replaying the log file. If the specification changed, messages will
appear in SimRobot’s console about the representations that are converted. Please note
that a conversion is only possible for representations the specification of which is fully
registered. This is not the case for representations that use read and write methods
to serialize their data, e. g. CameraImage, JPEGImage, and Thumbnail. Therefore, such
representations cannot be converted and will likely crash SimRobot when trying to replay
log files containing them after they were changed.

logFileUncompressed: Uncompressed log data is stored in a single MessageQueue. Its se-
rialized form starts with an eight byte header containing two values. These are the size
used by the log followed by the number of messages in the queue. Those values can also
be set to -1 indicating that the size and number of messages is unknown. In this case
the amount will be counted when reading the log file. The header is followed by several
frames. A frame consists of multiple log messages enclosed by an idFrameBegin and
idFrameFinished message. Every log message consists of its id, its size and its payload
(cf. Fig. 3.2). This kind of chunk is created by remote logging.
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logFileCompressed: This chunk contains a sequence of compressed MessageQueues. Each
queue contains a single frame worth of log data and is compressed using Google’s
Snappy [7] compression (cf. Fig. 3.3). Each compressed MessageQueue is prefixed by
its compressed size. This kind of chunk is created by online logging.

The first two chunks are optional. Each log file must contain one of the latter two chunks, which
is also the last chunk in the file.

Size
4 byte Compressed log file . . . Size

4 byte Compressed log file

Figure 3.3: A compressed log file consists of several regular log files and their compressed
sizes.

3.7.5 Replaying Log Files

Log files are replayed using the simulator. A special module, the LogDataProvider, automati-
cally provides all representations that are present in the log file. All other representations are
provided by their usual providers, which are simulated. This way log file data can be used to
test and evolve existing modules without access to an actual robot. If the name of a log file
follows the naming convention used by the online logger, the head name, body name, player
number, scenario, and location will be set to the ones given in the log file name before the log
file is replayed. Thereby, modules will read the matching versions of their configuration files.

The SimRobot scene ReplayRobot.ros2 can be used to load the log file. In addition to load-
ing the log file this scene also provides several keyboard shortcuts for navigation inside the
log file. However, the most convenient way to control log file playback is the log player view
(cf. Section 10.1.4.5). If you want to replay several log files at the same time, simply create a
file Config/Scenes/Includes/replay.con and add several sl statements (cf. Section 10.1.6.1) to
it. If you want to replay a folder or an entire folder structure use the sml command (cf. Sec-
tion 10.1.6.1). The data of each log file will be fed into a separate instance of the B-Human
code.

3.7.6 Annotations

To further enhance the usage of log files, there is the possibility for our modules to annotate
individual frames of a log file with important information. This is, for example, information about
a change of game state, the execution of a kick, or other information that may help us to debug
our code. Thereby, when replaying the log file, we may consult a list of those annotations to
see whether specific events actually did happen during the game. In addition, if an annotation
was recorded, we are able to directly jump to the corresponding frame of the log file to review
the emergence and effects of the event without having to search through the whole log file.

This feature is accessed via the ANNOTATION-Macro. An example is given below:

#include "Tools/Debugging/Annotation.h"

...

ANNOTATION("GroundContactDetector", "Lost GroundContact");

It is advised to be careful to not send an annotation in each frame because this will clutter the
log file. When using annotations inside the behavior, the skill Annotation should be used to
make sure annotations are not sent multiple times.
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(a) (b)

(c) (d)

Figure 3.4: (a) Image from the upper camera of the NAO and (b) the corresponding colored
thumbnail with a downscale factor of 2 as well as the corresponding grayscale thumbnails with
downscale factors (c) 2 and (d) 3.

The annotations recorded can be displayed while replaying the log file in the annotation view
(cf. Section 10.1.4.5).

3.7.7 Thumbnail Images

Logging raw YUV422 images as the cameras capture them seems impossible with the current
hardware. One second would consume about 23MB. This amount of data could not be stored
fast enough on the internal drive or a USB flash drive and would fill it up within a few minutes.
Thus, images have to be compressed. This compression must happen within a very small
time frame, since the robot has to do a lot of other tasks in order to play football. Despite the
compression, the resulting images must still contain enough information to be useful.

For compressing the images in a way that fulfills the criteria mentioned above, two separate
methods have been implemented. One of these generates grayscaled images by taking the
luminance channel (Y) of the camera image and averaging blocks of adjacent pixels. The other
method compresses the YUV camera image by first eliminating every second row of pixels and
then averaging every channel of adjacent blocks of pixels. Afterwards the size of each pixel is
reduced to two bytes by eliminating one of the two Y channels in each pixel and using only six
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bits for the remaining luminance channel and five bits for each of the two chroma channels. In
both of the two possible methods, averaging adjacent pixels is done using SSE instructions to
speed up the computation.

The total compression rate as well as the usefulness of the resulting images depends on the
downscales parameter of the ThumbnailProvider, which determines the size of the blocks of
pixels being averaged as 2downscales × 2downscales pixels. For a downscales parameter of 2, the
resulting grayscale thumbnail images are 32 times smaller and the resulting colored images are
128 times smaller than the original camera image. Although a lot of detail is lost in the thumbnail
images, it is still possible to see and assess the situations the robot was in (cf. Fig. 3.4).

Currently, the thumbnail images are also used by the module PlayerDeeptector as input for
player detection.
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The perception modules run in the context of the threads Lower resp. Upper, depending on
the used camera. They detect features in the image that was just taken by the camera and
can be separated into four categories. The modules of the perception infrastructure provide
representations that deal with the perspective of the image taken, provide the image in different
formats, and provide representations that limit the area interesting for further image processing
steps. Based on these representations, modules detect features useful for self-localization, the
ball, and other robots. All information provided by the perception modules are relative to the
robot’s position.

4.1 Perception Infrastructure

4.1.1 Obtaining Camera Images

The NAO robot is equipped with two video cameras that are mounted in the head of the robot.
The first camera is installed in the middle forehead and the second one approximately 4 cm
below. The lower camera is tilted by 39.7◦ with respect to the upper camera and both have a
vertical opening angle of 43.7◦. Because of that, the overlapping parts of the images are too
small for stereo vision. It is also impossible to get images from both cameras at the exact same
time, as they are not synchronized on a hardware level. This is why we analyze them separately
and do not stitch them together. In order to be able to analyze the pictures of both cameras in
real-time without losing any images, the threads Lower and Upper run each at 30Hz.

During normal play, the lower camera sees only a very small portion of the field directly in front
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of the robot’s feet. Therefore, objects in the lower image are close to the robot and rather big.
We take advantage of this fact and run the lower camera with half the resolution of the upper
camera, thereby saving a lot of computation time. Hence the upper camera provides 640× 480
pixels while the lower camera only provides 320× 240 pixels.

A major problem that can occur with V6’s cameras are corrupted images. From experience,
this mainly happens at the resolution we use for the lower camera and appears as fragmented
camera images in which rows are not updated and occur repeatedly across multiple images.
To counter this problem, a random image row is periodically selected for which the hash value
is calculated in the following images. We monitor whether hash values occur repeatedly and
reinitialize the cameras when this is the case.

Both cameras deliver their images in the YUV422 format. As the perception of features in
the images relies either on color classes (e. g. for region building) or luminance values of the
image pixels (e. g. for computing edges in the image), the YUV422 images are converted to
the “extracted and color-classified” ECImage. The ECImage consists of multiple images: the
grayscaled image obtained from the Y channel of the camera image, the saturated resp. hued
image containing saturation and hue values for each image pixel, and a so-called “colored”
image mapping each image pixel to a color class.

The modules processing an image need to know from which camera it comes. For this purpose
the representation CameraInfo is used, which contains this information as well as the resolution
of the current image and the intrinsic camera parameters.

4.1.2 Definition of Coordinate Systems

The global coordinate system (cf. Fig. 4.1) is described by its origin lying at the center of the
field, the x-axis pointing toward the opponent’s goal, the y-axis pointing to the left, and the z-
axis pointing upward. Rotations are specified counter-clockwise with the x-axis pointing toward
0◦ and the y-axis pointing toward 90◦.

In the robot-relative system of coordinates (cf. Fig. 4.2), the axes are defined as follows: the
x-axis points forward, the y-axis points to the left, and the z-axis points upward.

θ

x

y

Figure 4.1: Visualization of the global coordi-
nate system (opponent goal is marked in yel-
low)

Figure 4.2: Visualization of the
robot-relative coordinate system.
The x-axis is red, the y-axis is
green and the z-axis is blue.
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4.1.2.1 Camera Matrix and Camera Calibration

The CameraMatrix is a representation containing the transformation matrix of the camera used
in the respective thread (cf. Section 4.1.1) that is provided by the CameraMatrixProvider.
It is used for projecting objects onto the field as well as for the creation of the
ImageCoordinateSystem (cf. Section 4.1.2.2). It is computed based on the TorsoMatrix that
represents the orientation and position of a specific point within the robot’s torso relative to the
ground (cf. Section 7.4). Using the RobotDimensions and the current joint angles, the transfor-
mation of the camera matrix relative to the torso matrix is computed as the RobotCameraMatrix.
The latter is used to compute the BodyContour (cf. Section 4.1.3). In addition to the fixed param-
eters from the RobotDimensions, some robot-specific parameters from the CameraCalibration

are integrated, which are necessary, because the camera cannot be mounted perfectly plain
and the torso is not always perfectly vertical. A small variation in the camera’s orientation can
lead to significant errors when projecting farther objects onto the field.

The process of manually calibrating the robot-specific correction parameters for the cameras
is a very time-consuming task since the parameter space is quite large (8 parameters for cal-
ibrating both cameras) and it is not always obvious which parameters have to be adapted if a
camera is miscalibrated. In particular during competitions, the robots’ cameras require recali-
bration very often, e. g. after a robot returned from repair.

In order to overcome this problem, an automatic camera calibration performed either by the
AutomaticCameraCalibrator or AutomaticCameraCalibratorPA is used. The detailed cali-
bration procedures are described in Section 2.7.3. Both collect samples that are used in the
Gauss-Newton algorithm1 to optimize the camera parameters. The modules therefore follow
the same approach, however they use different sample types.

AutomaticCameraCalibratorPA

The AutomaticCameraCalibratorPA performs the optimization of the camera parameters
based on samples composed of the penalty mark and lines of the penalty area. The error
function used in the Gauss-Newton algorithm projects the components of the samples to field
coordinates and compares the distances resp. angles between those with the known optimal
ones. The different sample types used are the angle and distance between the ground line and
the front penalty area line, the angle between either of them and the short connecting line, and
the distance from the penalty mark to the ground line resp. the front penalty area line.

The calibration is divided into two steps, whereby these differ only in the position of the robot
on the field and the sample types to be collected. Specifically, the samples using the penalty
mark are only collected in the second step. In each step the head moves to predefined an-
gles, in order to collect the required samples. The information to construct the samples are
gathered from the LinesPercept provided by the LinePerceptor (cf. Section 4.3.1) and the
PenaltyMarkPercept provided by the PenaltyMarkPerceptor (cf. Section 4.3.5).

The lines from the LinesPercept are not used directly because they do not describe the actual
field lines accurately enough, i. e., they are not fitted. Instead, a hough transformation is per-
formed to obtain a more accurate description of them. The start and end points of a line from
the LinesPercept as well as its orientation are used to limit the considered angle range and
the image area in which the hough transformation should be performed. The global maximum
in the resulting hough space is used to calculate new start and end points. The remaining local

1Actually, the Jacobian used in each iteration is approximated numerically
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maxima are used to determine whether the global maximum corresponds to the upper or lower
edge of the line to take this into account by means of an offset when calculating the error.

A possible risk during sampling is that wrong lines are used to construct the samples, e. g. a
detected line in the goal frame. This would lead to a corruption of the parameter optimization
and result in an unusable calibration. In order to address this problem, an already almost
perfect calibration is initially assumed and the lines are projected to field coordinates. In case
the distances between the projected lines differ too much from the known actual distances, they
are not used to construct samples but discarded. However, if lines are discarded continuously
without being able to find suitable ones, the tolerated deviation is gradually increased, since it
is known that the correct lines should be seen.

AutomaticCameraCalibrator

The information the AutomaticCameraCalibrator requires to optimize the camera parame-
ters are line spots, gathered from the LinesPercept provided by the LinePerceptor (cf. Sec-
tion 4.3.1). They are collected for both cameras while the head moves to predefined angles.

During this procedure it is assumed that the robot is placed on a predefined spot on the field.
Since the user is typically unable to place the robot exactly on that spot and a small variance
of the robot pose from its desired pose results in a large systematic error, additional correction
parameters for the RobotPose are introduced and optimized simultaneously.

It may happen that parts of the field lines are covered (e. g. by robots or other team members,
especially during competitions), or that lines, in particular those further away, are not detected
due to a suboptimal color calibration. This can lead to an inappropriate number of collected
line spots and in consequence to inaccurate values for the estimated tilts of the cameras. To
address this problem it is possible to mark arbitrary points on the field lines by CTRL + left-
clicking into the image at the point the additional sample should be. Furthermore inaccurate
samples can be removed by left-clicking into the image.

The error function used in the Gauss-Newton algorithm takes the distance of a point to the next
line in image coordinates into account. Image coordinates are preferred over field coordinates
because the parameters and the error are in angular space making these a more accurate error
approximation. Since this algorithm is designed specific for non-linear least squares problems
like this, the time to converge takes an average of 5–10 iterations.

4.1.2.2 Image Coordinate System

Based on the camera transformation matrix, another coordinate system is provided which
applies to the camera image. The ImageCoordinateSystem is provided by the module
CoordinateSystemProvider. The origin of the y-coordinate lies on the horizon within the im-
age (even if it is not visible in the image). The x-axis points right along the horizon whereby
the y-axis points downwards orthogonal to the horizon (cf. Fig. 4.3). For more information see
also [28].

Using the stored camera transformation matrix of the previous cycle in which the camera took
an image enables the CoordinateSystemProvider to determine the rotation speed of the cam-
era and thereby interpolate its orientation when recording each image row. As a result, the rep-
resentation ImageCoordinateSystem provides a mechanism to compensate for different record-
ing times of images and joint angles as well as for image distortion caused by the rolling shutter.
For a detailed description of this method, applied to the Sony AIBO, see [19].
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Figure 4.3: Origin of the ImageCoordinateSystem

4.1.3 Body Contour

If the robot sees parts of its body, it might confuse white areas with field lines or other robots.
However, by using forward kinematics, the robot can actually know where its body is visible
in the camera image and exclude these areas from image processing. This is achieved by
modeling the boundaries of body parts that are potentially visible in 3-D (cf. Fig. 4.4 left) and
projecting them back to the camera image (cf. Fig. 4.4 right). The part of the projection that
intersects with the camera image or above is provided in the representation BodyContour. It
is used by image processing modules as lower clipping boundary. The projection relies on
the representation ImageCoordinateSystem, i. e., the linear interpolation of the joint angles to
match the time when the image was taken.

Figure 4.4: Body contour in 3-D (left) and projected to the camera image (right).

4.1.4 Controlling Camera Exposure

Under more natural lighting conditions, it is necessary to dynamically control the cameras’
exposures during the games. Otherwise it might be impossible to detect features on the field
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Figure 4.5: Weights for exposure control of the upper and lower camera.

if part of it is well lit while other parts are in the shadow. NAO’s cameras can determine the
exposure automatically. However, normally they will use the whole image as input. At least for
the upper camera, it can often happen that larger parts of the image are of no interest to the
robot because they are outside the field. In general, the auto-exposure of the cameras cannot
know what parts of the image are very important for a soccer-playing robot and which are less
important. However, the cameras offer the possibility to convey such priorities by setting a
weighting table that splits the image into four by four rectangular regions (cf. Fig. 4.5).

Therefore, our code makes use of this feature. Regions that depict parts of the field that are
further away than 3 m are ignored. Regions that overlap with the robot’s body are also ignored,
because the body might be well lit while the region in front of it is in a shadow. If the ball is
supposed to be in the image, the regions containing it are weighted in a way that they make
up 50% of the overall weight (cf. Fig. 4.5). Changing the parameters of the camera takes time
(mainly waiting). Therefore, the code communicating with the camera driver runs in a separate
thread to avoid slowing down our main computations.

4.1.5 Color Classification

Identifying the color classes of pixels in the image is done by the ECImageProvider when com-
puting the ECImage. In order to be able to clearly distinguish different colors and easily define
color classes while still being able to compute the ECImage for every camera image in real time,
the YHS2 color space is used.
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Figure 4.6: The UV plane of the YUV color space for Y = 0, Y = 128 and Y = 255.

YHS2 Color Space

The YHS2 color space is defined by applying the idea behind the HSV color space, i. e. defining
the chroma components as a vector in the RGB color wheel to the YUV color space. In YHS2,
the hue component H describes the angle of the vector of the U and V components of the
color in the YUV color space, while the saturation component S describes the length of that
vector divided by the luminance of the corresponding pixel. The luminance component Y is just
the same as it is in YUV. By dividing the saturation by the luminance, the resulting saturation
value describes the actual saturation of the color more accurately, making it more useful for
separating black and white from actual colors. This is because in YUV, the chroma components
are somewhat dependent on the luminance (cf. Fig. 4.6).

Classification Method

Classifying a pixel’s color is done by first applying a threshold to the saturation channel. If it is
below the given threshold, the pixel is considered to describe a non-color, i. e. black or white.
In this case, whether the color is black or white is determined by applying another threshold
to the luminance channel. However, if the saturation of the given pixel is above the saturation
threshold, the pixel is of a certain color if its hue value lies within the hue range defined for that
color.

In order to classify the whole camera image in real time, both the color conversion to YHS2 and
the color classification are done using SSE instructions.

Figure 4.7 shows representations of an image from the upper camera in the YHS2 color space
and a classification based on it for the colors white, black, green and “none” (displayed gray).

4.1.6 Segmentation and Region-Building

The ColorScanlineRegionizer scans along vertical and horizontal scan lines whose distances
from each other are small enough to detect the field boundary, field lines, and the ball. These
scan lines are segmented into regions, i. e. line segments of a similar color based on the
colored part of the ECImage. In vertical direction, the sampling frequency is not constant.
Instead, it is given by the ScanGrid, the steps of which depend on the vertical orientation of
the camera and basically correspond to a distance of a bit less than the expected width of a
horizontal field line at that position in the image. Whenever the color classes of two successive
scan points on a vertical line differ, the region in between is scanned to find the actual posi-
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tion of the edge between the two neighboring regions. The best position is determined to be
one pixel above the position where enough pixels were found to be classified as color classes
different from the one of the previous region. Figure 4.8 visualizes the subsampling.

In order to save computational time, the ScanGrid starts at the horizon as given by the
ImageCoordinateSystem. Additionally, the vertical scan lines are divided into “low resolution”
and “high resolution” scan lines. At first, only the low resolution scan lines are computed and
used for determining the field boundary. Afterwards, the high resolution scan lines are com-
puted for further processing, starting at the field boundary.

4.1.7 Detecting the Field Boundary

The rulebook of the Standard Platform League specifies in detail how a field and everything
allowed to be on it during a game looks like. In contrast, very little is specified about the
appearance of the world outside the field. The only exception is that another field that is visible
must be at least three meters away. Given that everything that is relevant to soccer playing
robots is located on their field, it makes a lot of sense to limit image processing to the area of
the field they are playing on or at least to reject object detections that do not overlap with that
field. To be able to accomplish that, the extent of the field must be determined, i. e. its boundary
in the current camera image must be detected.

(a) (b)

(c) (d) (e)

Figure 4.7: (a) An image from the upper camera of a NAO with (b) a corresponding color
classification based on its (c) luminance, (d) hue and (e) saturation channels in the YHS2 color
space.
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(a) The ScanGrid: the blue dots
are checked for building regions
of colors.

(b) The high resolution vertical
scan line regions.

(c) The horizontal scan line re-
gions.

Figure 4.8: Visualization of the subsampling performed to compute the scan line regions.

4.1.7.1 Candidate Spots

The boundary of the field is basically an edge below where the image is mostly green and above
where the image is mostly not green. This rule is employed when searching for candidate spots
along vertical scan lines in the image (cf. Fig. 4.9b). These scan lines start at the lower border
of the image or – if the robot’s body is visible in the image – above the assumed contour of
the robot’s body. They end at the position in the image the boundary would appear when
being furthest away possible (i. e. assuming the robot standing in one corner of the field looking
towards the opposite corner.). For each scan along a vertical line, a score is maintained that
is increased for each field-colored pixel found and decreased for each non-field-colored pixel.
The position of the pixel where this score reached its maximum is used as a candidate spot for
the field boundary (cf. Fig. 4.9c). However, spots that are very close to the robot are ignored,
because it is assumed that it will always have a minimum distance to the actual field boundary.

4.1.7.2 Guessing a Model

Not all candidate spots are located on the actual field boundary, because it can be hidden by
other robots, goal posts, and referees. Therefore, it must be determined which spots are really
located on the field boundary and which spots have to be ignored. Domain knowledge is used
to ease this decision process. The borders of the actual field consist of straight lines that are
perpendicular to each other. A robot can either see one, two, or three of these lines at the same
time. Since the case of seeing three lines is very rare and one of those three lines will often
appear as very short in the image, our implementation ignores this case and only models the
other two.

The approach chosen uses the RANSAC method. By random, three points are drawn from the
set of candidate spots in a way that they are ordered from left to right in the image. A straight
line is constructed from the first two points. A second line is determined by projecting all three
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points to the field plane and dropping a perpendicular from the third point to the line spanned
by the first two points. If the intersection point of the two lines fulfills a number of criteria (e. g.
the corner must be convex and must be left of the third point), it is considered as a corner and
the second line is also used in the following step.

In that step, the squared sums are calculated of a) the distances of all points before the corner
to the first line, b) the distances of all points after the first corner to the first line, and c) the dis-
tances of all points after the corner to the second line.2 Distances above a certain threshold are
clipped to that threshold to avoid that, e. g., spots resulting from objects that hide the boundary
significantly influence the outcome of the computation. In addition, distances of points above
a line are weighted more than points below the line, again, because of objects that might hide
the boundary. Two models are then considered: either the field boundary only consists of the
first line (sum (a) plus sum (b)) or it consists of the first and the second line (sum (a) plus sum
(c)). The model with the smaller sum is selected, i. e. the model that is supported more by the
point set, because the points deviate less from it.

This process is repeated several times and the best model is kept (cf. Fig. 4.9d). It is noteworthy
that summing up the distances can stop early whenever the current sum gets bigger than the
sum of the best model found so far, because the current model will definitely be worse. Thus,
quite a number of models can be checked in a short amount of time. The process ends when
a model with a deviation sum below a certain threshold is found or after a maximum number of
iterations is reached.

(a) The normal robot view. (b) Vertical scan lines.

(c) Detected field boundary spots (red
crosses).

(d) The detected field boundary (orange
line).

Figure 4.9: The main steps of the field boundary detection.

2If there is no corner, only a single sum is computed.
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4.1.7.3 Projection between Camera Images

In a certain direction, the actual field boundary can usually only appear in one of the two
cameras (except for a small overlap between the images), i. e. either in the upper camera
or in the lower one. Therefore, the field boundary determined from the previous image is
projected to the current image before a new one is computed, considering odometry and head
motion. Under some conditions, candidate spots are simply computed from the projected field
boundary, namely if the projection is below the current image or if it is above and the search
reached the upper border of the current image.

4.2 Detecting the Ball

For the detection of the ball we use a multi-step approach. First, vertical scan lines are searched
for ball candidates. A neural network based classification is then used to determine the real
ball. The center and radius of the ball are finally estimated by another network in case the ball
was identified successfully.

4.2.1 Searching for Ball Candidates

Our vision system scans the image vertically using scan lines of different density based on
the size that objects, in particular the ball, would have at a certain position inside the image (cf.
Section 4.1.6). To determine ball candidates, the BallSpotProvider searches these scan lines
for sufficiently large gaps in the green that also have a sufficiently large horizontal extension and
contain enough white. Only the first and second resolutions of the scanlines are used. From a
specific distance, the ball is that small inside the image that the calculation can not provide good
results. For this reason, ball spots farther away than this distance will be generated on white
blobs that paled of green. In addition, all initial spots are ignored if they are near a previous one
or are clearly inside a detected robot.

4.2.2 Spot Classification and Center Prediction

Encoder Decoder

Encoded
Data Position Estimator

Training
Inference

  Classifier

Figure 4.10: System of neural networks for ball classification and position estimation. The
encoder is a Convolutional Neural Network (CNN), the classifier and the position estimator are
Deep Neural Networks (DNNs).

64



4.2. DETECTING THE BALL B-Human 2019

The BallPerceptor takes the previously described spots which are provided in the represen-
tation BallSpots and classifies them into balls and other objects. For each spot the size a ball
would have is calculated at the particular position in the camera image. Since the spots are not
always in the middle of the ball a square patch with an edge length of 3.5 times the radius is
used. The resulting area is then scaled to 32 × 32 pixels by leaving out pixels for downscaling
and taking pixels several times for upscaling. The resulting patch is fed to the neural network if
its projected position is on the field.

The core of the system consists of three neural networks whose architectures are described in
Table 4.1. They form a system as shown in Fig. 4.10 that classifies the patches whether they
show a ball or not and also predicts the size and position of the ball in the image. Those three
neural networks perform each a different part necessary for this. The encoder, a CNN, extracts
features from the patches that are both suitable for classification and position estimation. Based
on these features the classifier determines if a ball is present or not. This prediction is a value
between 0 and 1 and is used to classify the patches in three groups:

• If the result of the classifier is at least 0.9 the spot is accepted as ball and all other spots
are discarded.

• Otherwise if the result of the classifier is at least 0.8 the patch is assumed to contain a
ball. The best patch of this category is returned if no better patch of a better category is
found.

• Otherwise if the result of the classifier is at least 0.7 the patch is assumed to contain a
guessed ball. This means it could be a ball but not necessarily. The best patch of this
category is returned if no better patch of a better category is found.

Upon a successful ball classification the third network estimates the position of the ball in the
patch from the previously extracted features.

Layer Type Output Size
Input 32x32x1
Convolutional 32x32x8
Batch Normalization 32x32x8
ReLU Activation 32x32x8
Max Pooling 16x16x8
Convolutional 16x16x16
Batch Normalization 16x16x16
ReLU Activation 16x16x16
Max Pooling 8x8x16
Convolutional 8x8x16
Batch Normalization 8x8x16
ReLU Activation 8x8x16
Max Pooling 4x4x16
Convolutional 4x4x32
Batch Normalization 4x4x32
ReLU Activation 4x4x32
Max Pooling 2x2x32

(a) Encoder

Layer Type Output Size
Input 2x2x32
Flatten 128
Dense + Batch Norm + ReLU 32
Dense + Batch Norm + ReLU 64
Dense + Batch Norm + ReLU 16
Dense + Batch Norm + Sigmoid 1

(b) Ball Classifier
Layer Type Output Size
Input 2x2x32
Flatten 128
Dense + Batch Norm + ReLU 32
Dense + Batch Norm + ReLU 64
Dense + Batch Norm + ReLU 3

(c) Position Estimator

Table 4.1: Architectures of the three neural networks for ball detection
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4.3 Localization Features

To provide input for the self-localization (cf. Section 5.1) there exist multiple approaches to
extract information from the visual sensors. Every (visual) knowledge relevant for position esti-
mation that our robot is aware of is based on the field line detection. Although the penalty mark
and the center circle are basically lines as well, they are – at least partly – detected separately
to ensure more robustness for each single detection. Together, the representations of all three
basic detections make up the first layer in the process chain of the visual perception. Each layer
combines previously known information to provide more specific features. Information of every
layer can be used by the self-localization. The main layers after the basic feature detection are
the intersections perception and the following field feature perception.

4.3.1 Detecting Lines

The perception of field lines by the LinePerceptor relies mostly on the scanline regions. In
order to find horizontal lines in the image, adjacent white vertical regions that are not within a
perceived obstacle (cf. Section 4.4) are combined to line segments. Correspondingly, vertical
line segments are constructed from white horizontal regions. These line segments and the
center points of their regions, called line spots, are then projected onto the field. Using linear
regression of the line spots, the line segments are then merged together and extended to larger
line percepts. During this step, line segments are only merged together if at least a given ratio
of the resulting line consists of white pixels in the image. Figure 4.11 shows the process of
finding lines in the camera image.

4.3.2 Detecting the Center Circle

Besides providing the LinesPercept containing perceived field lines, the LinePerceptor also
detects the center circle in an image if it is present. In order to do so, when combining line
spots to line segments, their field coordinates are also fitted to circle candidates. After the
LinesPercept was computed, spots on the circle candidates are then projected back into the
image and adjusted so they lie in the middle of white regions in the image. These adjusted
spots are then again projected onto the field and it is once again tried to fit a circle through
them, excluding outliers.

If searching for the center circle using this approach did not yield any results, another method of
finding the center circle is applied. We take all previously detected lines whose spots describe
an arc and accumulate the center points of said arcs to cluster them together. If one of these
clusters contains a sufficient number of center points, the average of them is considered to be
the center of the center circle.

If a potential center circle was found by any of these two methods, it is accepted as a valid
center circle only if – after projecting spots on the circle back into the image – at least a certain
ratio of the corresponding pixels is white (cf. Fig. 4.11c).

4.3.3 Line Coincidence Detection

To find points where two lines coincide, we are calculating the intersections of the previously
perceived lines (cf. Section 4.3.1). This approach is probably much faster and more accurate3

3Assuming a sufficiently accurate line detection.
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(a) Line spots constructed from the scanline re-
gions. Spots from horizontal regions are marked
red, spots from vertical regions blue.

(b) The detected line segments in the image.

(c) Points on the circle candidate that were pro-
jected back into the image for checking if the cor-
responding pixels are white.

(d) Filtered line and circle percepts in the
FieldLines representation.

Figure 4.11: The main steps of the line and circle detection.

than any separate (visual) perception such as e. g. corner search, but it means that detecting
a line intersection without a line (percept) is impossible. In particular this disadvantage applies
to line corners of a penalty area that extends into the image.

The IntersectionsProvider fills the IntersectionPercept based on the LinesPercept.
Each known line will be compared to all other known lines, excluding those that are known
to be part of the center circle. Because of the way the field is set up (cf. the current rules [2]),
an intersection is only possible if the inclination of two compared lines in field coordinates is
roughly π

2 . In that case, the point of intersection of the two lines is calculated. In order to be
valid, this point must lie in between both detected line segments. Next, we also want to specify
the type of each intersection. The types of intersections are congruent with their names: L,
T, and X. This means that intersections lying clearly in-between both lines are of type X while
those that are clearly inside one line but roughly at one end of the other are considered to be of
type T. If the point of intersection lies roughly at the ends of both lines, it is assumed to belong
to an L-type intersection.

In case that parts of both lines are seen but the point of intersection does not lie on either line –
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e. g. because an obstacle is standing in front of the intersection point – the lines will be virtually
stretched to some extent so that the point of intersection lies roughly at their ends. The possible
distance by which a line can be extended depends on the length of its recognized part.

The IntersectionsPercept stores the type of each intersection as well as its position, its base
lines, and its rotation.

4.3.4 Preprocessed Lines and Intersections

Some features of the LinesPercept and IntersectionsPercept – such as the spots from
which the lines were fitted and image coordinates – are not needed for further processing.
On the other hand, now that the positions of all lines and intersections are known, additional
information can be gained by making assumptions based on the known layout of the field lines.
Therefore, as a next step, the FieldLinesProvider provides adapted representations of the
LinesPercept and IntersectionsPercept for further use.

The representation FieldLines contains the processed line percepts (cf. Fig. 4.11d). For this,
every line that is assumed to be seen on the center circle or inside the goal frame or net (cf.
Section 4.3.6) was sorted out. Lines that extend into the goal frame are clipped to its bound-
aries. In addition to that, every line that is as long as a ball would appear at the corresponding
position in the image is removed in order to avoid further calculations on false-positive lines that
are fitted inside the ball. Apart from removing invalid percepts, lines in FieldLines also have
additional properties. A line is marked as mid if it goes through the center circle, which means
that it is probably the center line. The long attribute is given to any line that is longer than a
specific on-field distance. A long line means the detected line probably belongs to the outer
lines, center line or penalty front lines. For this reason, it is advisable to check on a distance
that is longer than the penalty area sidelines or a part line inside the center circle, but as short
as possible to receive the additional information as often as possible.

The representation FieldLineIntersections contains the processed line intersection per-
cepts. It consists only of intersections that do not apply to any previously removed lines. If
one of the lines belonging to an intersection was cut, the intersection type is corrected ac-
cordingly. Additionally, an intersection can now have a type of mid or big. If both lines of the
intersection are of type mid, the intersection is also considered to be mid. Analogous to that, an
intersection consisting of two long lines has the attribute big. After all this processing, L-type
intersections are filtered out, if the angle between their two lines is not about ninety degrees.

4.3.5 Penalty Mark Perception

The penalty mark is one of the most prominent features on the field since it only exists twice.
In addition, it is located in front of the penalty area and can thereby be easily seen by the goal
keeper. By eliminating false positive detections, the penalty mark can be used as a reliable
feature for self-localization. This is achieved by limiting the detection distance to 2 m and by
using a contrast-based shape check. As a result, e. g., the B-Human goal keeper detected the
penalty mark 6819 times during the 2019 SPL final and none of these detections was a false
positive.

4.3.5.1 Approach

Similar to the ball detection (cf. Section 4.2) it is first searched for a number of candidates which
are checked afterwards for being the actual penalty mark. However, while it is very important to
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detect the ball as often as possible, it is sufficient for the self-localization to detect the penalty
mark less frequently. Therefore, only a maximum of three candidates is checked per image to
save computation time. Also similar to the ball detection, the search for candidates and the
actual check are separated into two different modules. The check needs a contrast normalized
Sobel (CNS) image (cf. Fig. 4.13) for the candidate region and since the computation of these
regions costs time all the regions requested by different modules are grouped together to avoid
computing overlapping regions twice. Therefore, the search for candidates has to be performed
before the CNS image is computed and the shape check has to be executed afterwards.

4.3.5.2 Finding Candidate Regions

The PenaltyMarkRegionsProvider first collects all regions of the scanned low resolution grid
that were not classified as green, i. e. white, black, and unclassified regions. In addition, the
regions are limited to a distance of 2 m from the robot, assuming they represent features on the
field plane. Vertically neighboring regions are merged (cf. Fig. 4.12a) and the amount of pixels
that were actually classified as white in each merged region is collected. Regions at the lower
end and the upper end of the scanned area are marked as invalid, i. e. there should be a field
colored region below and above each valid region. The regions are horizontally grouped using
the Union Find approach. To achieve a better connectedness of, e. g., diagonal lines, each
region is virtually extended by the expected height of three field line widths when checking for
the neighborhood between regions. For each group, the bounding box (cf. Fig. 4.12b) and the
ratio between white and non-green pixels is determined. For all groups with a size similar to
the expected size of a penalty mark that are sufficiently white and that do not contain invalid
regions, a search area for the center of the penalty mark and a search area for the outline of
the penalty mark are computed. As the search will take place on 16× 16 cells, the dimensions
are extended to multiples of 16 pixels.

(a) The vertical scanline regions are filtered for
those that were not classified as green. They are
clipped at a distance of 2 m from the observer (col-
ored lines inside the robot, the ball, and the penalty
mark). They are joined together as grouped re-
gions (each group has a different color).

(b) Bounding boxes are computed for each group
(black). For groups with the expected size and
minimum white ratio, a search region for the cen-
ter (red) and a region for the CNS image (blue) is
computed. The contour points of the penalty mark
are then fitted inside these regions (bright green).

Figure 4.12: Steps of the penalty mark detection
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Figure 4.13: The normal robot view (left) and the contrast-normalized Sobel image (right). The
colors indicate the directions of the gradients.

4.3.5.3 Computing CNS Regions

The CNSRegionsProvider integrates the outline regions into the set of regions for which the
CNS image has to be computed. The CNSImageProvider will then perform the computation.

Figure 4.13 shows a representation of a computed CNS image for a whole picture.

4.3.5.4 Checking Penalty Mark Candidates

The PenaltyMarkPerceptor goes through the list of possible center regions for the penalty
mark and determines the best match of the contour of the penalty area in each of these regions.
It searches in one-pixel steps and checks for four different orientations, i. e. in 22.5◦ steps.
However, as the contour detector also iteratively refines each match, the orientation can also be
matched arbitrarily precise. If the match is sufficiently good, it will be checked more thoroughly
whether the candidate is surrounded by green. If the candidate is surrounded by at least 90%
green, it is returned as being a valid penalty mark.

4.3.6 Field Features

The self-localization uses field lines, their intersections, the center circle, and the penalty marks
as measurements. All of these field elements are distributed over the whole field and can be
detected very reliably, providing a constant input of measurements in most situations.

The Field Features are created by combining multiple basic field elements in a way that a robot
pose (in global field coordinates) can be derived directly. The handling of the field symmetry,
which leads to actually two poses, is described in Section 5.1.2. Overall, this approach provides
a high number of reliable pose estimates, as the field lines on which it is based can be seen
from many perspectives and have a reliable robust context (straight white lines surrounded by
green carpet).

Every FieldFeature is a Pose2f, which is the pose of this in relative field coordinates. In
addition, it has attributes that associate several percepts with explicitly defined global field ele-
ments such as the center line. Normally, all feature detections are using the preprocessed field
elements (cf. Section 4.3.4). We are currently computing the following field features:
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Penalty Area The PenaltyAreaPerceptor, which provides PenaltyArea, tries to find a penalty
area with the help of the penalty mark and a line or two intersections. If a penalty mark
is known, it searches a line that matches the corresponding penalty area front line. The
penalty area can also be found by combining two small (not big) T-intersections or one
small T-intersection and one small L-intersection.

Mid Circle The MidCirclePerceptor is combining a detected center circle with a detected mid

line to provide the MidCircle.

Mid Corner A MidCorner, which is provided by the MidCornerPerceptor, is simply derived
from a big T-intersection.

Outer Corner The OuterCorner refers to the areas where ground lines meet side lines, which
means that the outer corner is on the right or left side. To find such a corner, the
OuterCornerPerceptor combines a big L-intersection with an element of the penalty
area.

Goal Frame Besides the obvious reason to have another field feature to get more information
to put into the self-locator, the GoalFrame is also used to sort out false-positive lines
that were detected inside the goal net. Thus, the GoalFramePerceptor has to calculate
directly based on the line percepts. In general, the module searches for points around the
goal and validates the rotation with a special use of the FieldBoundary.

4.4 Detecting Other Robots

The reliable detection of other robots is a complex and challenging problem for multiple reasons.
Robots are not fully symmetrical and thus look differently depending on the angle of view,
they can have different postures (e. g. standing, lying, or getting up) or can cover each other.
Furthermore, changing lighting conditions might make it difficult to use the robot’s colored jersey
as a reliable cue.

Additional factors have to be taken into account for the detection in the upper camera. Since
it covers larger parts of the field, robots appear in many different scales (very far away as
well as very close) and other objects that could be confused with a robot, such as the goal or
the referee, are often included in the image, making a robust detection even more difficult. In
contrast, the lower camera only captures a very small portion of the field, which is directly in
front of the robot’s feet. Therefore, objects in the lower image are close to the robot and rather
big, making other robots comparatively easy to recognize as more or less large, continuous
blobs with some additional characteristics.

Because of these, we use a more complex, machine learning based method for the robot
detection in the upper camera, while a more simple, conventional method is sufficient for the
detection in the lower camera.

4.4.1 Detecting Robots in the Upper Image

For detecting robots in the upper camera, a neural network is utilized. Same as for the ball de-
tection, we use only the Y channel of the YUV images, since it suffices to achieve good results
and contributes to more robustness. However, in contrast to the method for ball detection, the
network does not analyze individual image patches, but processes an entire image at once. For
this purpose, we use the Thumbnail image in the resolution 80 × 60 as input. Before passing
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Figure 4.14: Overview of the robot detection pipeline used for the upper camera. A gray- and
downscaled (80 × 60 pixels) version of the camera image is passed to the neural network,
which determines the bounding boxes for all robots present in the image.

Figure 4.15: The left image shows the original bounding boxes without post-processing. In
the middle image the regions within the post-processing is performed are indicated by violet
rectangles, the considered spots are marked as violet dots. The orange crosses are the spots
at which significant contrast changes have been detected, from which the new boundaries,
which can be seen in the right picture, are determined.

an image to the network, a 2 % min-max normalization is applied on it as an additional pre-
processing step, to be more robust against changing and challenging lighting conditions. After
these pre-processing steps the neural network determines the bounding boxes for all robots
present in the image (cf. Fig. 4.14). The used network architecture is shown in Table 4.2. For a
more detailed description of this approach, see [18].

The coordinates of the resulting bounding boxes are converted from the scaled down resolution
to the original one. Since the network uses the principle of anchor boxes to determine the
bounding boxes, they are sometimes wider than necessary. For this reason, an additional
post-processing step is performed. Roughly estimated that the legs of the robot make up the
lower half of a bounding box, we define horizontal scan lines in fixed steps from the center
of the bounding box to the lower border of it. Along all of these scan lines we determine the
outermost spots with significant contrast changes and use the medians of them as new left/right
boundaries (cf. Fig. 4.15).

4.4.2 Detecting Robots in the Lower Image

The detection of robots in the lower camera uses a contrast based approach. For this the
image is first divided into 16 × 16 regions (cf. Fig. 4.16a) and scanned along a grid, in order
to locate spots with a significant change of contrast in the horizontal, vertical or both of these
directions. Thereby only image areas below the FieldBoundary and above the BodyContour
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Layertype Filters Filter Size Strides Padding Output

BNorm - - - - 80 × 60
Conv 16 3 × 3 1 Same 80 × 60

SConv 24 3 × 3 2 Same 40 × 30

BNorm - - - - 40 × 30
SConv 16 3 × 3 1 Same 40 × 30
SConv 20 3 × 3 1 Same 40 × 30
SConv 20 3 × 3 2 Same 20 × 15

BNorm - - - - 20 × 15
SConv 20 3 × 3 1 Same 20 × 15
SConv 20 3 × 3 1 Same 20 × 15
SConv 24 3 × 3 1 Same 20 × 15
SConv 24 3 × 3 2 Same 10 × 8

BNorm - - - - 10 × 8
Conv 24 3 × 3 1 Same 10 × 8
Conv 24 3 × 3 1 Same 10 × 8
Conv 24 3 × 3 1 Same 10 × 8
Conv 24 3 × 3 1 Same 10 × 8

Conv 20 1 × 1 1 Same 10 × 8

Table 4.2: The network architecture used for the robot detection in the upper camera.

are scanned. To exclude contrast changes within the field, caused e. g. by lighting conditions,
only pixels whose saturation is below a rough threshold are considered (cf. Fig. 4.16b). The
spots found are noted accordingly in the region in which they are located. In addition, spots
with low saturation but high brightness are also registered separately, as large parts of a robot
are plain white/greyish.

After scanning the image, the defined 16 × 16 image regions are divided into different classes,
based on the number and type of the spots they contain (cf. Fig. 4.16c). Due to the nature of
field lines and goalposts, e. g. mostly rectangular with two distinct straight edges, image regions
containing these show a similar distribution of contained spots and are thus usually in the same
class. On the other hand, image regions containing robots are much more heterogeneous due
to the different shapes of the individual body parts. Based on this observation, contiguous
areas of regions in the same class are marked negligible and are no longer considered in the
following. This way, field lines, except field line intersections, and goalposts can be effectively
filtered out (cf. Fig. 4.16d).

As the next step, a density-based clustering is performed for the remaining regions. Clusters
containing a ball, a penalty mark or a field line intersection are rather small and often don’t reach
the top image border (cf. Fig. 4.16e). Clusters that fulfill both of these criteria are therefore
discarded. For those that reach the top image border but are comparatively small, there must
be a detection in the upper camera image that ends at the lower image border and lies in the
same direction as the cluster found in the lower image.

The remaining clusters are assumed to be robots and bounding boxes are constructed for them.
For this the coordinates of the regions contained in the clusters are used to determine initial
boundaries which getting refined using the same procedure as for the upper camera, except
that this time the whole height of the bounding boxes is considered (cf. Fig. 4.16f).
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(a) The original image with the
16 × 16 image regions overlayed.
Large parts of the image are cov-
ered by the ball and field lines,
additionally the field has strong
changes in brightness.

(b) The found changes in con-
trast. The yellow lines indi-
cate vertical contrast changes,
the purple lines horizontal ones
and the red dots indicate spots
with vertical as well as horizontal
contrast changes.

(c) The regions assigned to dif-
ferent classes based on the con-
tained spots, indicated by differ-
ent colors. The regions marked
magenta contain mainly bright
spots, the cyan marked ones
shouldn’t be discarded as they
don’t contain a clear majority of
any spot type.

(d) The remaining regions after
discarding contiguous, homoge-
neous areas. The white marked
regions are the ends of such ar-
eas which were not discarded
due to their proximity to heteroge-
neous areas.

(e) The clusters formed out of the
remaining image regions. Clus-
ters that would be too small are
directly discarded.

(f) The robot detections derived
from the formed clusters. Due
to its size and the position in the
middle of the image, the cluster
containing the ball does not rep-
resent a valid robot obstacle.

Figure 4.16: The main steps of the robot detection pipeline used for the lower camera.

4.4.3 Determining the Jersey Color

After a robot is detected in the image it is attempted to determine its jersey color. To avoid a
calibration of the colors, a differential approach is used. For each detected robot, the image
is sampled at a certain height in the region of a perspectively distorted rectangle.4 For each
non-green pixel it is determined, whether it more likely belongs to the own team color or to the
opponent team color. These decisions are counted and if there is a clear majority for one of the
two possibilities, that jersey color is assigned to the robot.

The color classification first distinguishes between saturated and unsaturated colors. If both
colors are saturated, the colors’ hue values are used. If they are both non-saturated, their
classification to either black or white is used. For gray, a region below the jersey is scanned
to get an estimate for the brightness of white. Then, gray is expected to be in a certain range
relative to that brightness. Note that green jerseys will not be detected at all by this approach.

4If the lower end of the obstacle is not in the image, the position of the sample region is guessed from the width
of the obstacle.
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Figure 4.17: Combined robot detection in upper and lower camera images. The thick yellow,
blue, and green dots mark the region that was scanned for the jersey color. Yellow dots mark
the own (black) team, blue ones the opponent (red) team, and green ones were ignored. The
robot found in the lower image is marked as red, because a red jersey was detected in the
upper image.

4.4.4 Propagating Information from Upper to Lower Image

If a robot is detected in the upper image, but its lower end is not inside the image, it is still
provided as an obstacle region in image coordinates, but it is not provided as a robot-centric
obstacle in field coordinates. Instead, it is reused when the next image from the lower camera
is processed. The jersey colors of incomplete robots in the upper image will be assigned to
robots in the lower image if both detections were in the same direction (cf. Fig. 4.17).
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Chapter 5Modeling

To compute an estimate of the current world state – including the robot’s own position and
orientation, the ball’s position and velocity, and the positions of other robots – given the noisy
and incomplete data provided by the perception layer, a set of modeling modules is necessary.
Some of these modules also incorporate information sent by teammates, e. g. to compute a
team-wide ball state estimate. Furthermore, for some years now, the sound perceived by the
robot’s microphones has to be analyzed to detect the referee’s whistle. An overview of the
major modules for these tasks is given in this chapter.

5.1 Self-Localization

A robust and precise self-localization has always been an important requirement for success-
fully participating in the Standard Platform League. B-Human has always based its self-
localization solutions on probabilistic approaches [30] as this paradigm has been proven to
provide robust and precise results in a variety of robot state estimation tasks. However, due
to the high amount of noise and the problems arising from the field’s symmetry, the main state
estimation module is complemented by additional modules that generate new robot pose al-
ternatives and check, if a robot’s current orientation is point-symmetrically flipped. Overall,
B-Human’s implementation has not significantly changed in recent years, except for some mi-
nor adaptions and bug fixes, which are not described in this report.
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5.1.1 Probabilistic State Estimation

The pose state estimation is handled by multiple hypotheses that are each modeled as an
Unscented Kalman Filter [11]. The hypotheses management and hypotheses resetting (cf.
Section 5.1.2) is realized as a particle filter [4]. Both approaches are straightforward textbook
implementations [30], except for some adaptions to handle certain RoboCup-specific game
states, such as the positioning after returning from a penalty. In addition, we only use a very
low number of particles (currently 12), as multimodalities do not often occur in RoboCup games.

The current self-localization implementation is the SelfLocator that provides the RobotPose.
Furthermore, for debugging purposes, the module also provides the loggable representation
SelfLocalizationHypotheses which contains the states of all currently internally maintained
pose hypotheses.

Overall, this combination of probabilistic methods enables a robust, precise, and efficient self-
localization on the RoboCup field. However, eventually, the result always depends on the quality
and quantity of the incoming perceptions.

5.1.1.1 Perceptions Used for Self-Localization

Several years ago, B-Human used goals as a dominant feature for self-localization. When the
field was smaller and the goal posts were painted yellow, they were easy to perceive from most
positions and provided precise and valuable measurements for the pose estimation process.
In particular the sensor resetting part (cf. Section 5.1.2), i. e. the creation of alternative pose
estimates in case of a delocalization, was almost completely based on the goal posts perceived.
In 2015, we still relied on this approach, using a detector for the white goals [27]. However, as
it turned out that this detector required too much computation time and did not work reliably in
some environments (requiring lots of calibration efforts), we decided to perform self-localization
without goals but by using the new complex field features (cf. Section 4.3.6 as well as [26])
instead. However, the new NAO’s computing power and our recent progress in the application
of deep neural networks might lead to new robust goal perceptions in the near future. These
perceptions could be integrated in the current implementation easily.

In addition, the self-localization still uses basic features such as field lines, their crossings, the
penalty mark, and the center circle as measurements. All these field elements are distributed
over the whole field and can be detected very reliably, providing a constant input of measure-
ments in most situations.

The complex field features are also used as measurements but not as a perception of a rela-
tive landmark. Instead, an artificial measurement of a global pose is generated, reducing the
translational error in both dimensions as well as the rotational error at once. Furthermore, in
contrast to the basic field elements that are not unique, no data association (cf. Section 5.1.1.2)
is required. The handling of the field symmetry, which leads to actually two poses, is similar to
the one that is done for the sensor resetting as described in Section 5.1.2.

5.1.1.2 Resampling based on Particle Validity

One important part of any Monte Carlo localization approach is the resampling (cf. [4]), i. e.
to determine which particles become copied how often to the new particle set representing
the current state’s probability distribution. For this purpose, each particle has a weighting that
describes how “good” it is; the higher the weighting, the higher the likelihood that the particle
will be copied to the new set. There is no general-purpose approach to compute these weights,
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each application requires its own way to determine the quality of a particle instead.

In our implementation, each particle’s validity is directly used as its weighting (combined with
a base weighting, as described below). The validity is our measure for a particle’s compatibil-
ity to the recent perceptions and is computed during the process of data association. To use
a perception in the UKF’s measurement step, it needs to be associated to a field element in
global field coordinates first. For instance, given a perceived line and a particle’s current pose
estimate, the field line that is most plausible regarding length, angle, and distance is deter-
mined. In a second step, it is checked whether the difference between model and perception
is small enough to consider the perception for the measurement step. For all kinds of percep-
tions, different thresholds exist, depending on the likelihood of false positives and the assumed
precision of the perception modules. After the association process has been carried out for
all perceptions, the current validity vc can be computed by setting the number of successfully
associated perceptions in relation to the total number of perceptions in this frame. For this
computation, we consider different weights for different kinds of perceptions, i. e. a field feature
– which is a very reliable perception – that cannot be associated has a higher impact on the
validity than a field line, which might erroneously be detected in other robots or a goal net, that
has not been matched.

To avoid strong oscillations of the validity, which might cause instabilities within the sample set
and hence a robot pose that reacts too quickly to false measurements, a particle’s validity vp is
filtered over n frames (currently, n is configured to 60):

vp =
voldp × (n− 1) + vc

n
(5.1)

Furthermore, the addition of a base weighting wb in the computation of a particle’s weighting
wp contributes to a more stable resampling process:

wp = wb + (1− wb)× vp (5.2)

5.1.2 Sensor Resetting based on Field Features

When using a particle filter on a computationally limited platform, only few particles, which cover
the state space very sparsely, can be used. Therefore, to recover from a delocalization, it is
a common approach to perform sensor resetting, i. e. to insert new particles based on recent
measurements [15]. The field features provide exactly this information – by combining multiple
basic field elements in a way that a robot pose (in global field coordinates) can be derived
directly – and thus are used by us for creating new particles. These particles are provided as
AlternativeRobotPoseHypothesis by the AlternativeRobotPoseProvider.

As false positives can be among the field features, e. g. caused by robot parts overlapping
parts of lines and thereby inducing a wrong constellation of elements, an additional filtering
step is necessary. All robot poses that can be derived from recently observed field features
are clustered and only the largest cluster, which also needs to contain a minimum number of
elements, is considered as a candidate for a new sample. This candidate is only inserted into
the sample set in case it significantly differs from the current robot pose estimate.

To resolve the field’s symmetry when handling the field features, we use the constraints given
by the rules (e. g. all robots are in their own half when the game state switches to Playing or
when they return from a penalty) as well as the assumption that the alternative that is more
compatible to the previous robot pose is more likely than the other one. An example is depicted
in Fig. 5.1. This assumption can be made, as no teleportation happens in real games. Instead,
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Figure 5.1: Whenever a new alternative pose is inserted into the sample set, it must be decided,
if it can be used directly or if it needs to be mirrored. This decision depends on the current robot
pose. This figure visualizes the possible decisions for one example robot pose (located on the
right side of the own half). The stars denote example alternative poses. A red line means:
if a new pose is computed here, it must be mirrored before its insertion into the sample set.
Consequently, black lines mean that the pose can be used directly. As one can see, the current
formula prefers the direction towards the opponent goal over the current position.

most localization errors result from situations in which robots slightly lose track of their original
position and accumulate a significant error by repeatedly associating new perceptions to false
parts of the field model.

5.1.3 Detecting and Correcting Mirrored Pose Estimates

As aforementioned, the self-localization already includes some mechanisms that keep a
robot playing in the right direction. However, it still happens that sometimes a single robot
loses track of its playing direction. To detect such situations, a separate module – the
SideConfidenceProvider – compares a robot’s ball observations with those of the teammates.
If the current constellation indicates that the robot has probably been flipped, the representation
SideConfidence is set accordingly and the subsequently executed SelfLocator can mirror all
particles.

The comparison of the ball observations is implemented by a list of mutual agreements: When-
ever a teammate communicates a new ball, it is checked, whether both robots can agree about
the ball position or if they disagree, i. e. agree about the mirrored alternative. If none of both
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alternatives appears to be likely, the status is unknown. The SideConfidenceProvider keeps
an internal list of all teammates and the result of the last comparisons.

To agree about a ball position, both observations need to have occurred within a certain amount
of time (currently one second) and at a similar place (currently up to one meter distance). As
not all robots can see the ball frequently, each agreement / disagreement will be remembered
for some time (currently eight seconds). However, if the (own or teammate) ball is located at
certain positions, it will not be used to compute any agreement / disagreement: as the field is
point-symmetric, the area around the field’s center is useless for any computations; as there
might be false positives on penalty marks or on lines that are close to robots or close to other
lines, all balls close to any of these are discarded. Furthermore, as the robots have to agree
within a certain time slice, a fast rolling ball could be perceived at very different positions and
has to be ignored, too.

Finally, to make a decision whether a robot has flipped or not, the list of mutual agreements is
checked:

• The localization is considered as being correct, if the robot agrees with more teammates
about the ball position than it disagrees with.

• The robot is considered a being on the mirrored pose, if it disagrees with multiple team-
mates but does not agree with anyone.

During the whole RoboCup 2019 competition, we did not observe any robot that required such
a correction of its pose estimate. Thus, one can assume that the other self-localization compo-
nents are currently precise and reliable enough to render the SideConfidenceProvider use-
less.

5.2 Ball Tracking

To keep track of the current ball state, all robots maintain two ball models: a local one that
estimates the ball position and velocity based on the own observations and a global one that
fuses the own observations with observations communicated by the teammates. Furthermore,
to predict upcoming positions of rolling balls, a model for the current carpet’s friction can be
learned.

5.2.1 Local Ball Model

Given the ball perceptions described in Section 4.2, the BallLocator uses Kalman filters to
derive the current ball position and velocity, represented as the BallModel. Since ball motion
on a RoboCup soccer field has its own peculiarities, our implementation extends the usual
Kalman filter approach in several ways described below. The major parts of the ball tracking
implementation remained unchanged for many years. Before 2016, the number of false positive
ball perceptions has been zero in most games. Hence, the ball tracking was implemented as
being as reactive as possible, i. e. every perception was considered. However, the introduction
of the new black and white ball required the addition of a set of additional checks, which are
now part of a new supporting module, the BallPerceptFilter. Furthermore, to keep the core
ball tracking implementation as clear as possible, the collision detection was also moved to an
additional module, the BallContactCheckerProvider.
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a) b)

Figure 5.2: Ball model and measurement covariances for (a) short and (b) medium distances.
The orange circles show the ball models computed from the probability distribution. The larger
ellipses show the assumed covariances of the measurements.

5.2.1.1 State Estimation

First of all, the problem of multimodal probability distributions, which is naturally handled by the
particle filter, deserves some attention when using a Kalman filter. Instead of only one, we use
twelve multivariate Gaussian probability distributions to represent the belief concerning the ball.
Each of these distributions is used independently for the prediction step and the correction step
of the filter. Effectively, there are twelve Kalman filters running in every frame. Only one of these
distributions is used to generate the actual ball model. That distribution is chosen depending
on how well the current measurement, i. e. the position the ball is currently seen at, fits and how
small the variance of that distribution is. That way, we get a very accurate estimation of the ball
motion while being able to quickly react on displacements of the ball, for example when the ball
is moved by the referee after being kicked off the field.

To further improve the accuracy of the estimation, the twelve distributions are equally divided
into two sets, one for rolling balls and one for balls that do not move. Both sets are maintained
at the same time and get the same measurements for the correction steps. In each frame, the
worst distribution of each set gets reset to effectively throw one filter away and replace it with
a newly initialized one. The covariance matrix determining the process noise for the prediction
step is fixed over the whole process. Contrary to that, the covariance for the correction step is
derived from the actual measurement; it depends on the distance between robot and ball (cf.
Fig. 5.2).

5.2.1.2 Filtering Ball Perceptions

Although our ball perception is quite robust in general (cf. Section 4.2), several false posi-
tives per game cannot be avoided due to the similarity between the ball’s shape and surface
and some robot parts. The BallPerceptFilter implements a number of different checks
for typical cases. All perceptions that are not rejected by this module become provided as
FilteredBallPercepts, which are the actual input for the state estimation process as de-
scribed above.

First of all, there must be multiple ball perceptions within a certain area and within a maximum
time frame before a perception can be considered for the tracking process. This slightly reduces
the module’s reactivity but is still fast enough to allow the execution of ball blocking moves in a
timely manner. Furthermore, a common problem is the detection of balls inside close robots.
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A part of these perceptions, i. e. those resulting from our teammates, is excluded by checking
against the communicated teammate positions. As our self-localization is very precise and
robust, we can use the robot’s estimated position to reject ball perceptions that appear to be
outside the field, e. g. caused by stuff lying near the field.

By adding many checks to exclude potentially false ball observations in perception (cf. Sec-
tion 4.2) as well as during state estimation, many true positives become rejected, too. Espe-
cially many rolling balls lead to a quite low response of the detector. These perceptions, which
are annotated as guessed balls, fall into the same category as many false positives and cannot
directly be used for a reliable state estimation. However, perceiving rolling balls and predicting
their velocity is important to successfully perform blocking motions. To compensate for this
problem, two mechanisms have been implemented: If a guessed ball is perceived close to a
position at which recently a ball observation with a high response was detected, it is consid-
ered to be the same ball and thus passed to the state estimation process. Furthermore, the
BallPerceptFilter performs a check, if a series of perceptions (guessed one as well as those
of higher quality) is on a line that is compliant with the hypothesis of a rolling ball. If this is the
case, these perceptions can be used in the ball state estimation process, too, as sequences of
false positives that resemble a rolling ball are highly unlikely.

The ball percept filtering is an important process to keep the ball tracking reliable. Nevertheless,
it should be noted that a few false positives still pass all checks.

5.2.1.3 Checking Collisions with the Ball

The robot itself can influence the motion of the ball either by kicking or just standing in the
way of a rolling ball. These events need to be considered to reliably keep track of the ball.
The BallContactCheckerProvider implements this functionality by geometrically clipping a
ball position at the robot’s feet, incorporating a possible velocity of the colliding foot. As a re-
sult, a new ball position and a new ball velocity can be computed, including new covariances
for both. To allow these computations to be made for all ball hypothesis that are maintained by
the BallLocator, the BallContactCheckerProvider provides the BallContactChecker repre-
sentation that contains the required collision function.

5.2.2 Friction and Prediction

For a precise Kalman filter prediction step as well as for an estimation of a rolling ball’s end
position, which is required by some behaviors such as passing a goalkeeper reactions, a model
of the friction between ball and ground is essential. For this model, we assume a simple linear
model for ball deceleration

s = v × t+
1

2
× a× t2 (5.3)

with s being the distance rolled by the ball, t the time, and a the friction coefficient. The coeffi-
cient can be configured for each individual field and has to be set in the file ballSpecification.cfg.

The coefficient can be guessed by rolling a ball and comparing its end position with the pre-
dicted end position. To make this process more convenient, the code contains the module
FrictionLearner, which is deactivated during games, in order to automatically determine the
floor-dependent friction parameter. When the module is active, a robot with remote connection
can be placed on the field and the ball has to be rolled through its field of view with medium
speed. Preferably, the start and end position of the ball should both be outside the robot’s field
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of view and the field should be even. The module buffers all ball perceptions and after the ball
is outside the field of view or has come to a stop, a least squares optimization determines the
coefficient a that provides the best explanation for the ball’s movement. The result is printed
to the SimRobot console window afterwards. As this process is subject to noise and outliers
happen quite often, it should be carried out multiple times and the results have to be checked
and compared carefully by the user.

All computations for ball state prediction that involve friction have been encapsulated in the
class BallPhysics to be used by different modules.

Some modules, such as the ball perception (cf. Section 4.2), might require the current ball
position estimate before the BallModel has been updated in current execution frame. Hence,
the WorldModelPredictor provides a WorldModelPrediction by using the previous frame’s
robot pose and ball state estimate and applying odometry and motion updates.

5.2.3 Team Ball Model

The team ball model is calculated locally by each robot but takes the ball models of all team-
mates into account. This means that the robot first collects the last valid ball model of each
teammate, which is in general the last received one, except for the case that the teammate is
not able to play, for instance because it is penalized or has fallen down. In this case, the last
valid ball model is used. The only situation in which a teammate’s ball model is not used at all
is if the ball was seen outside the field, which is considered as a false perception.

After the collection of the ball models, they become clustered. Two balls are added to the
same cluster, if the distance between them is below a certain threshold. Here, a ball can be
part of multiple clusters. Afterwards, all balls of a cluster become merged in a weighted sum
calculation. There are multiple factors that are considered in this calculation:

• The approximated validity of the self-localization of the perceiving robot: the higher the
validity, the higher the weight.

• The time since the ball was last seen: the higher the time, the less the weight.

• The approximated deviation of the ball perception based on the distance: the higher the
deviation, the less the weight.

Finally, the cluster that contains most balls is chosen. If multiple clusters have the same size,
the one with the higher weighting is preferred. As a result, a common ball model, contain-
ing an approximated position and velocity, is calculated and provided as the representation
TeamBallModel.

Among other things, the team ball model is currently used to make individual robots hesitate to
start searching for the ball if they currently do not see it, but their teammates agree about its
position.

5.3 Obstacle Modeling

Similarly, to the previously described ball tracking, all robots maintain two different models for
the obstacles in their environment, one based solely on own observations and one incorporating
information sent by teammates. Both implementations remained nearly unchanged for several
years now.
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5.3.1 Local Obstacle Model

To compute the local obstacle model, namely the ObstacleModel, the ObstacleModelProvider

creates and maintains an Extended Kalman Filter for each obstacle. All obstacles are held in
a list. The position of an obstacle is relative to the position of the robot on the field plane.
Sources for measurements are visually recognized robots and sensed contacts with arms and
feet. Arm and foot contacts are interpreted as an obstacle somewhere near the shoulder or foot.
In the prediction step of the Extended Kalman Filter, the odometry offset since the last update
is applied to all obstacle positions. The update step tries to find the best match for a given
measurement by using Euclidean distance and updates that Kalman sample accordingly. If
there is no suitable sample to match, a new one is created. Due to noise in images and motion,
not every measurement might create an obstacle if no best match was found. To prevent false
positive obstacles in the model, there is a minimum number of measurements within a fixed
duration required to generate an obstacle. If an obstacle was not seen for some time, it is
removed. This might also happen if an obstacle cannot be perceived although its estimated
position is in the current field of view.

Measurements of visually recognizing robots also include a team identification based on the
known jersey colors of both playing teams, which is sent by the GameController. If the vision
system was not able to clearly determine a team identification, this value is set to unknown.
As the team identification cannot be robustly detected, this information is quite noisy and thus
becomes averaged over multiple measurements that are associated to a hypothesis. However,
currently, the behavior does not include this particular information for decision-making.

5.3.2 Global Obstacle Model

As in some situations, a local model as base for team cooperation is not sufficient, an additional
global obstacle model – the TeamPlayersModel – is computed by the TeamPlayersLocator,
which makes use of communicated percepts.

5.3.2.1 Positions of Teammates

For the coordination of the own team, for instance for the role selection or for the execution of
certain tactics such as set plays, it is important to know the current positions of all teammates.
Computing these positions does not require special calculations such as filtering or clustering,
because each robot sends its already filtered position to the teammates via team communi-
cation. This means that each robot is able to get an accurate assumption of all positions of
its teammates just by listening to the team communication. Besides to the coordination of the
team, the positions of the teammates are of particular importance for distinguishing whether
perceived obstacles belong to own or opponent players.

5.3.2.2 Positions of Opponent Players

In contrast to the positions of the teammates, it is more difficult to estimate the positions of the
opponent players. The opponent robots need to be recognized by vision to compute their posi-
tions. Compared to only using the local models, which are solely based on local measurements
and may differ for different teammates, it is more difficult to get a consistent model among the
complete team based on all local models. For a “global” model of opponent robot positions,
which is intended here, it is necessary to merge the models of all teammates to get accurate
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positions. The merging consists of two steps, namely clustering of the positions of all local
models and reducing each cluster to a single position.

For the clustering of the individual positions, an ε-neighborhood is used, which means that all
positions that have a smaller distance to each other than a given value are put into a cluster. It
is important for the clustering that only positions that are located near a teammate are used.

After the clustering is finished, the positions inside each cluster that represents a single oppo-
nent robot have to be merged to a single position. For this reduction, the covariances of the
measurements are merged using the measurement update step of a Kalman filter. The result
of the whole merging procedure is a set of positions that represent the estimated positions of
the opponent robots. In addition, the four goal posts are also regarded as opponent robots
because they are obstacles that are not teammates.

5.4 Field Coverage

Since the introduction of the new ball in 2016, it is not possible to detect it across the whole
field. In addition, there exist several configurations that obstruct ball detection from certain
perspectives, such as a ball behind another robot. As a consequence, there are more periods
of time during which no robot knows the current ball position. To overcome this problem, we
carry out a cooperative ball search (as presented in [13]), which takes into account which parts
of the field are actually visible for each robot and accordingly computes search areas for each
individual robot. Due to the team-wide ball model TeamBallModel, a robot only needs to actively
search for the ball if all team members lost knowledge of the ball position. Consequently, if a
robot is searching, it can be sure that its team members do the same. Knowing which parts
of the field are visible to the team members, searching the ball can happen dynamically and
effective.

5.4.1 Local Field Coverage

To keep track of which parts of the field are visible to a robot, the field is divided into a very
coarse grid of cells, each cell is a square of size 0.25 m2. To determine which of the cells are
currently visible, the current field of view is projected onto the field. Then, all cells whose center
lies within the field of view are candidates for being marked as visible.

There may be other robots obstructing the view to certain parts of the field. Thus, depending on
the point of view of the viewing robot, another robot may create a “shadow” on the field. No cell
whose center lies within such a shadow is marked as visible. An example local field coverage
is depicted in Fig. 5.3.

Having determined the set of visible cells, each of the cells gets a timestamp. These times-
tamps are later used to build the global field coverage model. They are also used to determine
the cell, which has not been visited the longest, to generate the head motion for scanning the
field while searching for the ball.

A special case is the ball’s movement as represented in the BallModel. If the ball touches a
cell, its timestamp is set back to zero. This way, if the ball is lost while moving, the robots will
search for it along its last known path first.
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Figure 5.3: The local field coverage grid after walking around on the field. The more intense
the red borders of the cells are, the less these cells are covered. Two opponent robots prevent
cells on the top right of the field from being marked as visible.

5.4.2 Global Field Coverage

To make use of the field coverage grids of the other robots, each robot has to communicate
its grid to its teammates. To do so, each robot maintains a global field coverage grid, which is
incrementally updated in every team communication cycle and includes all information from its
own local field coverage. This global grid looks roughly the same for all teammates. Hence,
calculations based on the grid come to sufficiently similar results for all teammates.

The merging of the grids is done simply by looking at the time stamp of each cell in the existing
global grid and a received local grid. If the received cell has a more recent timestamp, it is
carried over to the global grid.

Given the current field dimensions, 4 byte time stamps, and a cell’s edge length of 0.5m, there
are 4 bytes ∗ 6m∗9m

(0.5m)2
= 864 bytes that have to be sent in every team communication cycle in ad-

dition to all other communication our robots do during gameplay. Since the resulting bandwidth
requirement would be beyond the bandwidth cap set by the current rules, the time stamps for
every grid cannot be sent. Sending only one line of the grid per message to reduce the size,
is not possible anymore because it would result in an update rate of twelve seconds for the
whole field what is not acceptable. Instead, only one timestamp is sent on the beginning of
the message and for every grid is sent an offset of two bits. The two bits represents if the grid
was scanned within the last second, the last five seconds, the last twenty seconds or not. This
inaccuracy is acceptable because it results in a smaller size of only 2 bits ∗ 6m∗9m

(0.5m)2
+ 4 ∗ 8 bits =
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464 bits what is equal to 58 bytes.

5.5 Whistle Recognition

Our approach for detecting the referee whistle is based on the correlation between the robot’s
current audio input and several previously recorded reference whistles. The whistle recognition
is implemented in the WhistleRecognizer module, providing the Whistle representation. In
addition to this detection of an individual robot, we also implemented a joint decision of the
team whether a whistle was detected or not.

5.5.1 Correlating Whistle Signals

For the whistle detection, we use a cross-correlation. To calculate the correlation between a
given whistle signal and a actual recorded signal in a fast way, we transform the actual signal
into the frequency domain, multiply it with each reference whistle signal stored as conjugate
complex and transform it back into the time domain, where we detect the compliance with the
reference signal.

First, we need a reference signal sref . The reference signal is also recorded by the robot,
where we take a window length of N samples. We use the sampling frequency fs to which the
actual sampling frequency of the robot’s audio hardware is downsampled.1 The input signal
is normalized by its maximum amplitude smax = maxi |sref [i]|, because we assume that the
whistle is the loudest noise and it should always appear similarly strong in the input.

s′ref [k] =
sref [k]

smax
(5.4)

The signal must be extended with zeros by length N , because the result of the correlation is
twice the window length. In addition, correlating signals by Fourier-transforming them results
in a cyclic correlation, which is avoided by the zero padding. This signal is transformed to
the frequency domain by a Fast Fourier Transformation (we use the highly efficient FFTW3
implementation by [5]).

F(s′ref [n]) = Sref [k]. (5.5)

The underline denotes complex values. This signal is stored as a reference and has not to be
recalculated in every step. For the actual recorded signal sact, we first check whether the signal
is loud enough, i. e. smax must at least reach the predefined volume threshold smin. If it does,
we use the same procedure as for the reference signal, i. e. normalization, zero padding, and
transformation into the frequency domain to get Sact. We make use of the fact that a correlation
can be represented by a convolution using one signal in reverse order. The advantage of a
convolution is that it can be calculated easily in the frequency domain by just multiplying the
signals. As we do not want to store the signal in reverse order, we can transform the reversion
into the frequency domain, too. Thus, we get

s′ref [n] ∗ s′act[−n] = Sref [k] · S∗act[k], (5.6)

where S∗act denotes the conjugate complex of the signal. As it does not matter which signal is
conjugated, we store the reference signal as conjugate. Multiplying both signals gives us the
result in the frequency domain and the inverse Fourier Transform is the correlation result scorr

1Downsampling is only supported by integer factors. In regular games, audio data was recorded at 8 kHz and
was not downsampled at all.
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Figure 5.4: Correlation between the current signal and four pre-recorded reference whistle
signals over 100 detection frames (128 ms frames that overlap by 50%, i. e. 64 ms steps).
During this time, a whistle has been blown twice, but sounded slightly differently. The correlation
results are divided by the detection threshold, i. e. values above 1 mean detected. The volume
threshold was deactivated for this plot.

in the time domain, of which the maximum gives the strongest correlation (we actually use its
square root).

The best result can be achieved if the reference signal is equal to the actual signal or the
negative actual signal. Using this value, which is the autocorrelation value, and dividing the
correlation signal scorr by this factor, we always get a ratio of the best possible result. An ex-
ample is depicted in Fig. 5.4, where correlation values were additionally divided by a detection
threshold. As step by step formulation, we have the following implementation in discrete form:

smax = max
i
|sact[i]|

s′act[k] =
sact[k]

smax
s′′act[n] =

(
s′act[k] 0N

)
Sact[k] = F

(
s′′act[n]

)
scorr[n] = F−1 (Sact[k] · S∗ref [k])

ϕcc =

{ √
max(|scorr[n]|)
ϕacmax

if smax ≥ smin
0 otherwise

ϕ denotes the correlation value for the cross correlation and the auto correlation of the reference
signal respectively. The parameters n and k are discrete time and frequency respectively.

The correlation procedure is repeated for each audio channel (we used two) and every stored
reference whistle. The computed Whistle representation contains the information about the
signal that has the best average correlation for all channels. The module’s required computing
time scales linearly with the number of reference whistles. During RoboCup 2019, we used the
reference signals of four different whistles. However, all computations are only executed during
the game’s SET state.
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5.5.2 Team Consensus

To decide whether a whistle has been blown, we do not rely on the detection of each individual
robot alone. Instead, we take all detections on the different audio channels of each robot into
account. Each robot broadcasts on how many channels it is actually listening. This number
can be lower than the maximum if microphones are broken or if the robot is currently playing
back sound (then, it is not listening). The robots also broadcast the last correlation value that
was above their detection threshold and when this happened. From this information, each robot
can collect the detections within a certain time window and weight the correlation values by the
number of channels each robot was listening on. The weighted average must then be above
a second threshold for a whistle to be detected by the team. For this to work, the detection
threshold for the individual robots must be lower than the threshold for the joint detection, so
that robots also broadcast whistle detections that they are not sure about, but that can support
stronger detections of their teammates.
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Chapter 6
Behavior Control

The part of the B-Human system that performs the action selection is called Behavior Con-
trol. Its modules also run in the context of the thread Cognition. The behavior is composed
of units called skills and cards (cf. Section 6.1) which run in the modules BehaviorControl

and TeamBehaviorControl. Additionally, there are some auxiliary modules that provide
representations and functionality to the main behavior or do post-processing, such as the
PathPlannerProvider (cf. Section 6.3), the CameraControlEngine (cf. Section 6.4), and the
LEDHandler (cf. Section 6.5).

This chapter begins with an overview of the concepts and software framework that are used to
specify the behavior. The main part describes the contents of this system that constitute the
soccer behavior used by B-Human at RoboCup 2019.

6.1 Skills and Cards

Decomposition and hierarchy are necessary to specify behaviors for complex tasks such as
playing soccer. From 2013 to 2017, B-Human used a single hierarchy of CABSL [20] options
to specify the behavior. This approach had some shortcomings: Adding or removing high level
behaviors required modification of other options. This also meant that an option would often
be in a different place than the conditions under which it would become active, which is not
easy to maintain. Furthermore, some behaviors are simply not suitable to be modeled with
finite state machines, need large calculations, or keep additional state. Some functionality
was therefore outsourced to so-called libraries, which also spread closely related code across
different places. Another minor point were static parameters that are normally defined explicitly
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in order to be able to load them from a configuration file or modify them from the simulator (cf.
Section 3.3.5). Since the complete behavior was a single module, parameters for all options
had to be defined in a single place (actually, a representation BehaviorParameters existed for
that purpose). However, it was rather impractical to have all those parameters in one large file,
and thus seldom used.

In 2018, we already started to move away from a single hierarchy of CABSL options (cf. [24,
p. 34]). The main problem with the behavior options in 2018 was that they could not be passed
any parameters, making them useless for behaviors such as walking to a point or doing a spe-
cific kick. On the other hand, this anonymity was a desired property to achieve exchangeability
of behavior components. We realized that it might not be a good idea to try to fit all behavior
levels in the same formalization, but instead split the behavior into two layers: one that would
decide what the robot should do, where options could easily be added or removed, and another
one that would realize how the robot fulfills this request. This insight has been the foundation
of our new behavior framework which we call the Skills and Cards system.

6.1.1 Skills

A skill is a behavior component that executes a task because a higher-level component re-
quests it to do so. It can be passed parameters by its caller. Skills can call other skills to further
decompose the behavior into sub-tasks, forming a hierarchy eventually filling the low-level com-
mands to the motion system. Technically, skills consist of two code constructs: a skill interface
and a skill implementation. The interface exports the signature by which it can be called by
other skills. This also allows to have multiple implementations for the same skill without the
callers needing to know which of them they should use.

Skill interfaces are declared in the Skills namespace in the file Representations/BehaviorCon-
trol/Skills.h using the SKILL INTERFACE macro. The first argument to the macro is the name of
the skill. Optional further arguments specify the parameters that the skill takes, starting with
the type in parentheses followed by its name (similar to the definition of members in streamable
classes, cf. Section 3.4.3). Default arguments are possible by specifying the default value in
parentheses after the type, but as usual, can only be followed by other default arguments. This
is an example:

namespace Skills

{

SKILL_INTERFACE(GoToBallAndKick , (const Pose2f &) kickPose ,

(KickType) kickType ,

(float)(10000.f) length);

}

This macro actually declares a struct with the given skill name that functions as container for
the parameters. Additionally, a class called <name>Skill is generated which is a proxy object
that dispatches external calls to the skill implementation.

The definition of a skill interface is similar to that of a module (cf. Section 3.3.2), i. e. a base class
is macro-generated which is inherited by the actual implementation. The following statements
are available in a skill interface definition:

IMPLEMENTS declares that this class contains an implementation for a specific skill interface. It
adds the virtual methods reset, isDone, isAborted, preProcess and postProcess and
the pure virtual method execute. Each of them takes a constant reference to the skill
interface, allowing a method to access the values that have been passed to the skill and
overloading them in case multiple skills are implemented in the same class. preProcess
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and postProcess are called every frame before respectively after the behavior is exe-
cuted. This is useful e. g. to declare debug drawings. reset is called immediately before
execute if the skill has not been called in the frame before. isDone and isAborted can
report the status to the caller.

CALLS declares that this skill implementation calls another skill. It is available under the name
the<name>Skill and can be called with the function call operator. The status can be
queried with isDone and isAborted.

REQUIRES declares that this skill implementation accesses a representation that has to be pro-
vided before the behavior is run.

USES declares that this skill implementation accesses a representation which does not neces-
sarily have to be updated before the behavior is run.

MODIFIES declares that this skill implementation modifies a representation that is provided by
the module in which the skill is run. This is restricted to the representations that are part
of the SkillRegistry.

DEFINES PARAMETERS and LOADS PARAMETERS have exactly the same meaning as in module
definitions. However, LOADS PARAMETERS prepends BehaviorControl/ to the generated
file name.

Skill implementations have to be published to the system using the
MAKE SKILL IMPLEMENTATION macro which takes the name of the skill implementation
class as an argument. The following is an example of a skill implementation:

SKILL_IMPLEMENTATION(GoToBallAndKickImpl ,

{,

IMPLEMENTS(GoToBallAndKick),

CALLS(Stand),

CALLS(WalkToTarget),

REQUIRES(MotionInfo),

REQUIRES(RobotPose),

MODIFIES(MotionRequest),

});

class GoToBallAndKickImpl : public GoToBallAndKickImplBase

{

void execute(const GoToBallAndKick& p) override

{

if(isReadyToKick(p.kickPose , p.kickType) ||

(theMotionRequest.motion == MotionRequest ::kick &&

theMotionInfo.motion != MotionRequest ::kick))

{

theMotionRequest.motion = MotionRequest ::kick;

theMotionRequest.kickRequest.kickMotionType = p.kickType;

}

else

theWalkToTargetSkill(p.kickPose);

}

};

MAKE_SKILL_IMPLEMENTATION(GoToBallAndKickImpl);

There can be multiple implementations for the same skill. To select which one should be used,
the file skills.cfg exists. Skills that only have one implementation must not be mentioned in this
file. It looks like this:
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skillImplementations = [

{skill = WalkToPoint; implementation = WalkToPointImpl ;},

];

6.1.2 Cards

A card is a behavior component that associates actions with the conditions under which they
should be executed. While skills execute requests, cards can decide for themselves whether
they should be run. The following example illustrates this: The GoToBallAndKick skill takes
a kick pose and a kick type as parameters. It does not decide whether and where to kick.
In contrast, the KickAtGoalCard evaluates whether it is possible to do so and then calls the
GoToBallAndKick skill with the appropriate parameters. Of course, the GoToBallAndKick skill
is also called from other cards, such as passing to a teammate.

Technically, this conceptual difference to skills manifests in the following ways:

• Cards cannot take parameters and do not need separate interface declarations. Since a
card contains only one behavior, its methods do not take a parameter as no overloading
is necessary.

• Cards cannot modify output representations (they should call skills for that).

• Cards are invoked in a different way than skills (not via the CALLS macro).

• Cards do not have the isDone and isAborted methods.

• Cards have the preconditions and postconditions methods to influence when they are
run. The preconditions specify the conditions under which the card can be entered, i. e.
whether it should be run when it was not active in the previous frame. The postconditions
specify the conditions under which the card should be left, i. e. whether it should not be run
when it was active in the previous frame. By default, the postconditions are the negation
of the preconditions.

Otherwise, the definition of a card is very similar to that of a skill:
CARD(KickAtGoalCard ,

{,

CALLS(GoToBallAndKick),

REQUIRES(BallModel),

REQUIRES(RobotPose),

DEFINES_PARAMETERS(

{,

/** Distance of the ball to the goal to enable kicking. */

(float)(3000.f) maxGoalDistance ,

}),

});

class KickAtGoalCard : public KickAtGoalCardBase

{

bool preconditions () const override

{

return (theRobotPose * ballPosition

- Vector2f (4500.f, 0.f)).norm() < maxGoalDistance;

}

bool postconditions () const override

{
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return (theRobotPose * ballPosition

- Vector2f (4500.f, 0.f)).norm() > maxGoalDistance + 1000.f;

}

void execute () override

{

const Pose2f kickPose = getKickPoseFromBallAndDirection(ballPosition ,

(theRobotPose.inversePose * Vector2f (4500.f, 0.f)

- ballPosition).angle (), KickType :: walkForwards);

theGoToBallAndKickSkill(kickPose , KickType :: walkForwards);

}

const Vector2f& ballPosition = theBallModel.estimate.position;

};

MAKE_CARD(KickAtGoalCard);

To build hierarchies of cards the system uses so-called decks and dealers. Decks are collec-
tions of cards that a dealer can choose from. The only dealer that is currently implemented is
the PriorityListDealer. It simply takes the deck as a list sorted from highest to lowest priority
and selects the highest priority runnable card, where runnability is determined based on the
preconditions and postconditions. A deck can have the sticky property which leads to slightly
different behavior in the dealer: Before going through the deck, it checks whether the postcon-
ditions of the card from the previous frame are still not fulfilled, and if so, it is dealt again. This
means that the previously selected card can continue to run even if there are higher priority
cards that can also run.

6.1.3 CABSL

For skills as well as cards, there are specialized dialects of CABSL [20] to specify their internal
behavior. Since modularity is already achieved through decomposition into skills and cards,
calling options from other options is not supported in both of them. The macros are defined
in Tools/BehaviorControl/Framework/Skill/CabslSkill.h and Tools/BehaviorControl/Framework/-
Card/CabslCard.h, respectively. Only one CABSL header can be included per compilation unit,
and it should be the last included file.

When defining a CABSL option in a skill, the argument of the option macro must match the
name of the skill that it implements. Therefore, within a skill implementation class one can de-
cide individually per skill whether it shall be CABSL option or not. Within the option, parameters
can be accessed via the variable p, as it is conventionally called in skills. Using CABSL for a
skill automatically overrides the execute, reset, isDone and isAborted methods. Note that
the body of an option is just a method, so if some calculations need to be done before the
execution of the state machine, code can be added after the opening brace of the option block.

In a card, the option does not even take an argument because it is already identified by the
name of the card and there can only be one option per card. Target states and aborted states
do not exist in cards, either. Only the execute method is overridden, the preconditions and
postconditions must be specified additionally as usual.

6.2 Behavior Used at RoboCup 2019

The complete cards and skills system is instantiated twice in the B-Human software: once
for the individual robot behavior in the module BehaviorControl, and once for the team be-
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havior in the module TeamBehaviorControl. All macros, types and files thus exist with the
prefix TEAM , Team or team, too. Technically, they differ in the representations that skills have
writing access to: The individual behavior can write to the representations MotionRequest,
ArmMotionRequest, HeadMotionRequest, BehaviorStatus and TeamTalk, while the team be-
havior can only set the TeamBehaviorStatus.

The remainder of this section starts with a description of our team behavior and the upper
levels of the individual behavior that handle situations in which the robot is not playing. Then,
the different roles as used during normal play are presented, followed by the special handling
in free kicks, kick-offs and the ball search. This section concludes with our penalty shoot-out
behavior.

6.2.1 Team Behavior

The team behavior determines which role in the team a robot should take in order to contribute
to the team winning the game. On the topmost level, our 2019 behavior distinguishes between
three roles:

1. The striker plays the ball.

2. The goalkeeper stays mostly in the own penalty area to block long distance shots, inter-
cepts the ball if it would otherwise reach the own goal, and clears the ball if it is close to
the penalty area.

3. Supporters take positions on the field to help the team. Supporters get an additional
index that indicates how far back or forward they are in relation to their teammates. Most
supporter cards use the index in their pre-/postconditions, e. g. the rearmost supporter in
the team should usually be defender, while the foremost robot can take a position upfield.

A role thus comprises the flags playBall, isGoalkeeper and the number supporterIndex

(which should be−1 if one of the flags is set). Additionally, the number numOfActiveSupporters
is calculated, which enables reversing the index.

Different team cards can implement different role assignment methods. The PlayingTeamCard

assigns the striker role according to the time it takes to reach the ball, while the KickoffCard

that runs during the ready state assigns the striker role to the robot closest to the kick-off
position. In both cases, the supporter indices are calculated by sorting all supporters by their
global x-coordinate, where the comparison function adds a stability offset to favor the previous
relation.

6.2.2 Superordinate Individual Behavior

At the topmost level, the module BehaviorControl is a state machine to handle some conve-
nience and safety mechanisms and penalties. The following states exist:

Inactive: Initially, the robot is in a “dead” state with all joints off. Pressing the chest button once
will transition it to the gettingUp state.

Getting Up: The robot interpolates to a stand motion and transitions to the playing or
penalized state. This state has nothing to do with robots that are fallen.

Playing: This is the main state of the behavior. The configured root card is called.
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Penalized: The robot stands with stretched knees until its penalty is removed.

Sitting Down: Pressing the chest button thrice in the penalized, playing and gettingUp

states lets the robot sit down and transitions to the inactive state.

Low Battery: This state is entered from the penalized and playing states if the code is com-
piled with assertions and the battery level is below 1%. The robot sits down and transitions
to inactive.

Broken Camera: This state is entered from the penalized and playing states if one of the
cameras has stopped working. The robot sits down and transitions to inactive.

The root card is normally the GameControlCard. This card does nothing more than dealing from
a deck in its configuration file gameControlCard.cfg. There are cards for the game states initial,
finished and set, which basically request the robot to stand. The FallenCard becomes active
when the robot is fallen and requests a get-up motion (cf. Section 8.6). The penalty shoot-out
cards (cf. Section 6.2.9) are also included directly in this deck (just below the SetCard). Finally,
if the game state is ready or playing, the robot is upright and no penalty shoot-out is ongoing,
the GameplayCard becomes active.

The GameplayCard represents the hierarchy level on which the robot can actually choose its
behavior, i. e. do more than just standing around. It is also a dealer, but has five decks:
ownKickoff and opponentKickoff for the ready state, ownFreeKick and opponentFreeKick

for free kicks, and normalPlay for all other situations.

6.2.3 Striker

The striker is the robot which plays the ball, as long as the goalkeeper does not want to do this.
All striker cards check the playBall flag of the TeamBehaviorStatus to check whether they
should run. A general pattern is that decisions are made from the ball’s point of view in polar
coordinates. Calculating from the ball has the advantage that the decision does not significantly
change as the robot approaches the ball. Using polar coordinates is motivated by the fact that
a kick decision is easy to represent by a direction and the kick range. Additionally, most cards
use the expected end position of the ball if it is moving, in order to avoid walking to the ball on
an arc.

Sector Wheels

The utility class SectorWheel handles the common task of calculating which sectors (i. e. an-
gular intervals) are free to play the ball to, are blocked by opponents, are part of the goal etc.
Each sector has a distance and a type. All sectors form a complete partition of the angle space
from −π to π. A SectorWheel is initialized with the ball position which becomes the center of
the wheel. Then, sectors can be added by passing either positions including their radius or
angular intervals directly. The SectorWheel calculates occlusion between existing sectors and
the new one based on their distances, such that the final wheel describes exactly the “visible”
objects from the center’s view.

Determining Goal Post Tangents

When the striker wants to move the ball towards the goal, it is important to correctly calculate
the angular range in which the ball can enter the goal. Instead of simply taking the angles of
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the goal post centers relative to the ball, the goal post tangent angles are calculated, i. e. the
angles at which the ball’s edge touches the inner goal post edges in one point. As the goal post
tangent is perpendicular to the line between the goal post’s center and the ball’s hypothetical
position next to the goal post, having radius rpost and rball respectively, the angular offset to the
angle between goal post center and ball is

∆θ = arcsin(
rpost + rball
|xpost − xball|

).

Situations in which, due to world model errors, the ball position is already inside the goal post,
are handled separately anyway (as the arcsin argument would be larger than 1).

In the following, all cards that constitute the striker behavior during normal play are described
in the order of their priority:

HandleBallAtOwnGoalPostCard: When the ball is near one of the own goal posts, it is not
possible to select arbitrary kick directions because the robot can not stand inside the
goal posts. Furthermore, it is rather urgent to clear the ball in those situations, such that
quickness is a major concern. Therefore, as soon as the ball is within a 50 cm circle
around the goal posts, this card is activated.

First, the target sector is calculated, which is between the global x-axis and the outer
tangent of the goal post which is being avoided. Then, a SectorWheel with obstacles is
created, which serves as a template for the following calculations. The remaining part
of the card determines the fastest kick that moves the ball in the target sector and does
not need to stand in the goal post. Only the forward, turn and sidewards in-walk kicks
are considered, because KickEngine kicks would take too long and do not provide an
advantage in these situations. On the other hand, the three kicks make it possible to
clear the ball from anywhere around a goal post. Thus, for each kick, the SectorWheel

is completed by erasing the sector that would require invalid kick poses. This sector can
be calculated from an approximated convex robot shape, the angle of the ball relative to
the goal post and the offset of the robot to the ball that is necessary to execute that kick.
For the remaining sectors, the kick pose that can be reached first is calculated. Among
all valid kicks, the fastest is selected and finally executed.

DuelCard: A duel is a situation in which an opponent is close and ball possession has to
be gained or defended. In fact, any obstacle can trigger a duel regardless of its team
affiliation. To enter a duel, an obstacle must be in a certain area around the robot, the ball
must be close and the robot not too close to one of the penalty areas. The duel is left if
either the ball is far away or there are no obstacles in a range slightly larger than the one
needed to activate it.

The duel behavior itself is based on the evaluation of a rating function for a number of
potential kicks and kick directions. The rating comprises a static component that depends
only on the position on the field and a dynamic component based on the distances to
obstacles and teammates (cf. Fig. 6.1). The search space is an angular range for the
robot’s rotation during the kick, centered around its current rotation. The size of the range
varies between 0◦ and 30◦ depending on the current distance to the ball (the closer the
ball already is, the less change in direction is desired). For all possible in-walk kicks, kick
poses in the range are sampled and evaluated by the expected ball position after the kick.
The best combination of kick pose and kick according to the rating is then executed.

KickAtGoalCard: The primary goal of the striker is to score whenever possible. This card
tries to achieve this by evaluating which parts of the opponent’s goal are not covered by
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Figure 6.1: The duel rating function evaluated on a grid over the field. Blue means a low rating,
red is a high rating.

obstacles and whether there are kicks available that have the required range to make the
ball cross the goal line. Due to the kick-off goal rule (cf. [2, p. 27]), the card must not
become active as long as the ball has not left the center circle since kick-off.

First of all, the card checks whether the ball is already ahead of the front edge of the
goal posts, which has two sub-cases: If the ball is next to the goal or there is no space
between the goal post tangents, it is impossible to score directly from there, so the card
indicates via its pre-/postconditions that it should not be executed. If the ball is between
the goal posts (i. e. the ball is already on the goal line), a goal can be scored in any
direction between the goal post tangents (clamped to ±90◦). In the latter case, a kick
pose is calculated for each available kick and among them, the best one is selected.

In the default case, the ball is not on the ground line, such that both goal post tangents
are in the ±90◦ range. An important idea for the following steps is a technique we call
obstacle culling, which is motivated by some observations:

1. Kicking the ball over large distances is imprecise. If it is aimed at some gap between
an obstacle and a goal post, it is unlikely to hit that gap exactly. On the contrary, if it
is aimed at an obstacle, it might as well be deflected in our favor, perhaps entering
the goal.

2. When still far away from the goal, it is already an improvement to get the ball into the
opponent’s penalty area.

3. It is often a very strong move to make the opponent’s goalkeeper dive for the ball.

Therefore, obstacles that are close to the opponent’s goal do not necessarily need to be
considered if the ball is still far away. This behavior is achieved by defining a line that is
parallel to the ground line, beyond which obstacles may be removed if they prevent a suf-
ficiently large kick sector from being found. The x-coordinate of the cull line is interpolated
between the opponent’s penalty mark and the ground line depending on the x-coordinate
of the ball.
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To prepare the calculation of the target kick sector, all known obstacles are transformed
to their angular range from the ball’s perspective, together with their distance from the
ball and their global x-coordinate (they are already discarded at this stage if they do not
intersect with the goal range). Then, SectorWheels with the remaining obstacles are cal-
culated iteratively, each time removing the obstacle with the largest global x-coordinate,
until either a sufficiently large sector has been found or there are no more obstacles be-
hind the cull line.

The result of this process is a list of possible kick sectors (which might be empty; kicking
at the goal is not preferred then). They are sorted by their angular size (with a stability
bonus for the sector which contains the previous kick direction) and traversed until either
the size becomes too small to be reasonably certain that the kick will be inside the sector’s
bounds or a suitable kick with sufficient range could be found for a sector.

For each sector, every kick must be evaluated. The range of a kick can further reduce the
sector’s size, which makes a difference especially when the ball is close to a sideline. After
incorporating this, a safety margin is subtracted from the sector boundaries, representing
uncertainty in the kick direction. From the resulting angular range (which might have been
contracted to a point now) a kick pose is calculated. All possible kicks for a sector are
compared by the time it takes to execute them and the fastest one is finally chosen. Only
if no kick has the required range for a sector, the next (smaller) sector is examined.

PassUpfieldCard: If no direct shot at the goal is possible for the current striker, there may be
supporting teammates closer to the goal which could receive passes. Our robots do not
try to kick directly at the receiving robot, but instead target a region between the robot and
the goal, such that, upon reaching the passed ball, the receiver can consequently play
towards the opponent’s goal without needing to walk around the ball.

The pass receiver has to fulfill a number of criteria:

1. Its global x-coordinate must be ahead of the ball (meaning that it is “upfield”).

2. In an intermediate step, it is determined whether the pass should arrive left or right of
the receiver (left and right are well-defined after the previous check). The calculation
uses the current rotation of the receiver candidate and whether its position is left
or right of the line between the ball and the goal. Based on this decision, a pass
direction (aiming a bit to the previously determined side of the receiver) and the
hypothetical ball position after the pass are calculated.

3. Its position must be closer to the ball after the pass than before.

4. There must not be any obstacles in the sector around the planned ball trajectory.

Each of the criteria includes some stability offsets depending on the previous decision in
order to keep a pass plan even under uncertainty. If a teammate is found that the ball
can be passed to, a matching kick pose and kick type are selected (currently only forward
kicks from the KickEngine are considered) and executed using the GoToBallAndKick

skill. Additionally, the player number of the targeted robot and the expected ball position
after the pass are communicated to the team.

DribbleToGoalCard: If it is neither possible to score a goal nor there is a teammate to pass
to, the robot has no choice but to get the ball and itself to a better position by dribbling.
This card has no further conditions than being executed by the ball-playing robot and can
always run. Its main task is therefore to determine the direction in which the ball should
be dribbled.
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To that end, an angular interval is calculated from which the final direction is chosen to
require minimal rotation from the robot’s current pose. The interval calculation is based
on the idea that while being far from the opponent’s goal, it is not that important to dribble
towards the goal, but merely in the opponent’s direction. The closer the ball comes to the
goal, the more the range narrows down to the goal post tangent angles. This introduces
a natural way of playing along the outer parts of the field, depending on the initial rotation
of the dribbling robot. In order to be useful in the opponent’s corners, the goal post radius
is artificially increased depending on the global y-coordinate of the ball. This rotates the
goal post tangent away from the ground line to reduce the danger of moving the ball out
of the field (which nevertheless occurs when the robot hits the ball with the wrong foot
before the actual dribble step, but this is rather a skill issue) and get a better score angle.
The resulting interval has a minimum size which is enforced by extending it to the side of
the far goal post (i. e. if the ball is in the right half of the field, the left angular boundary
is rotated further counterclockwise to yield the minimum size). There is special handling
when the ball is close to the goal to avoid dribbling it out of the goal when it is already
on the goal line and to keep stable decisions when it is close to a goal post. However, it
should be noted that imprecise localization near the goal posts is always bad, as only few
centimeters make the difference between playing the ball in opposite directions.

Figure 6.2 shows some sample ball trajectories that could result from this card being
played. The DribbleToGoalCard does not do any obstacle avoidance. As soon as an
obstacle is close, the DuelCard becomes active anyway.

Figure 6.2: Trajectories along which the ball can move by the DribbleToGoalCard.

6.2.4 Goalkeeper

The goalkeeper behavior consists of five cards, which are described here ordered by priority:

KeeperCatchBallCard: The most important task for a goalkeeper is to prevent the ball from
entering the own goal. Since only a very small fraction of the goal can be covered by
standing and it is not allowed to stand in a wide stance for more than 5 seconds as per
the rule book [2, p. 29], the robot has to deliberately execute motions when a ball is

100



6.2. BEHAVIOR USED AT ROBOCUP 2019 B-Human 2019

moving towards the own goal in danger of entering it. This is the case when the ball is
rolling towards the goal and such that it will cross the robot’s y-axis in the near future. To
avoid spurious actions due to a wrong ball state estimate, the condition to intercept the
ball must hold continuously for 100ms. During this time, the arms are already raised to
accelerate the following potential dive. The robot has the choice between three actions:
Jumping left or right, such that the robot lies on the ground with an outstretched arm,
and sitting down with the legs spread. The decision is made according to the predicted
y-coordinate where the ball will pass the goalkeeper. Additionally, if a jump would hit a
goalpost, it is inhibited.

KeeperSearchForBallCard: The goalkeeper has its own ball search behavior that becomes
active if the whole team has not seen the ball in a while. The goalkeeper wants to reach
a position on its own goal line to get the best possible overview of its own half. To get
there, however, care must be taken to avoid scoring own goals when the ball lies behind
the goalkeeper. Therefore, the goalkeeper does not walk backwards, but instead, makes
some steps away from the goal first, then turns around to its target on the goal line (pos-
sibly finding the ball and returning to normal play), and finally walks there. This state can
only be left after the ball has been seen again.

KeeperClearBallCard: In some cases, the goalkeeper itself must play the ball instead of the
striker. For this to happen, in addition to expecting to reach the ball before the current
striker, the goalkeeper and the ball must be close to the penalty area. If necessary,
this card applies the same special handling as the HandleBallAtOwnGoalPostCard does.
Otherwise, the kick that is selected from the KickPoseProvider [24, p. 36] will be exe-
cuted (which is the only remaining use of this module, thus it is not described in detail
here).

ReturnToGoalCard: If the goalkeeper is currently far from its penalty box (e. g. after a penalty),
it wants to get back there as quickly as possible.

GuardGoalCard: The default behavior of the goalkeeper is to cover the goal, i. e. to stand at a
position where the part of the goal that is covered and the potential for intercepting the ball
is at its maximum. This is calculated by the GoaliePoseProvider in the representation
GoaliePose. It is always on the bisector between the lines from the ball to the goal posts.
The x-coordinate is restricted to be at least as much behind the front penalty area line
to be able to detect it in order to improve the localization. The positioning is illustrated in
Fig. 6.3.

6.2.5 Supporter

Supporters help the team by positioning in strategically advantageous locations. Their number
in the team can range from none (if only a goalkeeper and a striker are present) to four (if the
goalkeeper handles the ball and all players are present). The following cards are available:

BlockAfterBallLostCard: It is a common situation that a robot loses a duel against an oppo-
nent in the way that the opponent kicks the ball past it. If the robot loses the striker role
due to this and turns into a supporter, i. e. there is another robot in its team that takes
over the ball handling, it tries to prevent the opponent from reaching the ball, giving its
teammate more time to play the ball. This happens as long as there is an opponent im-
mediately in front of it and no other opponent is known that is closer to the ball. Blocking
is done by moving immediately in front of the opponent, facing it, with the back towards
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Figure 6.3: The goalkeeper position is on the bisector between the lines from the ball to the
goal posts. The areas covered by standing / sitting down with the legs spread / jumping are
colored in green / violet / orange.

the ball. The robot attempts to mirror the movements of the opponent and still keep the
same distance to the ball.

DefendGoalCard: Players that execute this card are also called defenders. They assist the
goalkeeper in covering the own goal to block distant shots at the goal. At least the rear-
most support wants to execute this card, while another player (the second to rearmost)
may join if it is already clearly in the own half or there is at least one more supporter in
the offense. The defender has different modes about which it decides individually based
on the position of the other defender.

The first decision it has to make whether it is left or right (in relation to the goalkeeper-ball
line). A single defender decides for the same side as before as long as the ball is not too
far on the other side. In the case of two defenders, both of them have to be on different
sides, so they compute their (signed) distance to the goalkeeper-ball line and check which
of them is more left than the other. If this difference in distances is significant, the decision
is accepted, otherwise, the y-coordinate of the robots on the field is checked. If they are
still not significantly different, the previous decision is kept. Note that the side used for
the position calculation can differ from this if the ball is near one of the own corners of the
field where standing next to the goalkeeper-ball line would be outside the field.

Next, each robot decides whether it is forward or back. Being forward means having a
larger distance to the own penalty area than standing just in front of it. Only one defender
at a time can be forward, thus, this decision is always in view of two players. For both
players, the current distance from the center of the own goal (the radius) is calculated. If
exactly one of them is larger than a threshold, that player is set to be forward and the other
as back. If, on the other hand, both are below this threshold and the ball is not clearly
in the opponent half, both stay back. In the remaining cases, the robots’ orientations are
checked if one of them is facing the own goal and the other the opponent goal. The one
facing the opponent goal is then selected as forward. Otherwise, the player on the side
where the ball is becomes forward.

While the left / right decision determines which “gap” between the goalkeeper and goal
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post the defender should fill, the forward / back decision influences the distance from the
own goal at which the robot selects its position. A back defender stands on a circle that
has its origin in the center of the own goal and just completely includes the penalty area.
The circle is interrupted by a straight line segment in front of the own penalty area. In
contrast, the radius of a front defender goes almost to the center circle. There is a special
case when there is only one defender and no goalkeeper: The defender will then stand
on the line that would otherwise be covered by the goalkeeper.

Since the goalkeeper has to see the ball in order to react and eventually intercept it, it is
important that its field of view is not unnecessarily occluded by the defenders. Therefore,
they calculate whether their sides are very close to the goalkeeper-ball line and if so, take
the respective arm behind their back.

WaitUpfieldCard: The purpose of this card is twofold: Firstly, it provides a passing opportunity
to the PassUpfieldCard running on the striker. Secondly, it can quickly reach the ball
after a failed goal shot. To select this card, a robot must be the foremost supporter in the
team and the ball must be sufficiently far back on the field. The robot decides for a side
according to whether it is currently left or right of the ball-goal-line, in order not to cross it.
Then, a position is selected on a diagonal line starting at a point on the center line close
to the sideline and ending at a point near the penalty area corner. The x-coordinate of the
position is chosen to keep the distance to the ball within a reasonable range for passes,
which also determines the y-coordinate via the aforementioned line. The orientation of
the target pose makes a compromise between keeping the ball in the possible field of
view and being oriented towards the opponent’s goal.

WalkNextToStrikerCard: The default behavior of a supporter if none of the above is appli-
cable is to stay close to the striker to be available when the striker fails. Similar to the
DefendGoalCard, this card can be played by up to two robots simultaneously and there is
a left and a right mode. If there are two players of this card, the side is determined by the
relative position of the robots to each other. Otherwise, a single robot wants to stay on
the side where it currently is, as long as it is not too far from the center of the field. The
closer the ball gets to the opponent’s goal, the more the robot decides for the inner side.
The position is selected in a fixed distance of the ball, while the angle to it varies to avoid
getting too close to the sideline.

WalkNextToKeeperCard: This card is different to the others in that it is not executed by a
supporter in the team behavior sense, but instead is active on the striker robot when the
goalkeeper plays the ball. There are three modes: blocking, walking left and walking right.
Blocking is selected when the ball is inside or close to the own penalty area. The robot
then walks to a position outside in an attempt to prevent opponents from reaching the ball
before the goalkeeper can clear it. Otherwise, the robot just walks with an offset left or
right to the goalkeeper, depending on the relative position when this card became active.

6.2.6 Free Kicks

Free kicks are a kind of set play that occur during the playing state of the game in response
to either the ball leaving the field of play or a forbidden action. The team that is awarded a
free kick has the exclusive right to the next ball contact for up to 30 s while the other team must
clear the area around the ball. The behavior for free kicks is split into two categories: one for
the behavior during own free kicks (also called offensive) and one for the behavior during a
free kick for the opponent team (called defensive). Both situations have their own deck in the
GameplayCard.
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6.2.6.1 Offensive

Since the rule book [2] defines four causes for a free kick, the offensive free kick behavior is also
divided into four parts. With the exception of the goal free kick each part has a card for a kicking
robot and a card for a supporting robot. Before any of the special behaviors is considered, the
striker evaluates the chances for a direct goal kick and executes it if possible by placing the
KickAtGoalCard (cf. Section 6.2.3) first in this deck. If this is not the case, the striker will
switch to one of the following behaviors (prompting a supporter to execute the corresponding
supporting card):

CornerKickToOwnRobotCard and WaitForCornerBallCard: If the opposing team plays
the ball over its ground line, an offensive corner kick occurs, activating the
CornerKickToOwnRobotCard on the striker. In fact, this behavior is also used for all other
free kicks if they occur close to one of the opponent’s corners. The striker walks to the cor-
ner of the field and positions itself behind the ball in the direction of the field. Meanwhile,
two supporters running the WaitForCornerBallCard move to waiting positions in front of
the goal and near the center circle. Standing behind the ball, the striker determines all
possible directions to which it can kick the ball without hitting one of the opponent robots
using a SectorWheel centered around the position of the ball.

In the first step, the sideline and the goal post closer to the ball are set as boundaries of
the SectorWheel and the area outside the field is declared as unavailable. The next step
is to add all known obstacles on the field. Figure 6.4a visualizes the resulting sectors.
A minimum sector width is defined such that only sectors wider than it are considered
as kick targets. In each frame, the angles from the two sectors closest to the goal are
calculated and then communicated to the supporters. Using this information, they position
themselves behind the kick angle from the viewpoint of the opponent’s goal and maintain
a safety distance. They also keep the same distance to the ball as there is between the
ball and the goalpost.

The kick is executed as soon as the selected angles no longer change significantly. This
is determined by comparing the sector in which the current best kick angle is located with
the sector in which the first kick angle candidate was located in the previous frame. If the
intersection of these sectors is as wide as the minimum sector width, the kick angle is
considered stable. Should this not happen until 15 s before the free kick expires, the kick
will still be executed. As long as no kick angles can be determined at all, the robot waits
until time runs out and then resumes to normal play.

KickInCard and WaitForKickInBallCard: If the ball is played over the sideline by the opposing
team, there is a kick-in at the point where the ball left the field. While up to two robots take
positions in the center and closer to the opposite side line, the striker decides whether to
shoot the ball directly at the goal or to play a robot close to the goal, so that it has the
possibility to shoot at the opponent’s goal or dribble there.

GoalFreeKickCard and WaitForGoalFreeKickCard: If an opponent touches the ball before
it goes out over the own ground line, an offensive goal kick occurs. The striker then
executes the GoalFreeKickCard which walks to the ball and decides whether the goal
kick is executed immediately or after a few seconds. This decision depends on the up to
two teammates executing the WaitForGoalFreeKickCard, which move to fixed positions.
If this target position can be reached before the time for the goal kick has elapsed, then
the striker waits. If the target position cannot be reached in time anyway, the striker plays
the ball forward immediately. Here the striker decides in which direction the ball comes
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(a) The sectors used to determine the kick direc-
tion. Green sectors are considered as targets (pro-
vided they are wide enough), red sectors are occu-
pied by an obstacle.

(b) A 3-D rendering of the left scene

Figure 6.4: Simulated scene of an offensive corner kick

furthest forward based on its teammates and the opponent’s players on the field. The
position of the supporting teammate also plays a role. The teammate should be able to
play the ball after the goal kick in the direction of the opponent’s goal.

PushingFreeKickCard: An offensive pushing free kick is initiated when an opponent pushes
an own robot while being near the ball, in addition to the offending robot being removed.
The robot taking the free kick decides whether to shoot the ball directly at the goal or near
it by calculating a SectorWheel. The ball is shot directly at the goal if there is a possibility
to score a goal. If no direct goal can be scored, a position close to the goal is aimed for
so that a teammate or the kicking robot itself has the possibility to kick the ball into the
opponent’s goal from there.

6.2.6.2 Defensive

The behavior during an opponent’s free kick is always aimed at preventing a goal and does so in
different ways depending on the possibilities available. All ball-playing cards are removed from
this deck, however, there are three special cards in addition to the usual supporting behavior
during normal play:

BuildWallCard: One robot tries to form a wall between the own goal and the ball. This is
subject to the restriction that according to the rule book [2, p. 16], a minimum distance
of 75 cm to the ball must not be violated. The position is chosen just outside the clear
area around the ball in an angle such that the own goal is covered as wide as possible
(cf. Fig. 6.5a). Keeping a robot close to the ball has the additional purpose to regain ball
possession quickly when the free kick is not executed properly.

A special case is when the ball is in one of the own corners, such as in an opponent’s
corner kick. In this case, the robot does not stand between the ball and its own goal but
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walks to a position close to the sideline. The goal is then still covered by the defenders
and the goalkeeper. This is depicted in Fig. 6.5b.

(a) A free kick in field (b) A corner kick

Figure 6.5: Examples of robots positioning as a wall. The red circle marks the area that must
be cleared by the defending team. The dashed orange circle is at the distance and the black
line shows the direction from the ball at which the wall is formed.

BlockRobotFreeKickCard: If a free kick takes place directly in front of the own goal such that
a wall between the ball and the own goal is no longer possible, an attempt is made to
delay or prevent the opponent from taking the free kick. This is done by walking in front
of the opponent which is nearest to the ball. This forces the opponent to walk around the
blocking robot (which continuously adjusts its position) or even makes it lose track of the
ball. If the opponent is already closer to the ball, the free kick can not be defended by any
field player anymore.

MarkUpRobotCard: If there are five robots or more in the defending team, one of them consid-
ers marking an opponent. Candidates are opponents that are closer to the own goal than
the ball and probably not taking the free kick. The goal is to make the robot unattractive as
pass receiver for the opponent or to gain ball possession if a pass is done nevertheless.

6.2.7 Kick-Off

The kick-off is yet another set play. In contrast to free kicks, the kick-off involves a separate
setup phase, which is technically realized through the game states ready and set. Since in the
set state it is forbidden for the robots to locomote, it is handled in the SetCard as mentioned in
Section 6.2.2.

The role assignment in the ready state assigns the goalkeeper to the robot with the player
number 1 and the striker to the robot that is closest to the central kick-off position. The central
kick-off position is directly behind the center spot for an own kick-off and behind the center
circle for an opponent kick-off. The remaining players get their supporter indices as usual. An
exception is when the ready state follows the initial state: All roles including the striker flag and
the supporter indices are then assigned by the player number, as the positions where we put
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the robots at the sidelines are also fixed. The positioning itself is handled by the ownKickoff

and opponentKickoff decks in the GameplayCard. There is one card each for the goalkeeper
and the striker which walk to fixed positions, and additional cards for supporters exist.

We currently only have special kick-off behavior for the own kick-off. The only relevant behavior
for an opponent kick-off is obeying the illegal defender rule, i. e. not entering the center circle
too early. This is achieved by a high priority card that lets the robot stand as soon as it gets too
close to the center circle as long as the ball is not in play.

The default kick-off we used at RoboCup 2019 is the passing kick-off. It consists of three
robots standing behind the center line, one of them behind the ball and one per side of the
field. After the whistle, the two outer robots move into the opponent half, while the striker
evaluates possible kick directions based on present obstacles. The decision is communicated
to the other robots, one of which will then adjust its position to be able to consequently play the
ball towards the goal after the pass. Once the receiving robot is close enough or too much time
has passed, the striker walks to the ball and passes it there.

This kick-off consists of two cards: One for the striker (PassingOffenseStrikerCard) and one
for the potential pass receivers (PassingOffenseTargetCard). The pass receiver card is also
present in the ownKickoff deck to walk to the position behind the center line. The striker does
not need any special positioning in the ready state, thus the PassingOffenseStrikerCard only
needs to contain the behavior after the whistle. First, it stands and looks around for two seconds
to get an overview of all obstacles in the opponent half. Then, it continuously calculates a target
direction which must be in front of one of its teammates and not blocked by an obstacle using a
SectorWheel. The sector that is closest to the goal direction while still having a minimum size
is chosen and communicated to the teammates.

As a fallback, i. e. when there are too few teammates available to do the passing kick-off, the
striker can also do the kick-off alone with the KickoffStrikerCard. It also stands and looks
around for two seconds to get a complete model of obstacles in the opponent half. Then, it
immediately walks to the ball and kicks it using an in-walk kick. The direction is calculated from
a SectorWheel in the ±60◦ range. This card, too, makes use of obstacle culling as described
in the KickAtGoalCard (cf. Section 6.2.3).

6.2.8 Ball Search

The normal playing behavior is only sensible and active as long as there is at least one robot
that has seen the ball recently. If it has not been seen by any robot for multiple seconds, the
team has to find the ball again. The specific search behavior depends on the current situation
of the robot and its position. All ball search methods here apply to field players only, as the
goalkeeper has its own ball search behavior (cf. Section 6.2.4).

NearFieldSearchForBallCard: When the striker is dueling with an opponent, it can happen
that the ball is moved without its immediate notice. If the ball has disappeared for a short
amount of time, i. e. it is not seen although it should be in the field of view, and is not
likely occluded by the opponent, an attempt is made to quickly regain sight of the ball.
Depending on a guess whether the ball is on the left or right side, the robot looks there
and walks backwards in an arc to get a good view at the supposed ball location. If no
guess of the side could be made, the robot walks straight backwards and turns the head
alternately left and right.

SearchForBallAtBallPositionCard: If the ball is far away and not seen anymore (maybe just
due to another robot walking through the field of view), it probably remained at the last

107



B-Human 2019 6.2. BEHAVIOR USED AT ROBOCUP 2019

known position because it was not moved by any robot. That is why the striker is walking
to the position where the ball was last seen while looking actively for the ball.

SearchForBallAtDropInPositionCard: If the position of the ball is not known during a free
kick, the ball will be searched where it should have been put according to the rules. In
case of a corner kick and a goal free kick, there are only two possible positions for the
ball depending on the side where the ball left the field. In case of a kick-in, the ball will
be replaced on the field line where the ball left the field. These positions are calculated in
the BallDropInLocator. Therefore, the ball is only searched at these positions during a
corner kick, goal free kick or kick-in. For the pushing free kick the ball will only be replaced
if it moved significantly after the foul has been committed. The ball is usually seen during
the situation of a foul so that the ball is again searched at the last valid position where the
ball was seen.

SearchForBallFieldCoverageCard: If none of the other ball search behaviors was successful
or is applicable, the position of the ball is not known at all. Then the ball can be anywhere
on the field and every part of the field must be scanned for the ball by the team in a
coordinated manner. The GlobalFieldCoverage contains a grid discretization of the field
in which every cell has the timestamp when it was last seen and a rating for that cell. In
order to calculate its patrol target, each robot sorts the cells of the grid descending by this
rating. For each cell in this list, the distance to each robot is calculated. If the distance of
the cell to the current robot is less than the distance to all of its teammates, a valid patrol
target is found.

6.2.9 Penalty Shoot-Out

The penalty shoot-out handling is distributed over one skill, one team card, and two cards
that contain the striker and goalkeeper behavior, respectively. The PenaltyShootoutTeamCard

does nothing more than setting the isGoalkeeper flag and playBall flag according to
the kickingTeam field in the GameController packet and sets the remaining fields of the
TeamBehaviorStatus to their default values. This ensures that nothing goes wrong in the rest
of the system which might read them.

Being in a penalty shoot-out also influences some of the perception and modeling components.
Especially the ball perception and model for the penalty goalkeeper are tweaked for reactivity.

PenaltyStrikerCard: After waiting for a short amount of time, the striker walks directly to the
ball, looking at it, with reduced speed. After about half the distance, it stops for the first
time to look for localization features and become more certain about its pose. Then, it
randomly decides for one of the goal corners. However, if obstacles are percepted that are
far off the center of the goal, the corresponding side is excluded. The robot approaches
the kick pose using the PenaltyStrikerGoToBallAndKick skill which once again stops
shortly before reaching the ball. This is to be sure that the ball is not accidentally hit.
Finally, when being precisely aligned behind the ball, the robot executes the standard
forward kick from the KickEngine.

PenaltyKeeperCard: When the penalty shot attempt starts, the penalty keeper kneels down
immediately with its arms spread as that posture allows for a faster jump towards the goal
posts. As soon as the ball moves towards the goalkeeper, depending on where the ball
is assumed to pass the robot, it either jumps left or right or spreads its legs. Because the
robot is manually placed and does not locomote, it does not need to actively localize and
therefore only keeps the ball in its field of view.
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6.3 Path Planner

When robots want to get to some location on the field, they usually call the WalkToPoint skill.
If the target is close, it uses a reactive method to avoid obstacles and align to the target ori-
entation. In some situations, however, robots have to walk longer distances to reach their next
target location, e. g., when walking to their kick-off positions or when walking to a distant ball.
In these cases, a purely reactive control can be disadvantageous, because it usually would not
consider obstacles that are further away, which might result in getting stuck.

6.3.1 Approach

The current path planning implementation is a visibility-graph-based 2-D A* planner (cf.
Fig. 6.6). It represents obstacles as circles on which they can be surrounded and the path
between them as tangential straight lines. As a result, a path is always an alternating sequence
of straight lines and circle segments. There are four connecting tangents between each pair of
non-overlapping obstacle circles, only two between circles that overlap, and none if one circle
contains the other. With up to nine other robots on the field, four goal posts, and the ball, the
number of edges in the visibility graph can be quite high. Thus, the creation of the entire graph
could be a very time-consuming task. Therefore, the planner creates the graph while planning,
i. e. it only creates the outgoing edges from nodes that were already reached by the A* planning
algorithm. Thereby, the A* heuristic (which is the Euclidean distance) not only speeds up the
search, but it also reduces the number of nodes that are expanded. When a node is expanded,
the tangents to all other visible nodes that have not been visited before are computed. Visible
means that no closer obstacle circles intersect with the tangent, which would prevent traveling
directly from one circle to another. To compute the visibility efficiently, a sweep line approach
is used. As a result, the planning process never took longer than 1ms per Cognition cycle in
typical games.

Figure 6.6: Visualization of the planning process. The planning robot is the one left of the
center circle. The target position is next to the ball. Obstacle circles are depicted in yellow.
Yellow lines indicate expanded edges. Red lines are barriers that must not be crossed. Red
circle segments must not be part of the final path. The shortest path is depicted in bright green.
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6.3.2 Avoiding Oscillations

Re-planning in each Cognition cycle bears the risk of oscillations, i. e. repeatedly changing the
decision, for instance, to avoid the closest obstacle on either the left or the right side. The
planner introduces some stability into the planning process by adding an extra distance to all
outgoing edges of the start node based on how far the robot had to turn to walk in the direction
of that edge and whether the first obstacle is passed on the same side again (no extra penalty)
or not (extra penalty). Note that this does not violate the requirement of the A* algorithm that
the heuristic is not allowed to overestimate the remaining distance, because the heuristic is
never used for the outgoing edges of the start node.

6.3.3 Overlapping Obstacle Circles

The planning process is a little bit more complex than it appears at first sight: As obstacles
can overlap, ingoing and outgoing edges of the same circle are not necessarily connected,
because the robot cannot walk on their connecting circle segment if this is also inside another
obstacle region. Therefore, the planner manages a set of walkable (non-overlapping) segments
for each circle, which reduces the number of outgoing edges that are expanded when a circle
is reached from a certain ingoing edge. However, this also breaks the association between the
obstacle circles and the nodes of the search graph, because since some outgoing edges are
unreachable from a certain ingoing one, the same circle can be reached again later through
another ingoing edge that now opens up the connection to other outgoing edges. To solve this
problem, circles are cloned for each yet unreached segment, which makes the circle segments
the actual nodes in the search graph. However, as the graph is created during the search
process, this cloning also only happens on demand.

6.3.4 Forbidden Areas

There are two other extensions in the planning process. Another source for unreachable seg-
ments on obstacle circles is a virtual border around the field. In theory, the shortest path to
a location could be to surround another robot outside of the carpet. The virtual border makes
sure that no paths are planned that are closer to the edge of the carpet than it is safe. On
demand, the planner can also activate lines surrounding the own penalty area to avoid entering
it. The lines prevent passing obstacles on the inner side of the penalty area. In addition, edges
of the visibility graph are not allowed to intersect with these lines. To give the planner still a
chance to find a shortest path around the penalty area, four obstacle circles are placed on its
corners in this mode. A similar approach is also used to prevent the robot from walking through
the goal nets.

6.3.5 Avoiding Impossible Plans

In practice, it is possible that the robot should reach a position that the planner assumes to be
unreachable. On the one hand, the start position or the target position could be inside obstacle
circles. In these cases, the obstacle circles are “pushed away“ from these locations in the
direction they have to be moved the least to not overlap with the start/target position anymore
before the planning is started1. On the other hand, due to localization errors, the start and
target location could be on different sides of lines that should not be passed. In these cases,
the closest line is “pushed away”. For instance, if the robot is inside its penalty area although

1Note that when executing the plan, these situations are handled differently to avoid bumping into other robots.
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it should not be, this would move the closest border of the penalty area far enough inward so
that the robot’s start position appears to be outside for the planning process so that a plan can
be found.

6.4 Camera Control Engine

The CameraControlEngine takes the HeadMotionRequest provided by the BehaviorControl

module and modifies it to provide the HeadAngleRequest, which is used to set the actual
head angles. The main function of this module is to make sure that the requested angles
are valid. In addition, it provides the possibility to either use the so called PanTiltMode, where
the user can set the desired head angles manually, or the target mode. In target mode, the
CameraControlEngine takes targets on the field (provided by the user) and calculates the re-
quired head angles by using inverse kinematics (cf. Section 8.3.5). It must also be ensured
that the cameras cover as much of the field as possible. Therefore, the CameraControlEngine

calculates which camera suits best the provided target and sets the angles accordingly. Also,
because of this, most of the time the provided target will not be in the middle of either camera
image.

6.5 LED Handler

The LEDs of the robot are used to show information about the internal state of the robot, which
is useful when it comes to debugging the code.

Right Eye

Color Role
Red Playing the ball
Blue Goalkeeper
Magenta Striker (currently not playing the ball)
White Supporter with index 0
Yellow Supporter with index 1
Green Supporter with index 2
Cyan Supporter with index 3

Left Eye

Color Information
Yellow No ground contact
White Ball was seen
Blue Field feature was seen
Red Ball and field feature were seen
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Torso (Chest Button)

Color Game / Robot State
Off Initial / Finished
Blue Ready
Green Playing
Yellow Set
Red Penalized

Feet

• The left foot shows the team color. For instance, if the team is currently the red team, the
color of the LED is red. If the team color is black, this LED will be switched off.

• The right foot shows whether the team has kick-off or not. If the team has kick-off, the
color of the LED is white, otherwise it is switched off. In case of a penalty shoot-out,
the color of the LED is green, when the robot is the penalty taker, and yellow if it is the
goalkeeper.

Ears

• The right ear shows the battery level of the robot. For each 10% of battery loss, an LED
is switched off.

• The left ear shows the number of players connected through the wireless. For each
connected player, two LEDs are switched on (upper left, lower left, lower right, upper
right). Without game controller access, two LEDs are flashing.

Head

If the robot is charging, the LEDs will be turned on and off one after another. Due to the circular
arrangement of the LEDs, this looks like a rotating beam of light.
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The NAO has an inertial measurement unit (IMU) with three acceleration sensors (for the x-,
y-, and z-direction) and three gyroscopes (for the rotation around the x-, y- and z-axes). By
means of these measurements, the IMU board calculates rough approximations of the robot’s
torso angles relative to the ground, which are provided together with the other sensor data.
Furthermore, the NAO has a sensor for the battery level, eight force sensing resistors on the
feet, two ultrasound sensors with different measurement modes, and sensors for the load,
temperature, and angle of each joint. We currently do not use the data from the ultrasound
sensors.

In the thread Motion, the NaoProvider receives all sensor readings from LoLA, adds
a configured calibration bias for each sensor, and provides them as FsrSensorData,
InertialSensorData, JointSensorData, KeyStates, and SystemSensorData. Also the
JointAngles encapsulates the JointSensorData for the whole system.

The RobotModel (cf. Section 7.2) provides the positions of the robot’s limbs and the
GroundContactDetector provides the GroundContactState (cf. Section 7.1), which is the in-
formation whether the robot’s feet are touching the ground. Based on the JointAngles, the
InertialData, the RobotModel, the GroundContactState, and the currently executed mo-
tion, it is possible to calculate the TorsoMatrix (cf. Section 7.4), which describes a trans-
formation from the ground to an origin point within the torso of the NAO. The representation
InertialData is also considered to detect whether a robot has fallen down by the module
FallDownStateDetector, which provides the FallDownState (cf. Section 7.5).
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7.1 Ground Contact Detection

To improve the handling of the robots for team members and assistant referees, it is ad-
vantageous if the robots can detected when they are picked up and when they are put
back on the ground, because they can then stop moving if in the air. This information is
provided by the GroundContactDetector in the representation GroundContactState. The
GroundContactDetector uses the FSR sensors under the feet and the gyroscopes of the NAO
to provide this information. It uses a simple state machine with only two states:

1. If the robot has had ground contact so far, it assumes that it has been picked up if the
overall pressure on both feet has been below a threshold for at least 100 ms.

2. If the robot has had no ground contact so far, it assumes that it has regained ground
contact if the overall pressure on both feet has been above a threshold, the individual
pressure on each foot has been above another threshold, the measurements (rotational
speeds of the torso) of the forward and sideways gyroscopes have been below a third
threshold, and all of this for consecutive 300 ms. Thereby, it is ensured that the robot is
standing on both feet and not shaking when regaining ground contact.

7.2 Robot Model Generation

The RobotModel is a simplified representation of the robot. It provides the positions and ro-
tations of the robot’s limbs relative to its torso as well as the position of the robot’s center of
mass (CoM). All limbs are represented by homogeneous transformation matrices (Pose3D)
whereby each limb maps to a joint. By considering the measured joint angles of the represen-
tation JointAngles, the calculation of each limb is ensured by the consecutive computations
of the kinematic chains. Similar to the inverse kinematic (cf. Section 8.3.5), the implementation
is customized for the NAO, i. e., the kinematic chains are not described by a general purpose
convention such as Denavit-Hartenberg parameters to save computation time.

The CoM is computed by Eq. (7.1) with n = number of limbs, ~ri = position of the center of
mass of the i-th limb relative to the torso, and mi = the mass of the i-th limb.

~rcom =

n∑
i=1

~rimi

n∑
i=1

mi

(7.1)

For each limb, ~ri is calculated by considering the representation RobotDimensions and the po-
sition of its CoM (relative to the limb origin). The limb CoM positions and masses are provided
in the representation MassCalibration. They can be configured in the file massCalibration.cfg.
The values used were taken from the NAO documentation by SoftBank Robotics.

7.3 Inertia Sensor Data Filtering

The InertialDataProvider module determines the orientation of the robot’s torso relative to
the ground. Therefore, the calibrated IMU sensor readings (InertialSensorData) and the
measured stance of the robot (RobotModel) are processed using an Unscented Kalman filter
(UKF) [11].
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A three-dimensional rotation matrix, which represents the orientation of the robot’s torso, is
used as the estimated state in the Kalman filtering process. In each cycle, the rotation of the
torso is predicted by adding an additional rotation to the estimated state. The additional rotation
is computed using the readings from the gyroscope sensor. Because of noisy measurements by
the gyroscopes the prediction has to be corrected. This is achieved by accelerometer measure-
ments of the gravity vector. To avoid confusion in existing modules the orientation is calculated
with and without the rotation around the z-axis. The resulting orientations are provided in the
representation InertialData.

In case the GyroOffsetProvider (cf. Section 7.9) detected a malfunction, where the robot lost
the connection to its body, the UKF is not updated anymore. When the connection returns, the
UKF is reinitialized.

7.4 Torso Matrix

The TorsoMatrix describes the three-dimensional transformation from the projection of the
middle of both feet on the ground up to the center of hip within the robot torso. Additionally, the
TorsoMatrix contains the alteration of the position of the center of hip including the odometry.
The CameraMatrix within the thread Cognition is computed based on the TorsoMatrix.

In order to calculate the TorsoMatrix, the vector of each foot from ground to the torso (fl and
fr) is calculated by rotating the vector from the torso to each foot (tl and tr). This can be
calculated by the kinematic chains, according to the estimated rotation (cf. Section 7.3). The
estimated rotation is represented as rotation matrix R.

fl = −R · tl (7.2)
fr = −R · tr (7.3)

The next step is to calculate the span s between both feet (from left to right) by using fl and fr:

s = fr − fl (7.4)

Now, it is possible to calculate the translation part of the torso matrix pim by using the longer
leg. The rotation part is already known since it is equal to R.

pim =

{
s/2 + fl if (fl)z > (fr)z
−s/2 + fr otherwise

(7.5)

7.5 Detecting a Fall

It is important to detect when a robot falls, when it reaches the ground, and in which direction
it has fallen on the ground. Fall detection has two phases. The first one is to determine that
the robot is currently falling down and in which direction. The second one is to detect that the
robot has reached the ground. It is important to prepare for the ground impact while falling. In
case of our team, depending on the fall direction, different fall motions are executed to prevent
damage on the head and the body overall (cf. Section 8.4). After the robot has hit the ground,
a getup motion is started.
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Our FallDownStateDetector uses an UKF to determine an accurately position of the CoM.
The CoM modeled as an inverted pendulum is used as the dynamic model. A prediction of
the CoM, projected on the support foot plane, is then used to determine, if it is still inside the
support polygon. The support polygon consists of both feet, to prevent false detections of falls,
when the CoM leaves the support area of one foot but will eventually enter the one of the other
foot (cf. Fig. 7.1).

Figure 7.1: The support polygon of the feet

Also to minimize more false positives, if the predicted CoM is outside the support area and a fall
would be detected, the angle between the directional vector of the velocity of the CoM and of
the fall direction must be below a certain threshold (cf. Fig. 7.2). Otherwise no fall is detected.

7.6 Arm Contact Recognition

Robots should detect whether they touch obstacles with their arms in order to improve close-
range obstacle avoidance. When getting caught in an obstacle with an arm, there is a good
chance that the robot gets turned around or results in falling.

In order to improve the precision as well as the reactivity, the ArmContactModelProvider is
executed within the thread Motion. This enables the module to query the required joint an-
gles about 83 times per second. The difference of the intended and the actual position of the
shoulder joint per frame is calculated and also buffered over several frames. This allows to
calculate an average error. Each time this error exceeds a certain threshold, an arm contact
is reported. Using this method, small errors caused by arm motions in combination with low
stiffness can be smoothed. Hence, we are able to increase the detection accuracy. Due to
the joint slackness, the arm may never reach certain positions. This might lead to prolonged
erroneous measurements. Therefore, a malfunction threshold has been introduced. Whenever
an arm contact continues for longer than this threshold, all further arm contacts will be ignored
until no contact is measured.

The current implementation provides several features that are used to gather information while
playing. For instance, we are using the error value to determine in which direction an arm is
being pushed. Thereby, the average error is converted into compass directions relative to the
robot. In addition, the ArmContactModelProvider keeps track of the time and duration of the
current arm contact. This information may be used to improve the behavior.

In order to detect arm contacts, the first step of our implementation is to calculate the difference
between the measured and commanded shoulder joint angles. Since we noticed that there is
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(a) 〈~v, ~u〉 ≈ 0.91 (b) 〈~v, ~u〉 = 0

Figure 7.2: Comparison of the impact of different fall directions ~v on the scalar with the velocity
vector ~u of the CoM. (a) would be barely detected as a fall, (b) would not be detected as a fall.

a small delay between receiving new measured joint positions and commanding them, we do
not compare the commanded and actual position of one shoulder joint from one frame. Instead
we are using the commanded position from n frames1 earlier as well as the newest measured
position.

In our approach, the joint position of one shoulder consists of two components: x for pitch and
y for roll. Given the desired position p and the current position c, the divergence d is simply
calculated as:

d.x = c.x− p.x
d.y = c.y − p.y

In order to overcome errors caused by fast arm movements, we added a bonus factor f that de-
creases the average error if the arm currently moves fast. The aim is to decrease the precision,
i. e. to increase the detection threshold for fast movements in order to prevent false positives.
The influence of the factor f can be modified with the parameter speedBasedErrorReduction
and is calculated as:

f = max

(
0, 1− |handSpeed|

speedBasedErrorReduction

)
So for each arm, the divergence value da actually being used is:

da = d · f

As mentioned above, the push direction is determined from the calculated error of an arm
shoulder joint. This error has two signed components x and y denoting the joint’s pitch and roll
divergences. One component is only taken into account if its absolute value is greater than its
contact threshold.

Table 7.1 shows how the signed components are converted into compass directions for the
right arm. The compound directions NW, NE, SE, SW are constructed by simply combining the
above rules if both components are greater than their thresholds, e. g. x < 0∧y < 0 results into
direction SW. The push direction of each arm is used to add an obstacle to the robot’s obstacle

1Currently, n = 5 delivers accurate results.
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x y

is positive N E
is negative S W

Table 7.1: Converting signed error values into compass directions for the right shoulder and
with −y for the left

model, causing the robot to perform an evasion movement when it hits an obstacle with one of
its arms.

Arm contacts are also used to move the arm out of the way to avoid further interference with
the obstacle (cf. Section 8.8). Please note that while arm motions from the ArmMotionEngine

are active, no arm contacts are detected for that arm.

7.7 Foot Bumper Recognition

It is unavoidable that at some point our robots need to duel for the ball in close range or try to
walk somewhere when a robot is lying in the way. To detect those other robots, in case they
were not recognized in the images, the foot bumpers are used. The bumpers have two sensors
on each foot. We sample them over a second and an obstacle is detected, if the contacts per
second exceed a threshold. To avoid false positives, we assume a malfunction if a contact is
detected longer than a given threshold. Also when the robots are turning while walking the foot
bumpers may touch each other causing false detections. To filter these out, the inner sensors
are ignored when they are too close together, calculated with the RobotModel. Also at least
two of the four sensors need to have a detection at least once per second, to assume a valid
detection.

7.8 Foot Pressure Filtering

The FootSupportProvider filters the FsrSensorData and calculates how much weight is sup-
ported relative of the feet to each other. This procedure is taken from the walking of rUNSWift
[8]. For each of the eight sensors the all time highest measured weight is saved. Then for
each sensor the percentage for each measured weight relative to the highest measured weight
is calculated. Afterwards a weighted sum of all eight sensors is calculated, which is used to
decide if more weight is on one foot than on the other and if the support foot switched. This
information is used for the walking (cf. Section 8.3) to start a new step.

Additionally after a period of time the highest measured values are replaced by the highest
measured weights of the past few seconds. This is done, because as a result of a ball holding
motion or when the robots where placed back on the fields by hand, the sensors might have
measured a new highest weight.

Also a simple prediction for when the support foot might switch is calculated. It uses the chang-
ing rate of the support foot ratio and approximates a support ratio for a motion frame in advance.

7.9 Gyro Offset Detection

The GyroOffsetProvider provides the representation GyroOffset and detects a malfunction in
the gyroscope. There are two possible malfunctions that can occur. The first one is after a NAO
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V6 is started, it can happen that the measurements in the gyro values have offsets. As a result
even if the robot is standing in a static pose and is not moving, the offsets in the gyros result in
a TorsoMatrix, which is rotating around the axis with the offsets. This problem happens when
the NAO is moved when booting up. These offsets are detected by calculating the average
differences between the gyro values over a period of time. If the average differences are below a
certain threshold and the average gyro values above another threshold, then a gyro malfunction
is detected and the offsets are saved in the representation GyroOffset. These offsets are not
used, because it is better to restart the robot to remove them completely.

The other malfunction that can occur is when the robot loses the connection to the body for a
short period. In such a case the robot can not be controlled anymore, loses stiffness in all joints
and the sensor data is not updated anymore. This can happen randomly for old robots but also
when a robot is falling hard on the floor. This disconnection is detected if the time of the last
change of the gyro values is above a threshold.
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Chapter 8
Motion Control

The B-Human motion control system provides and controls the motions needed to play soccer
with a robot. There are six different types of motions that can be requested: walk, stand,
kick, fall, getUp and specialAction. These motions are generated by the corresponding motion
engines. Additionally, there are specific engines for the head motions (cf. Section 8.7) and
arm motions (cf. Section 8.7). The walk and stand motions are dynamically generated by the
WalkingEngine (cf. Section 8.3). Moreover, this module provides a special kind of kicks, the
in-walk kicks (cf. Section 8.3.3). All the other kicks are generated by the KickEngine [17] that
models kicks by using Bézier splines and inverse kinematics. When a robot is unintentionally
falling the FallEngine prevents damage (cf. Section 8.4). A robot which is laying on the floor
can get back to stand by using the GetUpEngine (cf. Section 8.6). The module SpecialActions

takes a sequence of predefined joint angles as an input and creates a motion on that basis.
It is used wherever an own engine would be too expensive. It is used mainly for ball catching
motions.

Each motion engine generates joint angles. Depending on the selected motions (cf. Sec-
tion 8.1) for the arms and legs, these angles are combined into the JointRequest at the end of
the thread Motion (cf. Section 8.2).

8.1 Motion Selection

According to the representation MotionRequest the MotionSelector determines which motion
is executed and calculates interpolation ratios in order to switch between them. In doing so this
module takes into account which motion is demanded and which motion is currently executed,
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and whether those motions can be interrupted. The interruptibility of a motion is handled by
the corresponding motion engine in order to ensure the motion is not interrupted in an unstable
state.

An exception to this behavior is the fall motion which activates itself when needed, to achieve a
reflex reaction. Thereby it ignores the interruptibility because if the robot is falling it is unstable
by default.

The information about the chosen motion is then provided in the representations
LegMotionSelection and ArmMotionSelection. At first the LegMotionSelection needs to
be chosen. After that, ArmMotionSelection can be filled. In the most cases these two
representations do not differ from each other. That means the engine which provides the
LegMotionRequest, also provides the ArmMotionRequest.

8.2 Motion Combination

Motion combination is the two-layered task of merging the generated joint angles of all ac-
tive motions into one. On the upper layer, the MotionCombinator takes the three partial
JointRequests for the head, arms as well as legs and puts them into a full JointRequest.
On the lower layer each partial JointRequest is put together from different motions according
to the ratios provided by the MotionSelector. This is done in separate subtasks for each mo-
tion request (arm, leg and head) which enables an architecture where one part of the motion
can be generated dependent on the others. This can be important for balancing tasks.

The HeadMotionCombinator takes the HeadYaw and HeadPitch joint angles from the
HeadMotionEngine by default. These are overwritten by the selected target motion if
the regarding joint angles are not set to be ignored. Afterwards, the chosen joint angles
are interpolated and stored in the HeadJointRequest.

The ArmMotionCombinator merges the joint angles for the arms, by taking into account the
outputs of all modules producing such angles. Its output is the ArmJointRequest which
contains those angles and the ArmMotionInfo describing the executed motions per arm.

The LegMotionCombinator is responsible for merging the joint angles for the legs and outputs
them in form of the LegJointRequest.

The MotionCombinator is executed at the end of the motion cycle. In addition to the things
mentioned above, it fills the MotionInfo, which contains the actual executed motion, and the
OdometryData.

8.3 Walking

The WalkingEngine provides the joint angles for walking and standing. The module coordinates
the actual generation of the walk pattern with the execution of in-walk kicks (cf. Section 8.3.3)
and it combines the odometry computed from the request motion with the odometry computed
from measured motion.

It is based on the walk developed by Bernhard Hengst [8] for the team UNSW Australi-
a/rUNSWift.
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8.3.1 Walk2014Generator

The Walk2014, as the walk is called, is based on three major ideas:

1. As in all walks, the body swings from left to right and back during walking to shift away
the weight from the swing foot, allowing it to be lifted above the ground. In contrast to
many other walks, this is achieved without any roll movements in the leg’s joints (unless
walking sideways), i. e. the swing foot is just lifted from the ground and set back down
again, which is enough to keep the torso in a pendulum-like swinging motion.

2. As a result, there is a clearly measurable event, when the weight of the robot is transferred
from the support foot to the swing foot, which then becomes the new support foot. This
event is detected by the pressure sensors under the feet of the robot. At the moment
this weight shift is detected, the previous step is finished and the new step begins. This
means that a transition between a step and its successor is not based on a model, but on
a measurement, which makes the walk quite robust to external disturbances.

3. During each step, the body is balanced in the forward direction by the support foot. The
approach is very simple but effective: the lowpass-filtered measurements of the pitch
gyroscope are scaled by a factor and directly added to the pitch ankle joint of the support
foot. As a result, the faster the torso turns forward, the more the support foot presses
against this motion.

8.3.2 Generating a Step

A step can be generated in three different requests, all coming from the MotionRequest, as
speedMode, targetMode and stepSizeMode. The speedMode is used to command the robot
to walk at a specific forward, sideways and turn speed, the targetMode is used to let the robot
walk to a specific point and the stepSizeMode is used for our kicks while walking. When using
the targetMode, the requested target is converted into a speed request. If the target can not
be reached within one step, the speedMode is used with the converted speed request. In the
speedMode the speed request is first clipped based on an ellipsoid clamping algorithm. This
is done to avoid a requested step which is unreachable for the feet, but also to remain a stable
walk in all walking directions. Afterwards, the speed values are clipped based on the configured
maximal speed values for forward, backward, sideways and turning. Also in all three cases, a
planned step duration and odometry offset are calculated and based on the step duration the
variables used to calculate the feet positions to execute the step.

Also if it is detected, that the robot is stuck on one foot, e. g. resulting from walking against a
goal post, an emergency step is requested, where the robot pushes the current swing leg into
the ground. If this does not resolve the situation, the robot returns into a standing position.
While in the emergency mode, the request from the MotionRequest is ignored.

If the robot starts its first step, a pre-step is executed to start the pendulum like swinging, unless
the feet are close together. In such a case the first step is executed as normal.

For every following motion frame, the current positions of both feet are calculated based on
inverse kinematic. If an in-walk kick (cf. Section 8.3.3) is requested, the offsets for the feet are
also added.

Since our robots sometimes take their arms behind their back to better avoid obstacles, the
center of mass gets shifted. Therefore, a dynamic center of mass computation, which considers
the impact of the arms’ positions, is used to counteract the arm positions. Iteratively, the torso
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is tilted in a way that the center of mass’s projection to the ground keeps at the same forward
position relative to the feet as the center of mass with regular arm positions would have.

Afterwards, the lowpass-filtered measured gyroscope value is added with a factor on the an-
kle pitch request. The factor is different for positive and negative values because the feet are
shorter at the back and stability benefits from slightly more aggressive balancing in that direc-
tion. We also found that a lot of differences between different robots can be compensated by
varying the balancing parameters. Also only when the robots are standing they are balancing
sideways with the ankle rolls.

A new step starts when the weight shifts from one leg to the other. We noticed that because
of the three motion frame delay until a request for the joints is executed, the robots tend to
push their swing leg, which switched to the support leg, into the ground and therefor pushing
themself backwards again. To counteract this problem, we use the foot switch prediction from
the FootSupport (cf. Section 7.8) to start a new step on average one motion frame earlier.

Also, we noticed that the robots are capable of walking a small amount faster forward
if they are also walking sideways. One explanation could be, that because we increase
the step duration when walking sideways combined with the more spread out legs, distur-
bances are partly suppressed. We added two parameters to allow for higher forward walk-
ing speed. If the robot is walking sideways at least with the speed defined by the parameter
triggerForwardBoostByThisLeftAmount, his maximal allowed forward speed is replaced by
the value of the parameter sideForwardMaxSpeed.

8.3.3 In-Walk Kicks

Besides walking and standing, the WalkingEngine has also minor kicking capabilities. The
tasks of walking and kicking are often treated separately, both solved by different approaches.
In the presence of opponent robots, such a composition might waste precious time as certain
transition phases between walking and kicking are necessary to ensure stability. A common
sequence is to walk, stand, kick, stand, and walk again. Since direct transitions between walk-
ing and kicking modules are likely to let the robot stumble or fall over, the WalkingEngine can
carry out simple kicks while walking.

At the moment, there are five kick types: forward, forwardLong, forwardShort,
sidewardsOuter and turnOut. Those kicks are described individually by the config files lo-
cated in Config/WalkKicks. Every kick is defined by its duration, step sizes before and during
the kick, and keyframes for the 3D position and rotation of the kicking foot. These keyframes
are later interpolated by cubic splines to describe the actual trajectory of the foot, by overlaying
the original trajectory of the swinging foot and thereby describing the actual kicking motion. In
doing so the overlaying trajectory starts and stops at 0 in all dimensions both in position and
velocity. Thus, the kick retains the start and end positions as well as the speeds of a normal
step. The instability resulting from the higher momentum of the kick is compensated by the
walk during the steps following the kick.

8.3.4 Learning Parameters Online

At the past competitions we had the problem, that when the robots heated up or played a lot
of games, they started to fall more often because they could not walk anymore. To counteract
this, we added an automatic adjustment system for the gyro balancing parameters, which are
used to balance with the ankle pitches. It uses the past peaks in the gyro measurements and
adjusts the balance parameters by random, but always increasing and then decreasing them.
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Afterwards, the sampled gyro peaks are used to determine, which parameters resulted in a
more stable walk.

We noticed, that at the moment the joints are too hot and their stiffness is reduced, the bal-
ance parameters start to increase, which furthermore results in a stable walk. Also after a
few minutes playing the parameters stabilized themself. That way we can adjust the starting
parameters for separate robots after a game, without the time investment, because we already
know good working parameters.

8.3.5 Inverse Kinematic

The inverse kinematics for the ankles of the NAO is a central component of the module
WalkingEngine. In general, they are a handy tool for generating motions, but solving the in-
verse kinematics problem analytically for the NAO is not straightforward, because of two special
circumstances:

• The axes of the hip yaw joints are rotated by 45 degrees.

• These joints are also mechanically connected among both legs, i. e., they are driven by a
single servo motor.

The target of the feet is given as homogeneous transformation matrices, i. e., matrices contain-
ing the rotation and the translation of the foot in the coordinate system of the torso. In order to
explain our solution we use the following convention: A transformation matrix that transforms a
point pA given in coordinates of coordinate system A to the same point pB in coordinate system
B is named A2B, so that pB = A2B · pA. Hence the transformation matrix Foot2Torso is given
as input, which describes the foot position relative to the torso. The coordinate frames used are
depicted in Fig. 8.1.

The position is given relative to the torso, i. e., more specifically relative to the center point
between the intersection points of the axes of the hip joints. So first of all the position relative
to the hip is needed1. It is a simple translation along the y-axis2

Foot2Hip = Transy

(
ldist

2

)
· Foot2Torso (8.1)

with ldist = distance between legs. Now the first problem is solved by describing the position
in a coordinate system rotated by 45 degrees so that the axes of the hip joints can be seen
as orthogonal. This is achieved by a rotation around the x-axis of the hip by 45 degrees or π

4
radians.

Foot2HipOrthogonal = Rotx(
π

4
) · Foot2Hip (8.2)

Because of the nature of the kinematic chain, this transformation is inverted. Then the transla-
tional part of the transformation is solely determined by the last three joints, which means they
can be computed directly.

HipOrthogonal2Foot = Foot2HipOrthogonal−1 (8.3)

The limbs of the leg and the knee form a triangle, in which an edge equals the length of the
translation vector of HipOrthogonal2Foot (ltrans). Because all three edges of this triangle are

1The computation is described for one leg and can be applied to the other leg as well.
2The elementary homogeneous transformation matrices for rotation and translation are noted as

Rot<axis>(angle) resp. Trans<axis>(translation).
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Torso Hip HipOrthogonal

Thigh Foot

Figure 8.1: Visualization of coordinate frames used in the inverse kinematic. Red = x-axis,
green = y-axis, blue = z-axis.

known (the other two edges, the lengths of the limbs, are fix properties of the NAO) the angles
of the triangle can be computed using the law of cosines (Eq. (8.4)). Knowing that the angle
enclosed by the limbs corresponds to the knee joint, that joint angle is computed by Eq. (8.5).

c2 = a2 + b2 − 2 · a · b · cos γ (8.4)

γ = arccos
lupperLeg

2 + llowerLeg
2 − ltrans2

2 · lupperLeg · llowerLeg
(8.5)

Because γ represents an interior angle and the knee joint is being stretched in the zero-position,
the resulting angle is computed by

δknee = π − γ (8.6)

Additionally, the angle opposite to the upper leg has to be computed, because it corresponds
to the foot pitch joint:
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δfootP itch1 = arccos
llowerLeg

2 + ltrans
2 − lupperLeg

2

2 · llowerLeg · ltrans
(8.7)

Now the foot pitch and roll joints combined with the triangle form a kind of pan-tilt-unit. Their
joints can be computed from the translation vector using atan2.3

δfootP itch2 = atan2(x,
√
y2 + z2) (8.8)

δfootRoll = atan2(y, z) (8.9)

where x, y, z are the components of the translation of Foot2HipOrthogonal. As the foot pitch
angle is composed of two parts it is computed as the sum of its parts.

δfootP itch = δfootP itch1 + δfootP itch2 (8.10)

After the last three joints of the kinematic chain (viewed from the torso) are determined, the
remaining three joints that form the hip can be computed. The joint angles can be extracted
from the rotation matrix of the hip that can be computed by multiplications of transformation
matrices. For this purpose, another coordinate frame Thigh is introduced that is located at the
end of the upper leg, viewed from the foot. The rotation matrix for extracting the joint angles is
contained in HipOrthogonal2Thigh that can be computed by

HipOrthogonal2Thigh = Thigh2Foot−1 ·HipOrthogonal2Foot (8.11)

where Thigh2Foot can be computed by following the kinematic chain from foot to thigh.

Thigh2Foot = Rotx(δfootRoll)·Roty(δfootP itch)·Transz(llowerLeg)·Roty(δknee)·Transz(lupperLeg)
(8.12)

To understand the computation of those joint angles, the rotation matrix produced by the known
order of hip joints (yaw (z), roll (x), pitch (y)) is constructed (the matrix is noted abbreviated,
e. g. cx means cos δx).

RotHip = Rotz(δz) ·Rotx(δx) ·Roty(δy) =

 cycz − sxsysz −cxsz czsy + cysxsz
czsxsy + cysz cxcz −cyczsx + sysz
−cxsy sx cxcy

 (8.13)

The angle δx can obviously be computed by arcsin r21.4 The extraction of δy and δz is more
complicated, they must be computed using two entries of the matrix, which can be easily seen
by some transformation:

−r01
r11

=
cos δx · sin δz
cos δx · cos δz

=
sin δz
cos δz

= tan δz (8.14)

Now δz and, using the same approach, δy can be computed by

3atan2(y, x) is defined as in the C standard library, returning the angle between the x-axis and the point (x, y).
4The first index, zero based, denotes the row, the second index denotes the column of the rotation matrix.
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δz = δhipY aw = atan2(−r01, r11) (8.15)

δy = δhipP itch = atan2(−r20, r22) (8.16)

At last, the rotation by 45 degrees (cf. Eq. (8.2)) has to be compensated in joint space.

δhipRoll = δx −
π

4
(8.17)

Now all joints are computed. This computation is done for both legs, assuming that there is an
independent hip yaw joint for each leg.

The computation described above can lead to different resulting values for the hip yaw joints.
From these two joint values, a single resulting value is determined, in which the interface allows
setting the ratio. This is necessary because if the values differ, only one leg can realize the
desired target. Normally, the support leg is supposed to reach the target position exactly. By
applying this fixed hip joint angle the leg joints are computed again. In order to face the six
parameters with the same number of degrees of freedom, a virtual foot yaw joint is introduced,
which holds the positioning error provoked by the fixed hip joint angle. The decision to introduce
a foot yaw joint was mainly taken because an error in this (virtual) joint has a low impact on the
stability of the robot, whereas other joints (e. g. foot pitch or roll) have a huge impact on stability.
The computation is almost the same as described above, except it is the other way around. The
need to invert the calculation is caused by the fixed hip joint angle and the additional virtual
foot joint because the imagined pan-tilt-unit is now fixed at the hip and the universal joint is
represented by the foot.

This approach can be realized without any numerical solution, which has the advantage of a
constant and low computation time and a mathematically exact solution instead of an approxi-
mation.

8.4 Falling

When a robot is unintentionally falling to the ground there is a high risk that the robot breaks.
Therefore, falls are detected (cf. Section 7.5), so that damage can be prevented by executing
certain motions and softening some limbs. Depending on whether the robot is falling to the front
or the back, different motions are executed. If the robot falls backwards a squatting position is
adopted to decrease the drop height of the head. Additionally, the arms are brought back to
a neutral position, if necessary, and the head is tilted to the front. If the robot falls forward
the stand motion is called and the head is placed in the neck. In this case, the squatting
position is not adopted because this would produce an unfavorable angle between the head
and the floor when hitting it. Once the FallEngine has been activated, it is left if a getUp
motion is demanded or the robot has been put up manually. To avoid a false activation of the
FallEngine, certain situations are excluded: For example, the GetUpEngine cannot trigger the
FallEngine and specialAction motions are entirely ignored if no game controller packages are
received for testing issues.
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8.5 Special Actions

Special actions are hardcoded motions that are provided by the module SpecialActions. By
executing a special action, different target joint values are sent consecutively, allowing the robot
to perform actions such as a goalie dive or the high stand posture. Those motions are defined
in .mof files that are located in the folder Config/mof. A .mof file starts with the unique name
of the special action, followed by the label start. The following lines represent sets of joint
angles, separated by whitespace. The order of the joints is as follows: head (pan, tilt), left arm
(shoulder pitch/roll, elbow yaw/roll, wrist, hand), right arm (shoulder pitch/roll, elbow yaw/roll,
wrist, hand), left leg (hip yaw-pitch/roll/pitch, knee pitch, ankle pitch/roll), and right leg (hip
yaw-pitch5/roll/pitch, knee pitch, ankle pitch/roll). A ‘*’ does not change the angle of the joint
(keeping, e. g., the joint angles set by the head motion engine), a ‘–’ deactivates the joint.
Each line ends with two more values. The first decides whether the target angles will be set
immediately (the value is 0); forcing the robot to move its joints as fast as possible, or whether
the angles will be reached by interpolating between the current and target angles (the value is
1). The time this interpolation takes is read from the last value in the line in milliseconds. If
the values are not interpolated, the robot will set and hold the values for that amount of time
instead.

It is also possible to change the stiffness of the joints during the execution of a special action.
This is done by a line starting with the keyword stiffness, followed by a value between 0 and
100 for each joint (in the same order as for specifying actual joint angles). In the file Config/s-
tiffnessSettings.cfg default values are specified. If only the stiffness of certain joints should be
changed, the others can be set to ‘*’. This will cause those joints to use the default stiffness.
At the end of one stiffness line, the time has to be specified that it will take to reach the new
stiffness values. This interpolation time runs in parallel to the interpolation time between target
joint angles. In addition, the stiffness values defined will not be reached if another stiffness
command is executed before the interpolation time has elapsed.

Transitions are conditional statements. If the currently selected special action is equal to the first
parameter, the special action given in the second parameter will be executed next, starting at
the position of the label specified as the last parameter. Note that the currently selected special
action may differ from the currently executed one because the execution costs time. Transitions
allow defining constraints such as to switch from A to B, C has to be executed first. There is
a wildcard condition allMotions that is true for all currently selected special actions. Further-
more, there is a special action called extern that allows leaving the module SpecialActions,
e. g., to continue with walking. extern.mof is also the entry point to the special action module.
Therefore, all special actions must have an entry in that file to be executable. A special action
is executed line by line until a transition is found the condition of which is fulfilled. Hence, the
last line of each .mof file contains an unconditional transition to extern.
An example of a special action:

motion_id = stand

label start

stiffness 20 20 60 60 60 60 60 60 60 60 60 60 60 60 90 90 90 90 90 90 90 90 90 90 90 90 50

"HP HT AL0 AL1 AL2 AL3 AL4 AL5 AR0 AR1 AR2 AR3 AR4 AR5 LL0 LL1 LL2 LL3 LL4 LL5 LR0 LR1 LR2 LR3 LR4 LR5 Int Dur

* * 0 -50 -2 -40 0 0 0 -50 -2 -40 0 0 -6 -1 -43 92 -48 0 -6 -1 -43 92 -48 -1 1 100

transition allMotions extern start

To receive proper odometry data for special actions, they have to be manually set in the file
Config/specialActions.cfg. It can be specified whether the robot moves at all during the exe-
cution of the special action, and if yes, how it has moved after completing the special action,

5Ignored
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or whether it moves continuously in a certain direction while executing the special action. It
can also be specified whether the motion is stable, i. e., whether the camera position can be
calculated correctly during the execution of the special action. Several modules in the thread
Cognition will ignore new data while an unstable motion is executed to protect the world model
from being impaired by unrealistic measurements.

8.6 Get Up Motion

When a robot falls, it must get up on its own. This should be done in the shortest amount of
time as possible, to minimize the time it can not contribute to the game and therefore the time
the team is in a numerical disadvantage. It is also important that the get up motion works with
the first try. Otherwise, the robot damages itself even more and risks to be unable to play for
the rest of the game with a follow up repair afterwards.

To execute get up tries with a high success rate, we developed several approaches, that go
hand-in-hand, to prevent incorrect motion states and balance the robot in a way, that it can
stand up even in really harsh environments. Yet the defined motions are still a chain of different
predefined keyframes, which are linear interpolated.

When the robot falls and the module GetUpEngine goes active, there are three possible states
it could be in. If it is lying on the back or the front, then it executes a recover motion, so it can
start the get up motion from a default position. If it is lying on the side, then depending on how
the torso is tilted it executes a motion to tilt over to the front or back. Last but not least it could
have executed a SpecialAction before, like a ball holding motion with spread legs. In such a
case we do two checks: if the robot is still upright we assume it is still standing on its feet and
execute a special motion to bring the robot into a default position, so it can continue getting up
from such a position. Otherwise, we assume the robot is lying on its back or front and execute
the normal recover motion.

After the recover motion, we check if the robot is lying on its arms when lying on its front. In
such a case we execute a motion to free up the arms, otherwise, our front motion for getting up
will not work.

When the robot started to execute a motion to get up, several developed algorithms are active
to ensure, that disturbances like pushing robots or issues with the field like bumps do not result
in failed get up tries. These system parts are a PID-Controller for balancing (cf. Section 8.6.1),
conditional keyframes and wait times (cf. Section 8.6.2), a joint compensation (cf. Section 8.6.3)
and some additional smaller stuff (cf. Section 8.6.4) to increase the success rate and reduce
as much damage to the robot as possible.

Not always every situation can be handled and the robot will inevitably fall again and need to
start a new get up try. For such a case every keyframe has defined thresholds for how much
the torso is allowed be tilted. If the torso is tilted too much the get up try is aborted, the joints
stiffness is set to a low value and the head is moved into a safe position, to reduce as much
damage as possible. After a short wait time, the process to decide which motion should be
executed is started again. Also, a counter how many tries were executed is increased. If this
counter exceeds a maximal try counter, the robot goes into a help me state. In this state, the
robot keeps lying on the ground with no stiffness and waits until his torso is upright again,
resulting from the help of a human.
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Figure 8.2: The center of mass projected on the ground (red line) in the support polygon (blue)
with the middle point of the support polygon (orange) while getting up.

8.6.1 Balancing

For normal balancing, we use a PID-Controller. The input is the difference of the middle point
of a simplistic support polygon and the center of mass projected on the ground (cf. Fig. 8.2).
Additionally, we defined different states for the keyframes and more than one keyframe can be
in the same state, like sitting, lying or standing. Every state has different parameters for the
PID-Controller, hand tuned, to ensure that the controller balances out disturbances depending
on the executed motion. Also, the balancing is increased the more the robot deviates from the
ideal movement to prevent falling to the front or back.

8.6.2 Conditions

Every keyframe can have conditions, which must be true to result in an execution of this
keyframe. Otherwise, it is skipped. Also following keyframes can be linked together, so a block
of keyframes is only executed if their conditions are fulfilled. Also, every keyframe can have
waiting conditions. If a keyframe finished, then the motion is stopped for a given time until the
waiting condition is fulfilled. Every condition value is represented as a number and a condition
is fulfilled if this number lies between two given thresholds. Additionally, wait conditions have
a time parameter. If the wait time exceeds the time threshold, the waiting process is aborted
and the motion is continued as normal. Examples for conditions are the torso tilting, the current
gyro values or a number, which comes from the DamageConfiguration of the robot.

We use the waiting conditions to ensure that specific motion processes like letting the robot
tilt over from a lying position to an upright position are not interrupted too early and result in
a robot, that keeps lying on the ground, or after the robots reached a sitting position wait a
moment to balance out disturbances, to ensure they don’t fall over when interpolating into a
stand.

The keyframe conditions are used to check for problems when starting a get up try, like incor-
rectly positioned arms.
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8.6.3 Joint Compensation

We analyzed the get up tries from the past years with a focus on the joints. We wanted to know
what caused get up tries to fail and why some robots had no problems while others could only
get up with hand tuned keyframes. We noticed that for nearly every get up try at some point
the hipYawPitch joint requested and measured angles differed by more than 10 degrees, often
even more than 20 degrees, which resulted in a torso tilting of 10 to 20 degrees more to the
front, just before falling. In cases where the robots did not fall to the front based on this issue,
they often fell afterwards to the back, because the hipYawPitch joint suddenly was able to move
and literally ejected the robot. A similar problem occurred for our fast front get up motion. At
some point, when the robot should have moved the legs together, the requested and measured
angles for the hipYawPitch always differed by more than 10 degrees and in cases, where the
robots fell back to the front, the hipYawPitch was completely unable to move.

To counteract this problem we expanded the definition of our keyframes. Every keyframe can
have several joints that shall be compensated and a number of joints that shall be used for
compensation with factors. The compensation algorithm takes the measured angle of the to
compensated joint and subtract it with the requested angle from 3 frames before. This value is
then multiplied with the factors defined in the keyframes and added on top of the target angles
of the joints used for compensation.

This ensures that the robots keep an upright position while some joints are unable to move.
But at some point, the stuck joints start to move again and try to reach the requested angles,
which could differ by 10 to up to 50 degrees. To ensure that the robots do not eject themselves
in these scenarios we check in every motion frame if the stuck joints started to move again.
In such a case, we remove the compensation of the previous and current keyframe over a few
frames.

8.6.4 Other Smaller Improvements

To reduce the likelihood of failed get up tries, we implemented several ideas. One is a balance
out phase after the robot finished the get up motion and reached a standing position. In such a
case the robot is still balancing until some given conditions are fulfilled. We use the torso angle,
the gyro and the differential output of our PID-Controller as conditions. Also if the balancing
takes too long we just take the risk and leave the GetUpEngine so the robot can take part in the
game again.

Another idea is the use of our conditional keyframes in another way. If a wait time of a previous
keyframe was too long or the motion is aborted, this information can be used to execute another
keyframe instead of continuing to abort.

Also when a robot is still lying on the ground and aborted the get up try, we use the information
in which keyframe the motion aborted and retry from a specific keyframe from that motion. One
example is for our back motion, where at some point the robot moves its legs up in the air to tilt
over. Sometimes, resulting from disturbances, the robot keeps lying on the ground. In such a
case it would be a waste of time to restart the whole getting up process because we assume
the robot is already in a correct pose. So we revert to a previous keyframe and just continue
the get up try from there, without increasing the counter for the get up tries.
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8.7 Head Motions

Besides the motion of the body (arms and legs), the head motion is handled separately. This
task is encapsulated within the separate module HeadMotionEngine for two reasons. The first
reason is that the modules WalkingEngine and KickEngine manipulate the center of mass.
Therefore these modules need to consider the mass distribution of the head before its execution
in order to compensate for head movements.

The other reason is that the module smoothens the head movement by limiting the speed as
well as the maximum angular acceleration of the head. In encapsulating this, the other motion
modules do not have to concern themselves with this.

The HeadMotionEngine takes the representation HeadAngleRequest generated by the
CameraControlEngine (cf. Section 6.4) and produces the representation HeadJointRequest.

8.8 Arm Motions

In addition to the arm motions that are calculated combined with the leg motions (e. g. during
a special action or a kick) we also use a motion engine that provides only output for the arm
joints: The ArmKeyFrameEngine will only be selected during a walking or standing (leg) motion
to follow keyframes.

Although we are mainly using this feature to move the arms behind the robot’s back to prevent
(further) contact with other robots, it generally supports any desired arm keyframe motion. A
motion is defined by a set of states, which consist of all target angles of an arm (similar to a
special action, cf. Section 8.5). Upon executing an arm motion, the motion engine interpolates
intermediate angles between two states to provide a smooth motion. When reaching the final
state, the arm remains there until the engine gets a new request. The ArmKeyFrameEngine

performs all the calculations and interpolations for the desired arm motion.

Arm motions are configured in the file armKeyFrameEngine.cfg. It defines the sets of targets
as well as some other configuration entries:

actionDelay: Delay (in ms) after which an arm motion can be triggered again by an arm con-
tact.

targetTime: Time (in Motion frames) after which an arm should be moved back to its default
position (applies only for motions triggered by arm contact).

allMotions: Array of different arm motions. The entry with the id useDefault is a native motion,
which should neither be modified nor should it get another index within the array.

Despite the available motions, you may add further ones to the file following the same structure
under a new id. The new id has to be appended to the end of the enumeration ArmKeyFrameId

within the representation ArmKeyFrameRequest.
// [..] config entries left out

allMotions = [

{

// [..] native motions left out

},{

id = sampleArmMotion;

states = [

{angles =[-2.05, 0.2, 0.174 , -0.2, -90deg , 0deg]; stiffness = [90, 60,

80, 90, 90, 90]; steps = 80; },
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{angles =[-2.11, -0.33, 0.4, -0.32, -90deg , 1]; stiffness = [90, 60, 80,

90, 90, 90]; steps = 80; }

];

}

];

Listing 8.1: Example of an arm motion definition

It is important to know that all motions will only be declared for the left arm. Inside the
ArmKeyFrameEngine, the motion will then be correctly mirrored for the right arm. The angles
and stiffness values of each state correspond in their order of occurrence to: ShoulderPitch,
ShoulderRoll, ElbowYaw, ElbowRoll, WristYaw, and Hand. For each stiffness entry, the special
value −1 may be used, which indicates the use of the default stiffness value for that joint as
specified in the file stiffnessSettings.cfg. The attribute step specifies how many Motion frames
should be used to interpolate intermediate angles between two entries in the array states.

8.9 Energy Efficient Stand

Inspired by the SPL team Berlin United, we developed a similar approach to cool down our
robots while standing [16]. The main idea is the same: when standing if the current of a joint
is above a threshold take the requested and measured angle and adjust the request until the
current is below a certain threshold.

In contrast to Berlin United, we adjust the requested angles for all joints with a current above a
certain threshold, two times a second. Also, the adjustment is made in steps. If the difference
between the request and the measurement is too high, the request is adjusted by a large value,
otherwise, a value smaller than the minimal gear step length is used. Also if the current is not
decreasing on a joint for some time, the request is adjusted again by a larger value. This is
done because we noticed that especially the knees, while standing, only reduce their current
when the request forces the knees to close a small amount more. Also when a robot is in a
high stand we apply the energy saving on the arms too, but with a smaller current threshold.

With this approach, the robots do not heat up when in the high stand. At the GermanOpen two
of our robots needed to stand for one hour at the referee meeting and the leg joint temperatures
did only rise for 1◦C, from 27◦C to 28◦C. In case a robot is placed by hand into our normal stand
position or was walking and stopped by itself, we got mixed results. For our new NAO V6 so far
the joints do not heat up but will cool down. For our old robots some joints will slowly heat up,
but much slower than without the energy saving.

8.10 Stability Increasement for the Kicks

We did some small quality of life changes to our kicking, which is based on [17] because we
wanted to reduce the amount of needed calibration between new and old robots. We noticed
that it is not hard to let the robot kick the ball far, but to make sure that the robot will not fall
afterwards. Many falls result from the problem that after the ball is kicked, the kicking foot
touches the ground too early and pushes the robot away resulting in a fall. To prevent this we
added a check that after the ball was kicked the kicking foot x- and z-translations are frozen
when the foot would touch the ground.

Additionally, we revisited the idea of the dynamic points. Originally when dynamic points are
added the control points are rotated around them. We removed this part because we noticed
that the ball is rolling more straight and does less curves without this feature.
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Chapter 9Challenges & Mixed Team

In addition to the main soccer competition, B-Human also participated in the Open Research
Challenge, Directional Whistle Challenge as well as in the Mixed Team Tournament. While the
Technical Challenges required special modules which are described in the following sections,
the Mixed Team Tournament was played with our standard code and only minor changes.

9.1 Open Research Challenge

In recent years, we continuously increased our research towards applications of Deep Learning
in the SPL. While a ball detection based on Deep Learning appears to be state of the art, the
detection of other robots is not very common among other teams. In this year’s Open Research
Challenge, we aimed to demonstrate recent results in ball and robot detection as well as state
estimation by letting a robot (referred to as the player) score a goal blindfolded through guidance
of two teammates (referred to as the observers).

In our setup, the observers are each placed at one of the intersections of the center line and the
sidelines, looking towards the center circle. The ball is placed somewhere in the opponent half,
for instance at the penalty mark. Finally, the blindfolded player is placed with random position
and rotation inside the center circle. After being unpenalized, the observers will move freely
around the field to take useful observing poses and to estimate the pose of the player and the
position of the ball. This information is transferred wirelessly to the player. The player merges
the percepts it receives from the observers into an estimate of its pose and the ball position.
Based on that, it aims to walk blindly towards the ball and attempts to score a goal. A possible
constellation that could occur during the demonstration is depicted in Fig. 9.1 and a video of
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Figure 9.1: A possible constellation during the demonstration

the performance is available online1.

9.1.1 Perception

During the last year, we attempted to realize a semantic segmentation of the field. The core
idea was to replace the ECImage, which is currently segmented based on thresholds that have
to be defined manually and globally, with a neural network based semantic segmentation. The
main difficulty in finding global thresholds are firstly that the lighting conditions change globally
in the image (i. e. clouds moving in front of the sun) and secondly that hard shadows/patches
of light and therefore extreme contrasts make finding a global threshold difficult to impossible.
A pixel-wise classification of the frame could solve both problems elegantly.

We implemented a small neural network similar to U-Net [29] with only two interconnections and
separable convolutions as described in Table 9.1. We conclude that a semantic segmentation
neural network capable of running on the NAO robot and yielding acceptable results can have
a maximum size of about 120 px× 88 px. The inference of such a network can be performed in
about 14ms, which would be quite a lot for a plain field segmentation. Nonetheless, it is to be
expected that the network is capable of differentiating between complex features, which is why
we decided to make the same network predict multiple classes, among others whether a pixel
belongs to a robot. This works reasonably well and precisely. An example of a segmentation
can be seen in Fig. 9.2.

We trained our model with data generated in UERoboCup [9] and augmented that data with
image-to-image translation methods.

A major disadvantage of semantic segmentation is the mandatory post processing. Since our
image processing pipeline depends on a color segmentation, we can exploit the segmentation
generated from the neural network by feeding it to the obstacle perceptor described in [24].
This is possible because the old obstacle perceptor mainly uses the pixels classified as white.
Since the pixels classified as robot from the neural network segmentation is a subset of such

1https://www.youtube.com/watch?v=uolQ2xY328U
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Layer Scale N F
Input 1 1 3
3× 3-SConv2D, BN, LeakyReLU 1 1 8

3× 3-SConv2D, BN, LeakyReLU 1 1 8
3× 3-SConv2D, BN, LeakyReLU 1/2 1 8

3× 3-SConv2D, BN, LeakyReLU 1/2 2 16
3× 3-SConv2D, BN, LeakyReLU 1/4 1 16
3× 3-SConv2D, BN, LeakyReLU 1/4 6 24
UpSampling2D 1/2 1 24

Concat 1/2 1 40
3× 3-SConv2D, BN, LeakyReLU 1/2 3 16
UpSampling2D 1 1 16

Concat 1 1 24
3× 3-SConv2D, BN, LeakyReLU 1 3 8
3× 3-SConv2D, BN, LeakyReLU 1 1 5

Table 9.1: Segmentation network architecture. N denotes the number of duplications of the
layer, F denotes the amount of channels after that layer.

pixels, the obstacle perceptor can easily be used to convert the pixel classification from the
segmentation to robot percepts.

9.1.2 State Estimation

While the observers run the default modeling modules as described in Chapter 5 (apart from
the assumed initial position in the SelfLocator), the player needs a completely different state
estimation for its pose on the field as well as for the location of the ball, accounting for the com-
pletely different observation models in this challenge. The self localization for the player uses
the same principle as the normal SelfLocator, i. e. it is a particle filter where each hypothesis
is an Unscented Kalman Filter. The motion update, resampling and best sample selection steps
are exactly the same, but it does not feature any sensor resetting except for the initialization.
As long as the player is penalized, it deletes its particle set. Without a sample set, it reports
a pose validity of 0 to indicate the absence of information to the behavior. The initialization of
the sample set happens as soon as one of the observers sees a robot inside the center circle

Figure 9.2: Original image with robot percepts (left) and robot class segmentation (right).
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(i. e. where the player is assumed to be initially) while already not too far from it. A set of 12
particles is generated at the observed position with rotations covering the entire angular space
in 30◦ steps and a fixed initial variance.

A sensor update happens every time there is a new team message from an observer. For
each observer independently, an observation is selected from its ObstacleModel. The obstacle
closest to the previous pose estimate that is not too close to the pose of the other observer
is used. Then, for each combination of sample and observation, the distance between the
position of the sample and the observed position is calculated. If this distance is small enough
to assume that the observed obstacle is indeed the player, the position measurement is applied
as an update to the sample’s UKF. Additionally, whether having received the update or not, the
validity of each sample is updated inversely to its association distance, i. e. a small deviation
supports a high validity of the sample while a large deviation indicates that the sample might be
wrong. As the player moves, this decreases the validity of samples with wrong initial rotation
estimates as the paths diverge, letting the sample set quickly converge around the correct
position and rotation.

The ball model of the player does no filtering on its own. It copies the most recent available ball
model of an observer that can be related to an obstacle measurement of the player. Under the
assumption that the difference in robot pose rotations of the observer to the player is correct,
the ball state is transformed from the observer’s coordinate system into the player’s using the
relative position of the player obstacle to the observer. This should make the ball model more
precise relative to the player than just transforming it using the estimated player pose. A motion
update, i. e. application of the inverse odometry offset and the motion of the ball, is performed
each step to bridge time intervals without new updates.

9.1.3 Behavior

The behavior is kept as simple as possible. The observers do nothing else than tracking the
player from both sides and keeping a minimum distance to it. Since the orientation from the
player has to be estimated from its walking direction and initially no orientation is known, the
player will move forwards and backwards until it is certain about its orientation. It will then walk
forward while the observers track it until the observers see the ball. The observers will start
looking actively for the ball as soon as they are close to the goal. When one of the observers
sees the ball, the player will walk toward that position while the observers keep a safe distance
to the player. Lastly, the player attempts to score a goal. The procedure can be repeated as
often as desired.

9.2 Directional Whistle Challenge

The second technical challenge in 2019 was the Directional Whistle Challenge. This challenge
intended to investigate the possibilities of localizing the point where the referee whistle is blown.
In this section, we would like to share our approach to localizing the whistle and point out some
of the problems we came across.

9.2.1 Constraints

With the given hardware platform, the NAO V6, the whistle localization proved to be a chal-
lenging task for all participating teams. This was mainly due to the inherently complex nature
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of sound propagation as well as the NAO V6 not being designed for localizing high-frequency
sound sources like whistles.

The NAO V6 is equipped with four omnidirectional microphones which are located inside the
head with little holes to let the outside sound reach the microphones mostly undamped. They
are arranged in a trapezoid-like shape with the two microphones in the front being higher and
closer together and the two microphones in the back being lower and further apart (cf. Fig. 9.3).

Figure 9.3: The arrangement of the 4 microphones (Front-Left, Front-Right, Rear-Left, Rear-
Right) with the respective distances between them.

In order to simplify the problem, we assume that the robot’s head is tilted to the maximum front
position, effectively moving the microphone plane parallel to the XY-plane. Furthermore, we
are not considering the z-coordinate of the sound source (i. e. the height of the person blowing
the whistle). This decision was made because of the coplanar microphone arrangement on
the NAO V6. It is proven that to reconstruct a 3-D point by comparing the time differences
the sound arrives at the microphones, at least four non-coplanar microphones are needed [1].
Unfortunately, this will have negative effects on the direction of arrival (DOA) estimation when
the whistle is blown close to the robot because of the neglected increased vertical angle the
sound arrives from.

Each microphone records sound at 16 bit with a sample frequency of 48 kHz. The latter plays a
vital role in localizing the whistle as at lower rates, the displacement of samples across channels
in time is quantized increasingly coarse.

Depending on the DOA and the frequency of the sound source, acoustic shadowing can occur
to the microphones further away from the source. This can impact the amplitudes of the signal
making any possible cross-correlations prone to error if they are not normalized beforehand.

9.2.2 Algorithmic Overview

In order to find the position of the sound source, each robot is individually estimating a DOA.
To do that we have applied a delay-and-sum beamformer to estimate the respective DOA of
three microphone pairs (RL - FL, FL - FR, FR - RR). Each of those microphone pairs calculates
a beam signal for each angle between −90◦ and +90◦ with a step size of 1◦. Because of the
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isotropic microphones, those angles are simply mirrored for the other side leaving us with 360
beam signals. These 360 signals are then transformed to be relative to the head direction. This
step is necessary because of the rotated microphone pairs RL - FL and FR - RR. If it weren’t for
the coplanar characteristic of the microphone array there should also be a fix for the translation
difference of the microphone pairs at this point. This is important for close range sound sources
since small variations in the position of the sound source lead to high variations in the estimated
DOA.

Due to reasons explained below, the beam signals of each microphone pair contain at least 2
types of ambiguity: spatial aliasing and mirroring. This effectively leaves every microphone pair
with at least 2 (up to 6) possible DOAs. To reduce the effect of these ambiguities the signals are
averaged creating an energy-weighted DOA histogram containing all 360 directions. This way,
directions where many microphone pairs contain possible DOAs get a high energy value. The
direction with the maximum energy value is then presented as the final DOA for the analyzing
robot.

In theory, all 5 robots will estimate a local DOA this way and send the result to all other robots.
The first robot to receive 4 DOAs (not including its own) is going to calculate an intersection of
those DOAs taking into account the poses of the other robots. This is done by applying a least
squares optimizer and finding the lowest error on the intersection of all 5 DOAs.

9.2.3 DOA Estimation in Detail

For the sake of explanation, we assume two things to be constant: the base frequency of the
whistle (3200Hz) and the speed of sound (343 m

s ). In reality, they depend on the type of whistle
used, and the air temperature and humidity, respectively. Furthermore, we are assuming that
the sound source is not close (< 30 cm) as we would otherwise have to include the curvature of
the sound waves into our calculations.

To estimate a local DOA we take advantage of the fact that the sound arrives faster at one
microphone than another (cf. Fig. 9.4). The resulting delay in the two audio streams coming
from our two microphones contains the information we need in order to calculate the DOA.

d
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Figure 9.4: The two microphones receive the whistle at different times resulting in a time delay.

Usually, we could run a normalized cross-correlation, get the delay and calculate the DOA α
via:

∆t =
∆x

343 m
s

α = sin−1(
∆t · 343 m

s

d
)

Unfortunately, this is not possible for most of our microphone pairs in all possible permuta-
tions because of spatial aliasing. Similar to the Nyquist frequency in temporal aliasing, spatial

139



B-Human 2019 9.2. DIRECTIONAL WHISTLE CHALLENGE

aliasing occurs if the microphones are further apart than half the wavelength of the highest
frequency to measure [3]. The highest frequency we are interested in is ≈ 3200Hz, leaving us
with a maximum distance between microphones of

343 m
s

2 · 3200Hz
= 0.0536m.

Not conforming to this distance results in the appearance of so called grating lobes in our
directivity diagram. These are a special form of side lobes which have the same amplitude as
our main lobe, thus introducing additional ambiguities in our DOA response (cf. Fig. 9.5 right).
Table 9.2 shows a comparison of our four eligible microphone pairs.

Microphone pair Distance [m] max. Frequency [Hz] Grating lobe angle [±deg] @ 3200Hz

RL - FL 0.0533 3217 /
FL - FR 0.0618 2775 60.14
FR - RR 0.0533 3217 /
RR - RL 0.1116 1536 28.70

Table 9.2: A comparison of the four outer microphone pairs

This makes it immediately apparent that microphone pair RR - RL would introduce way too
many ambiguities. As a result, we are only focusing on the remaining three outer pairs.

The second source of ambiguities comes from the fact that our 3 pairs resemble very small
linear arrays. This means that they can not distinguish between sources coming from the front
or the back (with respect to their direction). This creates a figure-8 style directivity pattern
because of the same amplitude of the back and main lobe (cf. Fig. 9.5 left).
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Figure 9.5: Directivity diagrams (5 dB/div) for the microphone pairs FL - RL (left) and RL - RR
(right)

We have therefore employed a beamforming algorithm to generate a beam signal for 360 direc-
tions. This is done by steering the main lobe to the angle of interest and summing the two audio
streams. By doing that, the sound waves coming from our steered direction get increased while
other sound waves coming from other directions get canceled out. Since we can not move the
microphone array itself to steer the beam, the beamformer simulates a physical steering by de-
laying one audio stream before summation. This delay is calculated beforehand and depends
on the angle of interest. Remembering our 48 kHz sample rate, each wavelength of our 3200Hz
whistle is approximately 15 frames in our data buffer. Because our beamformer needs to calcu-
late 180 different angles, the respective 180 delays will not be integral frame delays most of the
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time. We therefore applied linear interpolation to the delayed audio stream to simulate those
rational frames.

The resulting 180 angles get mirrored and averaged with the beam signals of the other micro-
phone pairs creating an energy-weighted DOA histogram of which the maximum is the result
DOA (cf. Fig. 9.6).
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Figure 9.6: The DOA histogram of all three microphone pairs and their average. The actual
DOA was 30◦.

9.2.4 Accuracy

Because of the high number of possible ambiguities, the DOA histogram can become quite
cluttered. This can result in false detections if the grating lobes just happen to overlap each
other at specific directions. In Fig. 9.6 this is shown by the two other visible spikes in the
average signal. If additional effects like reverberation come into play this can lead to a drop
in accuracy. Any false detections of overlapping grating lobes of any robot greatly affect the
quality of the least squares optimizer solution. With five robots this unfortunately happens more
often than not. Therefore, we only used a single robot in the actual challenge, not sending any
distance information and guessing one of the two possible directions mod 180◦. Unfortunately,
we always selected the wrong one. A possible solution to this could be to try to compare the
timestamps of the beginning of the whistle on each robot to deduce a more general direction.
This information could then be used to exclude some of the false positives.

9.3 B&B in the Mixed Team Tournament

In 2019, the Mixed Team Tournament was held for the third time. After two successful par-
ticipations in 2017 (together with the HULKs as the team B-HULKs) and 2018 (together with
rUNSWift as team B-Swift), we again took the opportunity to cooperate with a different team
as this always leads to a worthwhile exchange of ideas. Thus, for this year’s competition, we
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Figure 9.7: The human team members of B&B who participated in RoboCup 2019 in Sydney

teamed up with Berlin United – Nao Team Humboldt from the Humboldt University of Berlin,
who have participated in the Standard Platform League since the very beginning. The name of
our mixed team is B&B2, most team members are shown in Fig. 9.7.

For the previous competitions, we evaluated two very different approaches for forming a mixed
team. Thanks to their geographical proximity, the B-HULKs were able to meet quite often and to
agree on a sophisticated strategy as well as on a shared communication protocol beyond what
is mandated by the SPL standard message (details are described in [25]). This was hardly
possible for B-Swift in 2018. Thus, the team only used the SPL standard message and made
a few basic agreements about role selection. Nevertheless, both approaches were successful.
The B&B team generally took the latter direction, i. e. employing mostly pre-coordination rather
than online communication. A significant difference to B-Swift is that B&B, apart from the fact
that the goalkeeper was always a B-Human robot, did not assign certain players to fixed parts of
the field, i. e. both B-Human and Berlin United robots could be in the offense as well as defense.
Therefore, a small header in the team message was defined at a meeting in Berlin. It contains
whether the robot is penalized (to ease testing without a GameController), whether it wants to
play the ball, and a number corresponding to the role of the robot. The striker was determined
based on a common formula for the time to reach the ball, such that it can be calculated by all
robots for themselves and all teammates.

The Mixed Team Tournament at RoboCup 2019 consisted of a preliminary round in which all
five participating teams played games against each other team. The two best teams proceeded
to the final. We clearly won three of our preliminary round games and played one draw against
Team Team, which was formed by Nao-Team HTWK from Leipzig and the Bembelbots from

2It remains up to the reader to decide which B refers to which team.
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Frankfurt. As they also won their other games, we met them again in the final. In that game,
the equal strength of both mixed teams became obvious: the final game as well as the following
penalty shootout ended in a draw, too. Thus, it needed a sudden death shoot-out, in which we
finally won. An overview of all results is given at the league’s web site at https://spl.robocup.
org/results-2019/.

As both parts of B&B have robust implementations of all required basic abilities, such as stable
walking, ball recognition, and self-localization, all robots on the field were able to play together
reliably according to our intended strategy. We are very happy about our success and thank
Berlin United – Nao Team Humboldt for playing with us!
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Chapter 10
Tools

The following chapter describes B-Human’s simulator, SimRobot, as well as the B-Human User
Shell (bush), which is used during games to deploy the code and the settings to several NAO
robots at once.

10.1 SimRobot

The B-Human software package uses the physical robotics simulator SimRobot [14, 12] as front
end for software development. The simulator is not only used for working with simulated robots,
but it also functions as graphical user interface for replaying log files and connecting to physical
robots via Ethernet or Wi-Fi.

10.1.1 Architecture

Three dynamic libraries are created when SimRobot is built. These are SimulatedNao, Sim-
RobotCore2 and SimRobotEditor (cf. Fig. 10.1)1.

SimRobotCore2 is the simulation core. It is the most important part of the SimRobot application,
because it models the robots and the environment, simulates sensor readings, and executes
commands given by the controller or the user. The core is platform-independent and it is
connected to a user interface and a controller via a well-defined interface.

The library SimulatedNao is in fact the controller that consists of the two projects SimulatedNao

1The actual names of the libraries have platform-dependent prefixes and suffixes, i. e. .dll, .dylib, and lib .so.
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Figure 10.1: This figure shows the most important libraries of SimRobot (excluding third-party
libraries). The rectangles represent the projects which create the appropriate library. Dynamic
libraries are represented by ellipses and the static one by a diamond. Note: The static library
will be linked together with the SimulatedNao code. The result is the library SimulatedNao.

and Controller. SimulatedNao creates the code for the simulated robot. This code is linked
together with the code created by the Controller project to the SimulatedNao library. In the
scene files, this library is referenced by the controller attribute within the Scene element.

10.1.2 B-Human Toolbar

The B-Human toolbar is part of the general SimRobot toolbar which can be found at the top of
the application window (cf. Fig. 10.2). It allows setting the representations MotionRequest and
HeadAngleRequest to frequently used values.

Lets the robot stand up.

Lets the robot sit down.

Allows moving the robot’s head by hand.
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10.1.3 Scene View

The scene view (cf. the central view in Fig. 10.3) appears if the scene is opened from the
scene graph, e. g. by double-clicking on the entry RoboCup. The view can be translated by
dragging, rotated by dragging with the Shift key pressed, zoomed, and it supports several
mouse operations on objects:

• Left-clicking an object allows dragging it to another position. Robots and the ball can be
moved in that way.

• Left-clicking while pressing the Shift key allows rotating objects around their centers. The
axes of the rotating objects can be selected first by pressing x, y or z key, before pressing
and holding the Shift key.

• Double-clicking an active robot selects it. Robots are active if they are defined in the com-
pound robots in the scene description file (cf. Section 10.1.5). Robot console commands
are sent to the selected robot only (see also the command robot).

10.1.4 Information Views

In the simulator, information views are used to display debugging output such as debug draw-
ings. Such output is generated by the robot control program, and it is sent to the simulator via
message queues (Section 3.5.2). The views are interactively created using the console win-
dow, or they are defined in a script file. Since SimRobot is able to simulate more than a single
robot, the views are instantiated separately for each robot. There are 14 kinds of information
views, which are structured here into the five categories cognition, behavior control, sensing,
motion control, and general debugging support. All information views can be selected from the
scene graph (cf. the left widget in Fig. 10.3).

10.1.4.1 Cognition

Image Views

An image view (cf. Fig. 10.4a) displays debug information in the coordinate system of the cam-
era image. It is created using the command vi (cf. Section 10.1.6.3). The background of an
image view can either be empty, a regular camera image (optionally JPEG-compressed to re-
duce the bandwidth needed), or any debug image sent using the SEND DEBUG IMAGE macro.
Additionally, the image can be color-classified in the simulator. Additionally, all image views
created by the standard startup scripts have the feature that clicking inside them while holding
the Shift key moves the robot’s head to make the clicked point the center of the image. The
console command vid adds debug drawings to an image view. For instance, a view of the seg-
mented lower image with detected ball, lines and obstacles can be created with the following
commands:

Figure 10.2: This figure shows the three buttons from the BHToolBar.
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Figure 10.3: SimRobot running on Windows, Linux, and macOS. The left pane shows the scene
graph, the center pane shows a scene view, and on the right there are two views showing the
images of both cameras. The console window is shown at the bottom.

vi image segmented

vid segmentedLower representation:BallPercept:image

vid segmentedLower representation:LinesPercept:image

vid segmentedLower representation:ObstaclesImagePercept:image

To remove a debug drawing from a view, the off option can be appended to a vid command.

Color Calibration View

The color calibration view provides direct access to the parameter settings for the four color
thresholds. All parameters can be changed by moving the sliders. Color classes are defined in
the YHS2 color space as described in Section 4.1.5.

The following buttons are added to the toolbar when the colorCalibration view is focused.

undoes the latest slider change saves the local color configuration

redoes a reverted slider change

Figure 10.5 shows an example calibration for the color delimiter, the field color, and the black-
white delimiter. The color delimiter defines the minimum saturation of a pixel necessary to be
classified as colored. Field defines the hue range for pixels being classified as field color if they
are colored. The black-white delimiter defines the minimum brightness for non-colored pixels
to be classified as white instead of black.
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(a) (b)

Figure 10.4: Image view and field view with several debug drawings

Figure 10.5: An example calibration in the color calibration view

Color Space Views

Color space views visualize image information in 3-D (cf. Fig. 10.6). They can be rotated by
clicking into them with the left mouse button and dragging the mouse afterwards. There are two
kinds of color space views:

Image Color Channel: This view displays an image while using a certain color channel as
height information (cf. Fig. 10.6a).

Image Color Space: This view displays the distribution of all pixels of an image in a certain
color space (HSI, RGB, or YCbCr ). It can be displayed by selecting the entry all for a
certain color space in the scene graph (cf. Fig. 10.6b).

The two kinds of views can be instantiated for the camera image (which is already done in most
startup scripts) or any debug image. For instance, to add a set of views for the lower camera
image under the name raw, the following command has to be executed:

v3 image raw
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(a) Image color channel view (b) Image color space view

Figure 10.6: 3-D color space views

Field Views

A field view (cf. Fig. 10.4b) displays information in the system of coordinates of the soccer field.
The commands to create and manipulate it are defined similar to the ones for image views. For
instance, the view worldState is defined as:

# field views

vf worldState

vfd worldState fieldLines

vfd worldState goalFrame

vfd worldState fieldPolygons

vfd worldState representation:RobotPose

# ...

# views relative to robot

vfd worldState cognition:RobotPose

vfd worldState representation:BallModel:endPosition

# ...

# back to global coordinates

vfd worldState cognition:Reset

Please note that some drawings are relative to the robot rather than relative to the field. There-
fore, special drawings exist that change the system of coordinates for all drawings added after-
wards, until the system of coordinates is changed again.

The field can be zoomed in or out by using the mouse wheel, touch gestures, or the page
up/down buttons. It can also be dragged around with the left mouse button or by touch gestures.
Double clicking the view resets it to its initial position and scale.

10.1.4.2 Behavior Control

Behavior View

The behavior view (cf. Fig. 10.7a) shows all currently active cards and skills and the states they
are in. Since the behavior consists of two passes (cf. Section 6.2), there are two instances of
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(a) (b) (c)

Figure 10.7: Behavior view, sensor data view and joint data view

this view: once for the team behavior and once for the individual behavior. To be able to display
both of them, the following debug requests must be sent (which are, however, already part of
all startup scripts):

dr representation:ActivationGraph

dr representation:TeamActivationGraph

10.1.4.3 Sensing

Sensor Data View

The sensor data view displays all the sensor data taken by the robot that is not joint-related,
e. g. accelerations, gyro measurements and foot pressure readings (cf. Fig. 10.7b). To display
this information, the following debug requests must be sent (which are, however, already part
of all startup scripts):

dr representation:InertialSensorData

dr representation:SystemSensorData

dr representation:FsrSensorData

dr representation:KeyStates

Joint Data View

Similar to sensor data view, the joint data view displays all the joint data taken by the robot, e. g.
requested and measured joint angles, temperatures, and loads (cf. Fig. 10.7c). To display this
information, the following debug requests must be sent (which are, however, already part of all
startup scripts):

dr representation:JointRequest

dr representation:JointSensorData
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10.1.4.4 Motion Control

Kick View

The idea of the kick view shown in Fig. 10.8 is to visualize and edit basic configurations of
motions for the KickEngine described in [17]. To do so, the central element of this view is a 3-D
robot model. Regardless of whether the controller is connected to a simulated or a real robot,
this model represents the current robot posture.

Since the KickEngine describes motions as a set of Bézier curves, the movement of the limbs
can easily be visualized. Thereby the sets of curves of each limb are represented by combined
cubic Bézier curves. Those curves are attached to the 3-D robot model with the robot center as
origin. They are painted into the three-dimensional space. Each curve is defined by Eq. (10.1):

c(t) =

n∑
i=0

Bi,n(t)Pi (10.1)

To represent as many aspects as possible, the kick view has several sub views:

3-D View: In this view each combined curve of each limb is directly attached to the robot
model and therefore painted into the 3-dimensional space. Since it is useful to observe
the motion curves from different angles, the view angle can be rotated by clicking with
the left mouse button into the free space and dragging it in one direction while holding
the Shift key. In order to inspect more or less details of a motion, the view can also be
zoomed in or out by using the mouse wheel or the page up/down buttons. The left/right
arrow keys can translate the robot sidewards.

A motion configuration is not only visualized by this view, it is also editable. The user can
click on one of the visualized control points (cf. Fig. 10.8 at E) and drag it to the desired
position. In order to visualize the current dragging plane, a light green area (cf. Fig. 10.8
at B) is displayed during the dragging process. This area displays the mapping between
the screen and the model coordinates and can be adjusted by using the right mouse
button and choosing the desired axis configuration.

Another feature of this view is the ability to display unreachable parts of motion curves.
Since a motion curve defines the movement of a single limb, an unreachable part is
a set of points that cannot be traversed by the limb due to mechanic limitations. The
unreachable parts will be clipped automatically and marked with orange color (cf. Fig. 10.8
at C).

1-D/2-D View: In some cases a movement only happens in the 2-dimensional or 1-dimensional
space (e. g. raising a leg is a movement along the z-axis only). For that reason, more
detailed sub views are required. Those views can be displayed as an overlay to the 3-D
view by using the context menu, which opens by clicking with the right mouse button and
choosing Display 1D Views or Display 2D Views. This only works within the left area
where the control buttons are (cf. Fig. 10.8 at D). By clicking with the right mouse button
within the 3-D view, the context menu for choosing the drag plane appears. The second
way to display a sub view is by clicking at the KickEdit entry in the title menu. This displays
the same menu which appears as context menu.

Because clarity is important, only a single curve of a single phase of a single limb can be
displayed at the same time. If a curve should be displayed in the detailed views, it has to
be activated. This can be done by clicking on one of the attached control points.
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Figure 10.8: The kick view. A marks the editor view, B denotes the drag and drop plane, C
points at a clipped curve, D tags the buttons that control the 3D-View, e. g. play the motion
or reset the robot to a standing position, E labels one of the control points, F points at the
subviews and G points at the tool bar, where a motion can be saved or loaded.

The 2-D view (cf. Fig. 10.9b) is divided into three sub views. Each of these sub views
represents only two dimensions of the activated curve. The curve displayed in the sub
views is defined by Eq. (10.1) with Pi =

(
cxi
cyi

)
, Pi =

(
cxi
czi

)
or Pi =

(
cyi
czi

)
.

The 1-D sub views (cf. Fig. 10.9a) are basically structured as the 2-D sub views. The
difference is that each single sub view displays the relation between one dimension of the
activated curve and the time t. That means that in Eq. (10.1) Pi is defined as: Pi = cxi ,
Pi = cyi , or Pi = czi .

As in the 3-D view, the user can edit a displayed curve directly in any sub view by drag
and drop.

Editor Sub View: The purpose of this view is to constitute the connection between the real
structure of the configuration files and the graphical interface. For that reason, this view
is responsible for all file operations (for example open, close, and save). It represents
loaded data in a tabbed view, where each phase is represented in a tab and the common
parameters in another one.

By means of this view the user is able to change certain values directly without using
drag and drop. Values directly changed will trigger repainting the 3-D view, and therefore,
changes will be visualized immediately. This view also allows phases to be reordered by
drag and drop, to add new phases, or to delete phases.

To save or load a motion the kick view has to be the active view. Appropriate buttons will appear
in the tool bar (cf. Fig. 10.8 at G).
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(a) (b)

Figure 10.9: 1-D sub views (left) and 2-D sub views (right)

10.1.4.5 General Debugging Support

Module Views

Since all the information about the current module configuration can be requested from the
robot control program, it is possible to generate a visual representation automatically. The
graphs, such as the one that is shown in Fig. 10.10, are generated by the program dot from
the Graphviz package [6]. Modules are displayed as yellow rectangles and representations are
shown as blue ellipses. Representations that are received from another thread are displayed
in orange and have a dashed border. If they are missing completely due to a wrong module
configuration or because they are alias representations, both label and border are displayed
in red. The modules are separated into the categories that were specified as the second
parameter of the macro MAKE MODULE when they were defined. There are module views for
the categories infrastructure, perception, communication, modeling, behaviorControl, sensing,
and motionControl.

The module graph can be zoomed in or out by using the mouse wheel, touch gestures, or the
page up/down buttons. It can also be dragged around with the left mouse button or by touch
gestures.
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Figure 10.10: The module view shows a part of the modules in the category perception.

(a) (b)

Figure 10.11: Plot view and timing view

Plot Views

Plot views allow plotting data sent from the robot control program through the macro PLOT (cf.
Fig. 10.11a). They keep a history of the values sent, up to a defined size. Several plots can
be displayed in the same plot view in different colors. A plot view is defined by giving it a name
using the console command vp and by adding plots to the view using the command vpd (cf.
Section 10.1.6.3).

For instance, the view in Fig. 10.11a was defined as:

vp orientationX 200 -10 10

vpd orientationX representation:InertialData:angle:x

Timing View

The timing view displays statistics about all currently active stopwatches in a thread (cf.
Fig. 10.11b). It shows the minimum, maximum, and average runtime of each stopwatch in
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milliseconds as well as the average frequency of the thread. All statistics sum up the last 100
invocations of the stopwatch. Timing data is transferred to the PC using debug requests. By
default the timing data is not sent to the PC. Execute the console command dr timing to activate
sending timing data.

Data View

SimRobot offers two console commands (get & set) to view or edit anything that the robot
exposes using the MODIFY macro. While those commands are enough to occasionally change
some variables, they can become quite annoying during heavy debugging sessions.

For this reason, the data view exists. It displays modifiable content using a property browser
(cf. Fig. 10.12a). Property browsers are well suited for displaying hierarchical data and should
be well known from various editors such as Microsoft Visual Studio or Eclipse.

A new data view is constructed using the command vd in SimRobot. For example, vd represen-
tation:ArmContactModel will create a new view displaying the ArmContactModel. Data views
can be found in the data category of the scene graph.

The data view automatically updates itself ten times per second. Higher update rates are
possible, but result in a much higher CPU usage.

To modify data, just click on the desired field and start editing. The view will stop updating itself
as soon as you start editing a field. The editing process is finished either by pressing enter or
by deselecting the field. By default, modifications will be sent to the robot immediately. This
feature is called the auto-set mode. It can be turned off using the context menu (cf. Fig. 10.12b).
If the auto-set mode is disabled, data can be transmitted to the robot using the set item from
the context menu.

Once the modifications are finished, the view will resume updating itself. However you may not
notice this since modification continuously overwrites the data on the robot side, so the updated
data are the same as entered in the data view. To stop overwriting the data, use the unchanged

(a)

(b)

Figure 10.12: The data view can be used to remotely modify data on the robot.
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(a)

(b)

Figure 10.13: The log player view and the annotation view

item from the context menu. As a result, the data will be unfrozen on the robot side and you
should see the data changing again.

Log Player View

The log player (cf. Fig. 10.13a) allows to control the replay of log files using the following buttons:

start playback go to the previous frame with an image

stops playback go to the previous frame

repeat the current frame go to the next frame

run in a loop go to the next frame with an image

In addition, the current frame can be directly entered as a number or selected using a slider.

Annotation View

The annotation view displays all annotations (cf. Section 3.7.6) contained in a log file (cf.
Fig. 10.13b). Double clicking an annotation will cause the log file to jump to the given frame
number.

It is also possible to view annotations in real-time when using the simulated NAO or a direct
debug connection to a real NAO. This has to be activated by using the following debug request:

dr annotation
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10.1.5 Scene Description Files

The language of scene description files is an extended version of RoSiML [14]. Scene files that
use SimRobotCore2 have to end with .ros2, such as BH.ros2. In the following, the most impor-
tant elements, which are necessary to add robots, dummies, and balls, are shortly described
(based upon BH.ros2). For a more detailed documentation, see Appendix A.

<Include href=“. . . ”>: First of all the descriptions of the NAO itself, a specific setup of NAOs,
the ball and the field are included. The names of include files end with .rsi2.

<Scene . . .>: This element begins the instantiation section of the scene description. While ev-
erything outside the scene element, i. e. the files included above, only declares templates
for objects, everything that follows is actually instantiated in the scene. The attributes of
this element define some important properties of the scene, e. g. the controller library and
the duration of each simulation step.

<Compound name=“teamColors”>: This compound contains two appearances of which
only the names matter. It defines the jersey colors of the two teams which the simu-
lated GameController assumes. This is mainly important to make the jersey detection
work in the simulation and does not have an effect on the actual appearance of the robots
(see below).

<Compound ref=“robots”/ >: This compound contains all active robots, i. e. robots for which
will be controlled by the B-Human modules. However, each of them will require a lot of
computation time. In the tag Body, the attribute ref specifies which NAO model should
be used and name sets the robot name in the scene graph of the simulation. Legal robot
names are “robot1” . . . “robot12”, where the first six robots are assumed to play in the first
team (with player numbers 1. . . 6) while the other six play in the second team (again with
player numbers 1. . . 6). The standard color of the NAO’s jersey is set to black. To set it to
red, use <Set name=“NaoColor” value=“red”> within the Body element.

<Compound ref=“extras”/ >: This compound contains passive robots, i. e. robots that just
stand around, but are not controlled by a program. Passive robots can be activated by
moving their definition to the compound robots and changing the referenced model from
“NaoDummy” to “Nao”.

<Compound name=“balls”>: This compound contains an instance of the ball.

<Compound ref=“field”/ >: This element instantiates the field from the included file as part
of the scene.

Predefined Scenes

A lot of scene description files can be found in Config/Scenes. There are two types of scene
description files: the ones required to simulate one or more robots, and the ones that connect
to a real robot.

Simulating multiple robots is expensive. To overcome this and enable decent frame rates, some
scenes come in special variants. In scenes ending with PerceptOracle, no camera images
are rendered and percepts are provided by the simulator. However, models, for example the
BallModel, still have to be calculated. This is different in the scenes with the suffix Fast, in
which even the models are replaced with ground truth data from the simulator.
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BH[PerceptOracle|Fast]: A single robot with five dummies.

OneTeam[PerceptOracle|Fast]: A team of five robots against dummies.

Game[PerceptOracle|Fast]: A game five against five.

KickViewScene[Remote]: For working on kicks (cf. Section 10.1.4.4).

ReplayRobot: Used to replay log files (cf. Section 3.7.5).

RemoteRobot: Connects to a remote robot and displays images and data.

10.1.6 Console Commands

Console commands can either be directly typed into the console window or they can be exe-
cuted from a script file. There are three different kinds of commands. The first kind will typically
be used in a script file that is executed when the simulation is started. The second kind are
global commands that change the state of the whole simulation. The third type is robot com-
mands that affect currently selected robots only (see command robot to find out how to select
robots).

10.1.6.1 Initialization Commands

cl <location>
Changes the location that is used in the configuration file search path of simulated robots.
This command is special, because it only has an effect if run directly from the script that
is executed when a scene is loaded. This command and the following one are always
executed before any other command in the script, because the location must be set before
any robot code is executed, as otherwise configuration files would have already been
loaded from the default path.

cs <scenario> [team1|team2]
Changes the scenario that is used in the configuration file search path of simulated robots.
As for the command cl, this command only has an effect if run directly from the script that
is executed when a scene is loaded. This command and the previous one are always
executed before any other command in the script, because the scenario must be set
before any robot code is executed, as otherwise configuration files would have already
been loaded from the default path. The optional second parameter can be used to set the
scenario for only one of the two simulated teams.

sc <name> <a.b.c.d>
Starts a remote connection to a real robot. The first parameter defines the name that will
be used for the robot. The second parameter specifies the IP address of the robot. The
command will add a new robot to the list of available robots using name, and it adds a set
of views to the scene graph. When the simulation is reset or the simulator is exited, the
connection will be terminated.

sl <name> [<file>]
Replays a log file. The command will instantiate a complete set of threads and views. The
threads will be fed with the contents of the log file. The first parameter of the command
defines the name of the virtual robot. The name can be used in the robot command (see
below), and all views of this particular virtual robot will be identified by this name in the
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tree view. The second parameter specifies the path to the log file. If the path is not an
absolute path, Config/Logs is the base directory. .log is the default extension of log files. It
will be automatically added if no extension is given. If no file is given at all, the previously
started log file is used.

When replaying a log file, the replay can be controlled by the Log Player (cf. Sec-
tion 10.1.4.5) or the command log (see below). It is even possible to load a different
log file during the replay.

sml <directory>
Replays all log files in a directory and its subdirectories, each in its own robot instance.

10.1.6.2 Global Commands

ar off | on
Enables or disables the automatic referee.

call <file> [<file>]
Executes a script file. A script file contains commands as specified here, one command
per line. The default location for scripts is the Config/Scenes directory, their default ex-
tension is .con. If the optional script file is present, that one is executed instead.

ci off | on | <fps>
Switches the calculation of images on or off. If an image frame rate is explicitly specified
instead of “on”, that one is used instead of the default value of 60Hz. The simulation of
the robot’s camera image costs a lot of time, especially if several robots are simulated. In
some development situations, it is better to switch off all low level processing of the robots
and to work with ground truth world states, i. e., world states that are directly delivered by
the simulator. In such cases there is no need to waste processing power by calculating
camera images. Therefore, it can be switched off. However, by default this option is
switched on. Note that this command only has an effect on simulated robots.

cls
Clears the console window.

dt off | on | <fps>
Switches simulation dragging to real-time on or off. If a frame rate is explicitly specified
instead of “on”, that one is used instead of the default value of 83.3Hz. Normally, the
simulation tries not to run faster than real-time. Thereby, it also reduces the general
computational load of the computer. However, in some situations it is desirable to execute
the simulation as fast as possible. By default, this option is activated.

echo <text>
Prints text into the console window. The command is useful in script files to print com-
mands that can later be activated manually by pressing the Enter key in the printed line.

gc initial | ready | set | playing | finished | competitionTypeNormal | competitionType-
MixedTeam | competitionPhasePlayoff | competitionPhaseRoundRobin | manu-
alPlacementFirstTeam | manualPlacementSecondTeam | goalByFirstTeam | goal-
BySecondTeam | goalFreeKickForFirstTeam | goalFreeKickForSecondTeam | push-
ingFreeKickForFirstTeam | pushingFreeKickForSecondTeam | cornerKickForFirst-
Team | cornerKickForSecondTeam | kickInForFirstTeam | kickInForSecondTeam |
kickOffFirstTeam | kickOffSecondTeam | gamePenaltyShootout | gameNormal
Sets the current state of the GameController.
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( help | ? ) [<pattern>]
Displays a help text. If a pattern is specified, only those lines of the help are printed that
contain the pattern.

mvo <name> <x> <y> <z> [<rotx> <roty> <rotz>]
Moves the object with the given name to the given position and optionally rotates it.

robot ? | all | <name> {<name>}
Selects a robot or a group of robots. The console commands described in the next section
are only sent to selected robots. By default, only the robot that was created or connected
last is selected. Using the robot command, this selection can be changed. Type robot
? to display a list of the names of available robots. A single simulated robot can also be
selected by double-clicking it in the scene view. To select all robots, type robot all.

st off | on
Switches the simulation of time on or off. Without the simulation of time, all calls to
SystemCall::getCurrentSystemTime() will return the real time of the PC. However if
the simulator runs slower than real-time, the simulated robots will receive less sensor
readings than the real ones. If the simulation of time is switched on, each step of the
simulator will advance the time by 12ms. Thus, the simulator simulates real-time, but it is
running slower. By default this option is switched off.

# <text>
Begins a comment line. Useful in script files.

10.1.6.3 Robot Commands

bc [<red%> [<green%> [<blue%>]]]
Defines the background color for 3-D views. The color is specified in percentages of
red, green, and blue intensities. All parameters are optional. Missing parameters will be
interpreted as 0%.

dr ? [<pattern>] | off | <key> ( off | on )
Sends a debug request. B-Human uses debug requests to switch debug responses (cf.
Section 3.6.1) on or off at runtime. Type dr ? to get a list of all available debug requests.
The resulting list can be shortened by specifying a search pattern after the question mark.
Debug responses can be activated or deactivated. They are deactivated by default. Spec-
ifying just off as the only parameter returns to this default state. Several other commands
also implicitly send debug requests, e. g. to activate the transmission of debug drawings.

get ? [<pattern>] | <key> [?]
Shows debug data or shows its specification. This command allows displaying any infor-
mation that is provided in the robot code via the MODIFY macro. If one of the strings that
are used as first parameter of the MODIFY macro is used as parameter of this command
(the modify key), the related data will be requested from the robot code and displayed.
The output of the command is a valid set command (see below) that can be changed to
modify data on the robot. A question mark directly after the command (with an optional
filter pattern) will list all the modify keys that are available. A question mark after a modify
key will display the structure of the associated data type rather than the data itself.

jc hide | show | motion ( 1 | 2 ) <command> | ( press | release ) <button> <command>
Sets a joystick command. If the first parameter is press or release, the number following
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is interpreted as the number of a joystick button. Legal numbers are between 1 and 40.
Any text after this first parameter is part of the second parameter. The <command>
parameter can contain any legal script command that will be executed in every frame
while the corresponding button is pressed. The prefixes press or release restrict the
execution to the corresponding event. The commands associated with the 26 first buttons
can also be executed by pressing Ctrl+Shift+A. . . Ctrl+Shift+Z on the keyboard. If the
first parameter is motion, an analog joystick command is defined. There are two slots
for such commands, number 1 and 2, e. g., to independently control the robot’s walking
direction and its head. The remaining text defines a command that is executed whenever
the readings of the analog joystick change. Within this command, $1. . . $8 can be used
as placeholders for up to eight joystick axes. The scaling of the values of these axes is
defined by the command js (see below). If the first parameter is show, any command
executed will also be printed in the console window. hide will switch this feature off again,
and hide is also the default.

jm <axis> <button> <button>
Maps two buttons on an axis. Pressing the first button emulates pushing the axis to its
positive maximum speed. Pressing the second button results in the negative maximum
speed. The command is useful when more axes are required to control a robot than the
joystick used actually has.

js <axis> <speed> <threshold> [<center>]
Sets the axis maximum speed and ignore threshold for command jc motion. axis is the
number of the joystick axis to configure (1. . . 8). speed defines the maximum value for that
axis, i. e., the resulting range of values will be [−speed . . . speed]. The threshold defines
a joystick measuring range around zero in which the joystick will still be recognized as
centered, i. e., the output value will be 0. The threshold can be set between 0 and 1.
An optional parameter allows for shifting the center itself, e. g. to compensate for bad
calibration of a joystick.

kick
Adds the KickEngine view to the scene graph.

log . . .
This command supports both recording and replaying log files. The latter is only pos-
sible if the current set of robot instances was created using the initialization command
sl (cf. Section 10.1.6.1). This command has several sub-commands, i. e. the following
commands are parameters of the log command, such as log start.

? [<pattern>]
Prints statistics on the messages contained in the current log file. The optional
pattern limits output to messages corresponding to the pattern.

mr [list]
Sets the provider of all representations from the log file to LogDataProvider. If list
is specified the module request commands will be printed to the console instead.

start | stop
If replaying a log file, starts and stops the replay. Otherwise, the commands will start
and stop the recording.

pause | forward [image] | backward [image] | repeat | goto <number> | time
<minutes> <seconds> | fastForward | fastBackward
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Controls replay of a log file. pause stops the replay without rewinding to the begin-
ning, forward and backward advance a single step in the respective direction. With
the optional parameter image, it is possible to skip all frames in between that do not
contain images. repeat just resends the messages from the current frame. goto
allows jumping to a certain frame in the log file. If the log file contains the represen-
tation GameInfo, the command time allows to jump to the first frame with a certain
remaining game time. fastForward and fastBackward advance by 100 steps forward
or backward.

cycle | once
Decides whether the log file is replayed only once or continuously repeated.

clear | ( keep | remove ) <message> {<message>} | keep ( ballPercept [seen |
guessed] | ballSpots | circlePercept | lower | option <option> [<state>] | penal-
tyMarkPercept | upper )
clear removes all messages from the log file, while keep and remove only delete
a selected subset based on the set of message IDs specified. keep also has a
second form, in which a condition can be specified that is used to keep the frames
(not just the messages) that meet the condition. The conditions are hardcoded in
the implementation of the RobotConsole. They check, e. g., whether the image was
recorded from a specific camera, a certain object was detected or the behavior was
in a specific state in a frame.

( load | save [split <parts>] ) <file>
These commands load or save the log file stored in memory from or to a file, respec-
tively. If the filename is not a absolute path, it is relative to Config/Logs. Otherwise,
the full path is used. .log is the default extension of log files. It will be automatically
added if no extension is given. When saving a log file, it can be split into a specified
number of parts with an equal number of messages.

trim ( until <end frame> | from <start frame> | between <start frame> <end
frame> )
Keeps only the given section of the log and saves the log file afterwards.

saveAudio [<file>]
Saves the audio data from the current log file to a .wav file. If no filename is given,
the file is created at the log file’s location with the .wav extension. If the specified
filename is not an absolute path, it is relative to Config/Sounds.

saveImages [raw] [onlyPlaying] [<takeEachNth>] [<dir>]
Saves images from the current log file as PNG files to a directory. If raw is specified,
images are left in their YUV format, otherwise they are converted to RGB. onlyPlay-
ing only selects images that were taken while the robot was in the playing state,
unpenalized and upright. Images can be skipped using the parameter takeEachNth.
If no target directory is given, the images are put in a new directory next to the log
file. If the specified directory is not an absolute path, it is relative to Config/Images.

( saveInertialSensorData | saveJointAngleData ) [<file>]
Saves sensor data from the current log file to a .csv file. If no filename is given, the
file is created at the log file’s location with the .csv extension.

saveLabeledBallSpots [<file>]
Saves image patches around ball spots from the current log file, including a .csv file
with label information. For this, the representation LabelImage must be present in
the log file, which has to be patched in by an external annotation tool. The image
patches are stored in a new directory at the log file’s location.
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saveTiming [<file>]
Saves timing data from all stopwatches for each frame from the current log file to a
.csv file. If no filename is given, the file is created at the log file’s location with the
.csv extension.

full | jpeg
Decides whether uncompressed images received from the robot will also be written
to the log file as full images, or JPEG-compressed on the recording PC before.
When the robot is connected by cable, sending uncompressed images is usually a
lot faster than compressing them on the robot. By executing log jpeg, they can still
be saved in JPEG format, saving memory space during recording as well as disk
space later. Note that running image processing routines on JPEG images does not
always give realistic results, because JPEG is not a lossless compression method,
and it is optimized for human viewers, not for machine vision.

mof Recompiles all special actions and if successful, sends the result to the robot.

msg off | on | log <file> | disable | enable
Switches the output of text messages on or off, or redirects them to a text file. All threads
can send text messages via their message queues to the console window. As this can
disturb entering text into the console window, printing can be switched off. However, by
default text messages are printed. In addition, text messages can be stored in a log file,
even if their output is switched off. The file name has to be specified after msg log. If
the file already exists, it will be replaced. If no path is given, Config/Logs is used as
default. Otherwise, the full path is used. .txt is the default extension of text log files. It will
be automatically added if no extension is given. enable and disable can switch between
handling messages from the robot at all, which is enabled by default.

mr ? [<pattern>] | modules [<pattern>] | save | <representation> ( ? [<pattern>] |
<module> [<thread>] | default | off )
Sends a module request. This command allows selecting the module that provides a
certain representation in a certain thread. If the representation is currently provided in
exactly one thread, the thread argument can be omitted. If a representation should not be
provided anymore, it can be switched off. Deactivating the provision of a representation
is usually only possible if no other module requires that representation. Otherwise, an
error message is printed and the robot is still using its previous module configuration.
Sometimes, it is desirable to be able to deactivate the provision of a representation without
the requirement to deactivate the provision of all other representations that depend on it.
In that case, the provider of the representation can be set to default. Thus no module
updates the representation and it simply keeps its previous state.

A question mark after the command lists all representations. A question mark after a
representation lists all modules that provide this representation. The parameter modules
lists all modules with their requirements and provisions. All three listings can be filtered
by an optional pattern. save saves the current module configuration to the file threads.cfg
which it was originally loaded from. Note that this usually has not the desired effect,
because the module configuration has already been changed by the start script to be
compatible with the simulator. Therefore, it will not work anymore on a real robot. The
only configuration in which the command makes sense is when communicating with a
remote robot.

mv <x> <y> <z> [<rotx> <roty> <rotz>]
Moves the selected simulated robot to the given position and rotates it if a rotation is
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specified. x, y, and z have to be specified in mm, the rotations have to be specified in
degrees. Note that the origin of the NAO is about 330mm above the ground, so z should
be 330.

mvb <x> <y> <z>
Moves the ball to the given position. x, y, and z have to be specified in mm. Note that the
radius of the ball is 50mm above the ground, so z should be at least 50.

poll
Polls for all available debug requests and debug drawings. Debug requests and debug
drawings are dynamically defined in the robot control program. Before console commands
that use them can be executed, the simulator must first determine which identifiers exist
in the code that currently runs. Although the acquisition of this information is usually done
automatically, e. g. after the module configuration was changed, there are some situations
in which a manual execution of the command poll is required. For instance if debug
responses or debug drawings are defined inside another debug response, executing poll
is necessary to recognize the new identifiers after the outer debug response has been
activated.

pr none | illegalBallContact | playerPushing | illegalMotionInSet | inactivePlayer | ille-
galDefender | leavingTheField | kickOffGoal | requestForPickup | localGameStuck |
illegalPositioning | substitute | manual
Penalizes a simulated robot with the given penalty, or unpenalizes it when used with
none. If the automatic referee is turned on, the necessary placement is done automat-
ically: When penalized, the simulated robot will be moved to the sideline, looking away
from the field. When unpenalized, it will be turned, facing the field again, and moved to
the sideline that is further away from the ball.

save ? [<pattern>] | <key> [<path>]
Save debug data to a configuration file. The keys supported can be queried using the
question mark. An additional pattern filters the output. If no path is specified, the name of
the configuration file is looked up from a table, and its first occurrence in the search path
is overwritten. Otherwise, the path is used. If it is relative, it is appended to the directory
Config.

set ? [<pattern>] | <key> ( ? | unchanged | <data>)
Changes debug data or shows its specification. This command allows changing any in-
formation that is provided in the robot code via the MODIFY macro. If one of the strings that
are used as first parameter of the MODIFY macro is used as parameter of this command
(the modify key), the related data in the robot code will be replaced by the data structure
specified as second parameter. It is best to first create a valid set command using the
get command (see above). Afterwards that command can be changed before it is exe-
cuted. If the second parameter is the key word unchanged, the related MODIFY statement
in the code does not overwrite the data anymore, i. e. it is deactivated again. A question
mark directly after the command (with an optional filter pattern) will list all the modify keys
that are available. A question mark after a modify key will display the structure of the
associated data type rather than the data itself.

si reset [<number>] | ( upper | lower ) [number] [grayscale] [region<left><top><right>
<bottom>] [<file>]
Saves the raw image of a robot. The image will be saved in the format derived from the
file extension in color, unless the grayscale option is specified. If no path is specified,
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Config/raw image.bmp will be used as default. If number is specified, a number is ap-
pended to the filename that is increased each time the command is executed. With the
region option, the image can be cropped before being saved. The option reset resets the
counter to a specified value or 0 if none is specified.

v3 ? [<pattern>] | <image> [jpeg] < [thread>] [<name>]
Adds a set of 3-D color space views for a certain image (cf. Section 10.1.4.1). The image
can either be the camera image (simply specify image) or a debug image. The camera
image can also be JPEG-compressed by using the jpeg option. By default, the debug
image is taken from the Lower thread. However, the thread parameter can switch to the
image from another thread. The last parameter is the name that will be given to the set
of views. If the name is not given, it will be the same as the name of the image plus
the name of the thread from which the image is taken. A question mark followed by an
optional filter pattern will list all available images.

vd <debug data> ( on | off )
Adds a data view (cf. Section 10.1.4.5) for debug data that is provided in the robot code
via the MODIFY macro. Data views can be found in the data category of the scene graph.
They provide the same functionality as the get and set commands (see above). However
they are much more comfortable to use.

vf <name>
Adds a field view (cf. Section 10.1.4.1). A field view is the means for displaying debug
drawings in field coordinates. The parameter defines the name of the view.

vfd ? [<pattern>] | off | ( all | <name> ) ( ? [<pattern>] | <drawing> ( on | off ) )
(De)activates a debug drawing in a field view. The first parameter is the name of a field
view that has been created using the command vf (see above) or all to add the drawing to
all field views. The second parameter is the name of a drawing that is defined in the robot
control program. Such a drawing is activated if the third parameter is on or is missing. It is
deactivated if the third parameter is off. The drawings will be drawn in the sequence they
are added, from back to front. Adding a drawing a second time will move it to the front
unless the drawing is an origin drawing (those can be “drawn” multiple times). A question
mark directly after the command will list all available field views. A question after a valid
field view will list all available field drawings. Both question marks have an optional filter
pattern that reduces the number of answers. vfd off will turn off all debug drawings except
for the background in all field views.

vi ? [<pattern>] | <image> [jpeg] [segmented] [<thread>] [<name>] [ gain <value>]
[ddScale <value>]
Adds an image view (cf. Section 10.1.4.1). An image view is the means for displaying
debug drawings in image coordinates. The image can either be the camera image (simply
specify image), a debug image, or no image at all (none). The camera image can also be
JPEG-compressed by using the jpeg option. If segmented is specified, the image will be
segmented using the current color calibration. By default, the debug image is taken from
the Lower thread. However, the thread parameter can switch to the image from another
thread. The next parameter is the name of the view that is needed when adding drawings
to it. If the name is not given, it will be the same as the name of the image plus the word
Segmented if it should be segmented and the name of the thread from which the image
is taken. With the argument of the gain parameter the image gain can be adjusted, if no
gain is specified the default value will be 1.0. The argument of ddScale can set a custom
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scaling of debug drawings in the view, which is 1.0 by default. A question mark followed
by an optional filter pattern will list all available images.

vic ? [<pattern>] | ( all | <name> ) [alt | noalt] [ctrl | noctrl] [shift | noshift] <command>
Sets a command to be executed when clicking on an image view. The first parameter is
the name of an image view that has been created using the command vi (see above) or
all to set the command for all image views. Then, for the modifier keys Alt, Control and
Shift, it can be selected whether they either must or must not be pressed while clicking
for the command to be executed. Modifiers that are not mentioned at all are ignored.
Everything after the modifier specification is the command that will be executed on clicking
the image view. In the command, the placeholders $1. . . $3 can be used to insert the x-
coordinate, y-coordinate and the lower case thread identifier to which the image view
belongs, respectively. A question mark directly after the command will list all available
image views.

vid ? [<pattern>] | off | ( all | <name> ) ( ? [<pattern>] | <drawing> ( on | off ) )
(De)activates a debug drawing in an image view. The first parameter is the name of an
image view that has been created using the command vi (see above) or all to add the
drawing to all image views. The second parameter is the name of a drawing that is defined
in the robot control program. Such a drawing is activated if the third parameter is on or is
missing. It is deactivated if the third parameter is off. The drawings will be drawn in the
sequence they are added, from back to front. Adding a drawing a second time will move
it to the front. A question mark directly after the command will list all available image
views. A question mark after a valid image view will list all available image drawings. Both
question marks have an optional filter pattern that reduces the number of answers. vid off
will turn off all debug drawings in all image views.

vp <name> <numOfValues> <minValue> <maxValue> [<yUnit> [<xUnit> [<xScale>]]]
Adds a plot view (cf. Section 10.1.4.5). A plot view is the means for plotting data that was
defined by the macro PLOT in the robot control program. The first parameter defines the
name of the view. The second parameter is the number of entries in the plot, i. e. the size
of the x axis. The plot view stores the last numOfValues data points sent for each plot
and displays them. minValue and maxValue define the range of the y axis. The optional
parameters can improve the appearance of the plots by adding labels to both axes and by
scaling the time-axis. The axis label drawing can be toggled by using the context menu
of the plot view.

vpd ? [<pattern>] | <name> ( ? [<pattern>] | <drawing> ( ? [<pattern>] | <color>
[<description>] | off ) )
Plots data in a certain color in a plot view. The first parameter is the name of a plot view
that has been created using the command vp (see above). The second parameter is the
name of plot data that is defined in the robot control program. The third parameter defines
the color for the plot. white, black, red, green, blue, yellow, cyan, magenta, orange, violet,
gray, brown, and six-digit hexadecimal RGB color codes are supported. An optional fourth
parameter can set a custom description of the plot data. The plot is deactivated when the
third parameter is off. The plots will be drawn in the sequence they were added, from back
to front. Adding a plot a second time will move it to the front. A question mark directly
after the command will list all available plot views. A question after a valid plot view will
list all available plot data. A question mark after a valid plot view and a valid plot data
identifier will list the available colors. All question marks have an optional filter pattern
that reduces the number of answers.
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10.1.6.4 Input Dialogs

Input dialogs may be used as placeholders in scripting-files to request input from the user. The
dialogs will be opened before their respective script-lines are executed and the user selected
value handled as usual script, e. g. a command or parameter.

${<label>}2
This expression opens a plain text input dialog.

${<label>,<relativePath>}2
This expression opens a file selection dialog at the relative path. The path may also
specify legal file names via the asterisk-character (*). This is used, e. g., in the file Con-
fig/Scenes/Include/replayDialog.con: ${Log File:,../../Logs/*.log}.

${<label>,,<relativePath>}2
This expression opens a directory selection dialog at the relative path.

${<label>,<value-1>,<value-2>{,<value-x>}}2
This expression opens a drop-down list with the respective name and value options. This
is used, e. g., to open an IP address dialog in the file Config/Scenes/Include/connectDia-
log.con: ${IP address:,10.0.1.1,192.168.1.1}.

10.2 B-Human User Shell

The B-Human User Shell (bush) accelerates and simplifies the deployment of code and the
configuration of the robots. It is especially useful when controlling several robots at the same
time, e. g., during the preparation for a soccer match.

10.2.1 Configuration

Since the bush can be used to communicate with the robots without much help from the user,
it needs some information about the robots. Therefore, each robot has a configuration file
Config/Robots/<RobotName>/network.cfg which defines the name of the robot and how it can
be reached by the bush.3 Additionally you have to define one (or more) teams, which are
arranged in tabs. The data of the teams is used to define the other properties, which are
required to deploy code in the correct configuration to the robots. The default configuration file
of the teams is Config/teams.cfg which can be edited within the bush or with a text editor. Each
team can have the configuration variables shown in Table 10.1.

10.2.2 Commands

The bush supports two types of commands. There are local commands (cf. Table 10.2) and
commands that interact with selected robot(s) (cf. Table 10.3). Robots can be selected by
checking their checkbox or with the keys F1 to F12.

2The outer curly braces are literals.
3The configuration file is created by the script createRobot described in Section 2.3.4.
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Figure 10.14: An example screenshot of the bush

10.2.3 Deploying Code to the Robots

For the simultaneous deployment of several robots the command deploy should be used. It
accepts a single optional parameter that designates the build configuration of the code to be
deployed to the selected robots. If the parameter is omitted the default build configuration of
the currently selected team is used. It can be changed with the drop-down menu at the top of
the bush user interface.

If the Build checkbox is set, the deploy command checks whether the binaries are up-to-date
before it copies code to the robots. If needed, they are recompiled by the compile command,
which can also be called independently from the deploy command. Depending on the platform,
the compile command uses make, xcodebuild, or MSBuild to compile the binaries required.

The deployment itself uses the copyfiles script (cf. Section 2.4). This will stop the bhuman
software before copying all necessary files. On all selected robots in the first row, bhuman
is started again after the deployment. Furthermore, the bhuman software can be restarted
manually using the restart command. This command can also reboot robots when called with
the robot parameter. To inspect the configuration files copied to the robots, you can use the
command show, which knows most of the files located on the robots and can help with finding
the desired files with tab completion.

10.2.4 Substituting Robots

The robots known to the bush are arranged in two rows. The entries in the upper row represent
the playing robots and the entries in the lower row the robots which stand by as substitutes.
To select which robots are playing and which are not, you can move them by drag&drop to the
appropriate position. Since this view only supports twelve robots at a time, there is another
view called RobotPool at the right side of the bush window which contains all other robots. The
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Entry Description

name The name of the team.
number The team number.
port The port which is used for team communication messages.
color The team color.
scenario The scenario used when accessing configuration files (cf. Section 2.8.2).
location The location used when accessing configuration files (cf. Section 2.8.2).
compile Should the code be compiled before it is deployed?
buildConfig The name of the build configuration which should be deployed to the robot

(cf. Section 2.1).
wlanConfig The name of the wireless profile (cf. Section 2.3.2). Can be NONE to turn off

the wireless.
volume The audio playback volume to which the robots should be set to.
deployDevice The device which should be used to connect to the robots. Either an Eth-

ernet or a Wi-Fi connection can be established. The default entry is auto.
This chooses the best device, depending on ping times.

magicNumber The magic number for the team communication. Robots with different num-
bers will ignore each others messages. The special value -1 will set the last
component of the IP address as magic number.

players The list of robots the team consists of. The list must have twelve entries,
where each entry must either be a name of a robot (with an existing file
Config/Robots/<RobotName>/network.cfg), or an underscore for empty
slots. The first six robots are the main players and the last six their sub-
stitutes.

Table 10.1: Configuration variables in the file Config/teams.cfg

robots displayed there can be exchanged with robots from the main view. If a robot from the
lower row is deployed, bhuman will be shut down. This is important because the robots should
be operational to be replaced as fast as possible, but are not allowed to send and receive
network packets. It is important to note that after rebooting the robot, bhuman will run again.

10.2.5 Monitoring Robots

The bush displays some information about the robots’ states as can be seen in Fig. 10.14:
wireless connection ping time, wired connection ping time, battery status, and number of logfiles
stored on the robot. The color of the power status bar indicates whether the battery is charging:
A green bar indicates that the battery is connected to a power supply while a red bar means
that the battery is not charging.
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Command Parameter(s)
Description

compile [ <config> [ <project> ] ]
Compile a project with a specified build configuration. The default is to build
the project Nao in the configuration Develop.

exit
Exit the bush.

help
Print a help text with all commands.

sim
Open the RemoteRobot.ros2 scene in the simulator.

Table 10.2: General bush commands.

Command Parameter(s)
Description

deploy [ <config> ]
Deploys code and all settings to the robot(s) using copyfiles.

downloadLogs
Downloads all logs from the robot(s) and stores them at Config/Logs.

deleteLogs
Deletes all logs from the robot(s).

restart [ bhuman | robot ]
Restarts bhuman or the robot. If no parameter is given, bhuman will be
restarted.

scp @<path on NAO> <local path> | <local path> <path on NAO>
Copies a file to or from the robot(s). The first argument is the source and
the second the destination path.

show <config file>
Prints the configuration file stored on the robot(s).

shutdown
Executes a shutdown on the robot(s).

ssh [ <command> ]
Executes a command via ssh or opens an ssh session.

Table 10.3: Bush commands that need at least one selected robot.
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Artistic Style: Source code formatting in the AStyle for B-Human text service on macOS.
(http://astyle.sourceforge.net)

AsmJit: A JIT assembler for C++.
(https://github.com/asmjit/asmjit)

AT&T Graphviz: For generating the graphs shown in the options view and the module view of
the simulator.
(http://www.graphviz.org)

ccache: A fast C/C++ compiler cache.
(http://ccache.samba.org)

Eigen: A C++ template library for linear algebra: matrices, vectors, numerical solvers, and
related algorithms.
(http://eigen.tuxfamily.org)
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Flite: For speech synthesis on Linux (including the NAO).
(http://www.festvox.org/flite/)

FFTW: For performing the Fourier transform when recognizing the sounds of whistles.
(http://www.fftw.org)

getModKey: For checking whether the shift key is pressed in the Deploy target on macOS.
(http://allancraig.net/index.php?option=com_docman&Itemid=100,
not available anymore)

gtest: A very powerful test framework.
(https://code.google.com/p/googletest/)

HDF5: For reading Keras model files.
(https://www.hdfgroup.org/solutions/hdf5/)

ld: The GNU linker is used for cross linking on Windows and macOS.
(http://sourceware.org/binutils/docs-2.30/ld)

libjpeg: Used to compress and decompress images from the robot’s camera.
(http://www.ijg.org)

libjpeg-turbo: For the NAO we use an optimized version of the libjpeg library.
(http://libjpeg-turbo.virtualgl.org)

libqxt: For showing the sliders in the color calibration view of the simulator.
(https://bitbucket.org/libqxt/libqxt/wiki/Home)

mare: Build automation tool and project file generator.
(http://github.com/craflin/mare)

MD5: To efficiently check for repeating image rows (in response to a problem with the NAO
V6’s cameras).
(https://bobobobo.wordpress.com/2010/10/17/md5-c-implementation/)

ODE: For providing physics in the simulator.
(http://www.ode.org)

OpenGL Extension Wrangler Library: For determining which OpenGL extensions are sup-
ported by the platform.
(http://glew.sourceforge.net)

Qt: The GUI framework of the simulator.
(http://www.qt.io)

qtpropertybrowser: Extends the Qt framework with a property browser.
(https://github.com/qtproject/qt-solutions/tree/master/qtpropertybrowser)

Snappy: Used for the compression of log files.
(http://google.github.io/snappy)

Walk2014Generator: The module Walk2014Generator is based on the class of the same
name released by the team UNSW Australia as part of their code release. The team
kindly gave us the permission to release our derived module under our license.
(https://github.com/UNSWComputing/rUNSWift-2016-release)
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fangchi. Berlin United – Nao Team Humboldt team report 2018, 2019. Only avail-
able online: https://www.naoteamhumboldt.de/wp-content/papercite-data/pdf/

naoth-report18.pdf.
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Appendix A Scene Description

A.1 EBNF

In the next section the structure of a scene description file is explained by means of an EBNF
representation of the language. In the following, you can find an explanation of the symbols
used.

Symbols surrounded by ?(. . . )?
Parentheses with question marks mean that the order of all elements between them
is irrelevant. That means every permutation of elements within those brackets is
allowed. For example: something =?( firstEle secondEle thirdEle )? can also
be written as something =?( secondEle firstEle thirdEle )? or as something =
?( thirdEle firstEle sencondEle )? and so on.

Symbols surrounded by !
!x, y, . . .! means, that each rule is required. In fact the exclamation marks should only
underline that all elements between them are absolutely required. In normal EBNF-
Notation a rule like Hinge = . . .!bodyClass, axisClass! . . . can be written as Hinge =
. . . bodyClass axisClass . . ..

+[. . . ]+
+[x, y]+ means, that x and y are optional. You could also write somewhat = +[x, y, z]+
as somewhat = [x] [y] [z].

{. . . }
Elements within curly braces are repeatable optional elements. These brackets have the
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normal EBNF meaning.

“. . . ”
Terminal symbols are marked with quotation marks.

A.2 Grammar

appearanceClass = Appearance | BoxAppearance | CapsuleAppearance

| ComplexAppearance | CylinderAppearance

| SphereAppearance;

axisClass = Axis;

bodyClass = Body;

compoundClass = Compound;

deflectionClass = Deflection;

extSensorClass = ApproxDistanceSensor | Camera | DepthImageSensor

| ObjectSegmentedImageSensor | SingleDistanceSensor;

frictionClass = Friction | RollingFriction;

geometryClass = BoxGeometry | CapsuleGeometry | CylinderGeometry

| Geometry | SphereGeometry;

infrastructureClass = Include | Simulation;

intSensorClass = Accelerometer | CollisionSensor | Gyroscope;

jointClass = Hinge | Slider;

lightClass = Light;

massClass = BoxMass | InertiaMatrixMass | Mass | SphereMass;

materialClass = Material;

motorClass = PT2Motor | ServoMotor | VelocityMotor;

normalsClass = Normals;

primitiveGroupClass = Quads | Triangles;

rotationClass = Rotation;

sceneClass = Scene;

setClass = Set;

solverClass = QuickSolver;

surfaceClass = Surface;

texCoordsClass = TexCoords;

translationClass = Translation;

userInputClass = UserInput;

verticesClass = Vertices;

Appearance = "<Appearance>" ?( +[translationClass,

rotationClass]+ {setClass | appearanceClass} )?

"</Appearance>" | "<Appearance/>;

BoxAppearance = "<BoxAppearance>" ?( !surfaceClass!

+[translationClass, rotationClass]+

{setClass | appearanceClass} )?

"</BoxAppearance>";

CapsuleAppearance = "<CapsuleAppearance>" ?( !surfaceClass!

+[translationClass, rotationClass]+

{setClass | appearanceClass} )?

"</CapsuleAppearance>";

ComplexAppearance = "<ComplexAppearance>" ?( !surfaceClass,

verticesClass, primitiveGroupClass!

+[translationClass, rotationClass, normalsClass,

texCoordsClass]+ {setClass | appearanceClass

| primitiveGroupClass} )? "</ComplexAppearance>";
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CylinderAppearance = "<CylinderAppearance>" ?( !surfaceClass!

+[translationClass, rotationClass]+

{setClass | appearanceClass} )?

"</CylinderAppearance>";

SphereAppearance = "<SphereAppearance>" ?( !surfaceClass!

+[translationClass, rotationClass]+

{setClass | appearanceClass} )?

"</SphereAppearance>";

Axis = "<Axis>" ?( +[motorClass, deflectionClass]+

{setClass} )? "</Axis>" | "<Axis/>";

Body = "<Body>" ?( !massClass! +[translationClass,

rotationClass]+ {setClass | jointClass

| appearanceClass | geometryClass | massClass

| intSensorClass | extSensorClass

| userInputClass} )? "</Body>";

Compound = "<Compound>" ?( +[translationClass, rotationClass]+

{setClass | jointClass | compoundClass | bodyClass

| appearanceClass | geometryClass | extSensorClass

| userInputClass} )? "</Compound>" | "<Compound/>";

Deflection = "<Deflection></Deflection>" | "<Deflection/>";

ApproxDistanceSensor = "<ApproxDistanceSensor>" ?( +[translationClass,

rotationClass]+ )? "</ApproxDistanceSensor>"

| "<ApproxDistanceSensor/>";

Camera = "<Camera>" ?( +[translationClass,

rotationClass]+ )? "</Camera>" | "<Camera/>";

DepthImageSensor = "<DepthImageSensor>" ?( +[translationClass,

rotationClass]+ )? "</DepthImageSensor>"

| "<DepthImageSensor/>";

ObjectSegmentedImageSensor = "<ObjectSegmentedImageSensor>"

?( +[translationClass, rotationClass]+ )?

"</ObjectSegmentedImageSensor>"

| "<ObjectSegmentedImageSensor/>";

SingleDistanceSensor = "<SingleDistanceSensor>" ?( +[translationClass,

rotationClass]+ )? "</SingleDistanceSensor>"

| "<SingleDistanceSensor/>";

Friction = "<Friction></Friction>" | "<Friction/>";

RollingFriction = "<RollingFriction></RollingFriction>"

| "<RollingFriction/>";

BoxGeometry = "<BoxGeometry>" ?( +[translationClass,

rotationClass, materialClass]+ {setClass

| geometryClass} )? "</BoxGeometry>"

| "<BoxGeometry/>";

CapsuleGeometry = "<CapsuleGeometry>" ?( +[translationClass,

rotationClass, materialClass]+ {setClass

| geometryClass} )? "</CapsuleGeometry>"

| "<CapsuleGeometry/>";

CylinderGeometry = "<CylinderGeometry>" ?( +[translationClass,

rotationClass, materialClass]+ {setClass

| geometryClass} )? "</CylinderGeometry>"
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| "<CylinderGeometry/>";

Geometry = "<Geometry>" ?( +[translationClass, rotationClass,

materialClass]+ {setClass | geometryClass} )?

"</Geometry>" | "<Geometry/>";

SphereGeometry = "<SphereGeometry>" ?( +[translationClass,

rotationClass, materialClass]+ {setClass

| geometryClass} )? "</SphereGeometry>"

| "<SphereGeometry/>";

Include = "<Include></Include>" | "<Include/>";

Simulation = "<Simulation>" !sceneClass! "</Simulation>";

Accelerometer = "<Accelerometer>" ?( +[translationClass,

rotationClass]+ )? "</Accelerometer>"

| "<Accelerometer/>";

CollisionSensor = "<CollisionSensor>" ?( +[translationClass,

rotationClass]+ {geometryClass} )?

"</CollisionSensor>" | "<CollisionSensor/>";

Gyroscope = "<Gyroscope>" ?( +[translationClass,

rotationClass]+ )? "</Gyroscope>"

| "<Gyroscope/>";

Hinge = "<Hinge>" ?( !bodyClass, axisClass!

+[translationClass, rotationClass]+ {setClass} )?

"</Hinge>";

Slider = "<Slider>" ?( !bodyClass, axisClass!

+[translationClass, rotationClass]+ {setClass} )?

"</Slider>";

Light = "<Light></Light>" | "<Light/>";

BoxMass = "<BoxMass>" ?( +[translationClass, rotationClass]+

{setClass | massClass} )? "</BoxMass>"

| "<BoxMass/>;

InertiaMatrixMass = "<InertiaMatrixMass>" ?( +[translationClass,

rotationClass]+ {setClass | massClass} )?

"</InertiaMatrixMass>" | "<InertiaMatrixMass/>";

Mass = "<Mass>" ?( +[translationClass, rotationClass]+

{setClass | massClass} )? "</Mass>" | "<Mass/>";

SphereMass = "<SphereMass>" ?( +[translationClass,

rotationClass]+ {setClass | massClass} )?

"</SphereMass>" | "<SphereMass/>";

Material = "<Material>" ?( {setClass | frictionClass} )?

"</Material>" | "<Material/>";

PT2Motor = "<PT2Motor></PT2Motor>" | "<PT2Motor/>";

ServoMotor = "<ServoMotor></ServoMotor>" | "<ServoMotor/>";

VelocityMotor = "<VelocityMotor></VelocityMotor>"

| "<VelocityMotor/>";

Normals = "<Normals>" Normals Definition "</Normals>";

Quads = "<Quads>" Quads Definition "</Quads>";

Triangles = "<Triangles>" Triangles Definition "</Triangles>";
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Rotation = "<Rotation></Rotation>" | "<Rotation>";

Scene = "<Scene>" ?( +[solverClass]+ {setClass | bodyClass

| compoundClass | lightClass | userInputClass} )?

"</Scene>";

Set = "<Set></Set>" | "<Set/>";

QuickSolver = "<QuickSolver></QuickSolver>" | "<QuickSolver/>";

Surface = "<Surface></Surface>" | "<Surface/>";

TexCoords = "<TexCoords>" TexCoords Definition "</TexCoords>";

Translation = "<Translation></Translation>" | "<Translation/>";

UserInput = "<UserInput></UserInput>" | "<UserInput/>";

Vertices = "<Vertices>" Vertices Definition "</Vertices>";

A.3 Structure of a Scene Description File

A.3.1 The Beginning of a Scene File

Every scene file has to start with a <Simulation> tag. Within a Simulation block a Scene
element is required, but there is one exception: files included via <Include href=. . .> must
start with <Simulation>, but there is no Scene element required. A Scene element specifies
which controller is loaded for this scene via the controller attribute (in our case all scenes set the
controller attribute to SimulatedNao, so that the library SimulatedNao is loaded by SimRobot).
It is recommended to include other specifications per Include before the scene description
starts (compare with BH.ros2), but it is not necessary.

A.3.2 The ref Attribute

An element with a name attribute can be referenced by the ref -attribute using its name, i. e.
elements that are needed repeatedly in a scene need to be defined only once. For example
there is only one description of a NAO in its definition file (NaoV6H25.rsi2), but NAOs with
different jersey colors are needed on a field. For each NAO on the field, there is a reference to
the original model. The positioning of the NAOs is done by Translation and Rotation elements.
The color is set by a Set element, which is described below.

<Body name="Nao">

<Set name="NaoColor" value="blue"/>

...

</Body>

...

<Body ref="Nao" name="BlueNao">

<Translation x=" -2" y="0.4" z="320mm"/>

</Body>

<Body ref="Nao" name="RedNao">

<Translation x=" -1.5" y=" -0.9" z="320mm"/>
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<Rotation z="180 degree"/>

<Set name="NaoColor" value="red"/>

</Body>

...

A.3.3 Placeholders and Set Element

A placeholder has to start with a $ followed by an arbitrary string. A placeholder is replaced
by the definition specified within the corresponding Set element. The attribute name of a Set
elements specifies the placeholder, which is replaced by the value specified by the attribute
value of the Set element.

In the following code example, the color of NAO’s jersey is set by a Set element. Within the
definition of the body Nao named RedNao, the Set element sets the placeholder color to the
value red. The placeholder named NaoColor of Nao, which is defined in the general definition of
a NAO, is replaced by red in all elements of the model, also in the ones that are just referenced,
such as the appearances of individual body parts. So the Surface elements reference a Surface
named nao-red.

...

<ComplexAppearance name="naoTorsoV6_jersey">

<Surface ref="nao -$ NaoColor"/>

...

</ComplexAppearance >

...

<Surface name="nao -red" diffuseColor="rgb (100%, 0%, 0%)" ambientColor="rgb

(20%, 12%, 12%)"/>

...

A.4 Attributes

A.4.1 appearanceClass

• Appearance Specifies an appearance (the visual shape of an object).

– name The name of the appearance.

∗ Use: optional
∗ Range: String

• BoxAppearance Specifies a box-shaped appearance.

– name The name of the appearance.

∗ Use: optional
∗ Range: String

– width The width of the box.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]
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– height The height of the box.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– depth The depth of the box.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

• CapsuleAppearance Specifies a capsule-shaped appearance.

– name The name of the appearance.

∗ Use: optional
∗ Range: String

– height The height of the capsule.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– radius The radius of the capsule.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

• ComplexAppearance Specifies an appearance with an arbitrary mesh.

– name The name of the appearance.

∗ Use: optional
∗ Range: String

• CylinderAppearance Specifies a cylinder-shaped appearance.

– name The name of the appearance.

∗ Use: optional
∗ Range: String

– height The height of the cylinder.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– radius The radius of the cylinder.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

• SphereAppearance Specifies a sphere-shaped appearance.

– name The name of the appearance.

∗ Use: optional
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∗ Range: String

– radius The radius of the sphere.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

A.4.2 axisClass

• Axis Specifies the axis of a joint.

– x The x direction of the axis.

∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– y The y direction of the axis.

∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– z The z direction of the axis.

∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– cfm The cfm (constraint force mixing) value for this axis.

∗ Default: -1
∗ Use: optional
∗ Range: [0, 1]

A.4.3 bodyClass

• Body Specifies an object that has a mass and can move.

– name The name of the body.

∗ Use: optional
∗ Range: String

A.4.4 compoundClass

• Compound Specifies an object that cannot move.

– name The name of the compound.

∗ Use: optional
∗ Range: String
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A.4.5 deflectionClass

• Deflection Specifies the maximum and minimum deflection of a joint.

– min The minimal deflection.

∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– max The maximal deflection.

∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– init The initial deflection.

∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– stopCFM The cfm (constant force mixing) value of the limits.

∗ Default: -1
∗ Use: optional
∗ Range: [0, 1]

– stopERP The erp (error reducing parameter) value of the limits.

∗ Default: -1
∗ Use: optional
∗ Range: [0, 1]

A.4.6 extSensorClass

• ApproxDistanceSensor Instantiates a sensor that measures the distance in an area in
front of it.

– name The name of the sensor.

∗ Use: optional
∗ Range: String

– min The minimum distance this sensor can measure.

∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– max The maximum distance this sensor can measure.

∗ Default: 999999
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– angleX The maximum angle in x-direction the ray of the sensor can spread.

∗ Units: degree, radian
∗ Use: required
∗ Range: (0,MAXFLOAT ]

– angleY The maximum angle in y-direction the ray of the sensor can spread.
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∗ Units: degree, radian
∗ Use: required
∗ Range: (0,MAXFLOAT ]

• Camera Instantiates a color image camera.

– name The name of the sensor.

∗ Use: optional
∗ Range: String

– imageWidth The width of the camera image.

∗ Use: required
∗ Range: (0,MAXINTEGER]

– imageHeight The height of the camera image.

∗ Use: required
∗ Range: (0,MAXINTEGER]

– angleX The horizontal opening angle.

∗ Units: degree, radian
∗ Use: required
∗ Range: (0,MAXFLOAT ]

– angleY The vertical opening angle.

∗ Units: degree, radian
∗ Use: required
∗ Range: (0,MAXFLOAT ]

• DepthImageSensor Instantiates a depth image camera.

– name The name of the sensor.

∗ Use: optional
∗ Range: String

– imageWidth The width of the image.

∗ Use: required
∗ Range: (0,MAXINTEGER]

– imageHeight The height of the image.

∗ Default: 1
∗ Use: optional
∗ Range: (0,MAXINTEGER]

– angleX The horizontal opening angle.

∗ Units: degree, radian
∗ Use: required
∗ Range: (0,MAXFLOAT ]

– angleY The vertical opening angle.

∗ Units: degree, radian
∗ Use: required
∗ Range: (0,MAXFLOAT ]
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– min The minimum distance this sensor can measure.
∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– max The maximum distance this sensor can measure.
∗ Default: 999999
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– projection The kind of projection.
∗ Default: perspective
∗ Use: optional
∗ Range: perspective, spheric

• ObjectSegmentedImageSensor Instantiates a camera which renders an objected seg-
mented image.

– name The name of the sensor.
∗ Use: optional
∗ Range: String

– imageWidth The width of the camera image.
∗ Use: required
∗ Range: (0,MAXINTEGER]

– imageHeight The height of the camera image.
∗ Use: required
∗ Range: (0,MAXINTEGER]

– angleX The horizontal opening angle.
∗ Units: degree, radian
∗ Use: required
∗ Range: (0,MAXFLOAT ]

– angleY The vertical opening angle.
∗ Units: degree, radian
∗ Use: required
∗ Range: (0,MAXFLOAT ]

• SingleDistanceSensor Instantiates a sensor that measures a distance on a single ray.

– name The name of the sensor.
∗ Use: optional
∗ Range: String

– min The minimum distance this sensor can measure.
∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– max The maximum distance this sensor can measure.
∗ Default: 999999
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]
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A.4.7 frictionClass

• Friction Specifies the friction between this material and another material.

– material The other material the friction belongs to.

∗ Use: required
∗ Range: String

– value The value of the friction.

∗ Use: required
∗ Range: [0,MAXFLOAT ]

• RollingFriction Specifies the rolling friction of a material.

– material The other material the rolling friction belongs to.

∗ Use: required
∗ Range: String

– value The value of the rolling friction.

∗ Use: required
∗ Range: [0,MAXFLOAT ]

A.4.8 geometryClass

• BoxGeometry Specifies a box-shaped geometry.

– color A color definition, see A.4.23

∗ Use: optional

– name The name of the geometry.

∗ Use: optional
∗ Range: String

– width The width of the box.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– height The height of the box.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– depth The depth of the box.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

• CapsuleGeometry Specifies a capsule-shaped geometry.

– color A color definition, see A.4.23

∗ Use: optional
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– name The name of the geometry.

∗ Use: optional
∗ Range: String

– radius The radius of the capsule.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– height The height of the capsule.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

• CylinderGeometry Specifies a cylinder-shaped geometry.

– color A color definition, see A.4.23

∗ Use: optional

– name The name of the geometry.

∗ Use: optional
∗ Range: String

– radius The radius of the cylinder.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– height The height of the cylinder.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

• Geometry Specifies a geometry (the physical shape of an object).

– name The name of the geometry.

∗ Use: optional
∗ Range: String

• SphereGeometry Specifies a sphere-shaped geometry.

– color A color definition, see A.4.23

∗ Use: optional

– name The name of the geometry.

∗ Use: optional
∗ Range: String

– radius The radius of the sphere.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]
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A.4.9 infrastructureClass

• Include Includes another scene description file.

– href The path to the included file.

∗ Use: optional
∗ Range: String

• Simulation Has to be the outermost element of every file.

A.4.10 intSensorClass

• Accelerometer Instantiates an accelerometer on a body.

– name The name of the sensor.

∗ Use: optional
∗ Range: String

• CollisionSensor Instantiates a collision sensor on a body which uses geometries to de-
tect collisions with other objects.

– name The name of the sensor.

∗ Use: optional
∗ Range: String

• Gyroscope Instantiates a gyroscope on a body.

– name The name of the sensor.

∗ Use: optional
∗ Range: String

A.4.11 jointClass

• Hinge Defines a hinge joint. Requires an axis element to specify the axis and a body
element which defines the body this hinge is connected to.

– name The name of the joint.

∗ Use: optional
∗ Range: String

• Slider Defines a slider joint. Requires an axis element to specify the axis and a body
element which defines the body this slider is connected to.

– name The name of the joint.

∗ Use: optional
∗ Range: String
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A.4.12 lightClass

• Light Specifies a light source.

– diffuseColor Diffuse color definition, see A.4.23

∗ Use: optional

– ambientColor Ambient color definition, see A.4.23

∗ Use: optional

– specularColor Specular color definition, see A.4.23

∗ Use: optional

– x The x coordinate of the light source.

∗ Units: mm, cm, dm, m, km
∗ Default: 0m
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– y The y coordinate of the light source.

∗ Units: mm, cm, dm, m, km
∗ Default: 0m
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– z The z coordinate of the light source.

∗ Units: mm, cm, dm, m, km
∗ Default: 0m
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– constantAttenuation The constant attenuation of the light.

∗ Default: 1
∗ Use: optional
∗ Range: [0,MAXFLOAT ]

– linearAttenuation The linear attenuation of the light.

∗ Default: 0
∗ Use: optional
∗ Range: [0,MAXFLOAT ]

– quadraticAttenuation The quadratic attenuation of the light.

∗ Default: 0
∗ Use: optional
∗ Range: [0,MAXFLOAT ]

– spotCutoff The opening angle of the light spot cone.

∗ Units: radian, degree
∗ Default: 180degree
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– spotDirectionX The x direction of the light spot.
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∗ Units: mm, cm, dm, m, km
∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– spotDirectionY The y direction of the light spot.

∗ Units: mm, cm, dm, m, km
∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– spotDirectionZ The z direction of the light spot.

∗ Units: mm, cm, dm, m, km
∗ Default: -1
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– spotExponent

∗ Default: 0
∗ Use: optional
∗ Range: [0, 128]

A.4.13 massClass

• BoxMass Specifies a box-shaped mass.

– name The name of the mass.

∗ Use: optional
∗ Range: String

– value The mass of the box.

∗ Units: g, kg
∗ Use: required
∗ Range: [0,MAXFLOAT ]

– width The width of the box.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– height The height of the box.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– depth The depth of the box.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

192



A.4. ATTRIBUTES B-Human 2019

• InertiaMatrixMass Specifies a mass with a given inertia matrix (which is symmetric and
positive-definite).

– name The name of the mass.

∗ Use: optional
∗ Range: String

– value The total mass.

∗ Units: g, kg
∗ Use: required
∗ Range: [0,MAXFLOAT ]

– x The x coordinate of the center of mass.

∗ Units: mm, cm, dm, m, km
∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– y The x coordinate of the center of mass.

∗ Units: mm, cm, dm, m, km
∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– z The x coordinate of the center of mass.

∗ Units: mm, cm, dm, m, km
∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– ixx Moment of inertia around the x-axis when the object is rotated around the x-axis.

∗ Units: g ∗mm2, kg ∗m2

∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– ixy Moment of inertia around the y-axis when the object is rotated around the x-axis.

∗ Units: g ∗mm2, kg ∗m2

∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– ixz Moment of inertia around the z-axis when the object is rotated around the x-axis.

∗ Units: g ∗mm2, kg ∗m2

∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– iyy Moment of inertia around the y-axis when the object is rotated around the y-axis.

∗ Units: g ∗mm2, kg ∗m2

∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]
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– iyz Moment of inertia around the z-axis when the object is rotated around the y-axis

∗ Units: g ∗mm2, kg ∗m2

∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– izz Moment of inertia around the z-axis when the object is rotated around the z-axis.

∗ Units: g ∗mm2, kg ∗m2

∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

• Mass Specifies a mass.

– name The name of the mass.

∗ Use: optional
∗ Range: String

• SphereMass Specifies a sphere-shaped geometry.

– name The name of the mass.

∗ Use: optional
∗ Range: String

– value The mass of the sphere.

∗ Units: g, kg
∗ Use: required
∗ Range: [0,MAXFLOAT ]

– radius The radius of the sphere.

∗ Units: mm, cm, dm, m, km
∗ Use: required
∗ Range: [0,MAXFLOAT ]

A.4.14 materialClass

• Material Specifies the physical properties of a material.

– name The name of the material.

∗ Use: optional
∗ Range: String

A.4.15 motorClass

• PT2Motor Instantiates a motor using the PT2 model.

– T The time constant of the system.

∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– D The damping constant of the system.
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∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– K The steady state gain of the system.

∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– V The maximum velocity of this motor.

∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– F The maximum force of this motor.

∗ Units: N
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

• ServoMotor Instantiates a position-controlled servo motor.

– maxVelocity The maximum velocity of this motor.

∗ Units: radian/s, degree/s
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– maxForce The maximum force of this motor.

∗ Units: N
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– p The p value of the motor’s pid interface.

∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– i The i value of the motor’s pid interface.

∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– d The d value of the motor’s pid interface.

∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

• VelocityMotor Instantiates a velocity-controlled motor.

– maxVelocity The maximum velocity of this motor.

∗ Units: radian/s, degree/s
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– maxForce The maximum force of this motor.

∗ Units: N
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]
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A.4.16 rotationClass

• Rotation Specifies the rotation of an object relative to its parent.

– x Rotation around the x-axis.

∗ Units: radian, degree
∗ Default: 0degree
∗ Use: optional

– y Rotation around the y-axis.

∗ Units: radian, degree
∗ Default: 0degree
∗ Use: optional

– z Rotation around the z-axis.

∗ Units: radian, degree
∗ Default: 0degree
∗ Use: optional

A.4.17 sceneClass

• Scene Describes a scene and specifies the controller of the simulation.

– name The identifier of the scene object (must always be RoboCup).

∗ Use: optional
∗ Range: String

– controller The name of the controller library (without prefix lib; in our case it is Simu-
latedNao).

∗ Use: optional
∗ Range: String

– color The background color of the scene, see A.4.23.

∗ Use: optional

– stepLength The duration of each simulation step.

∗ Units: s
∗ Default: 0.01s
∗ Use: optional
∗ Range: (0,MAXFLOAT ]

– gravity Sets the gravity in this scene.

∗ Units: mm
s2

, m
s2

∗ Default: −9.80665m
s2

∗ Use: optional

– CFM Sets the ODE cfm (constraint force mixing) value.

∗ Default: -1
∗ Use: optional
∗ Range: [0, 1]

– ERP Sets the ODE erp (error reducing parameter) value.
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∗ Default: -1
∗ Use: optional
∗ Range: [0, 1]

– contactSoftERP Sets another erp value for colliding surfaces.

∗ Default: -1
∗ Use: optional
∗ Range: [0, 1]

– contactSoftCFM Sets another cfm value for colliding surfaces.

∗ Default: -1
∗ Use: optional
∗ Range: [0, 1]

– bodyCollisions Whether collisions between different bodies should be detected.

∗ Default: true
∗ Use: optional
∗ Range: true, false

A.4.18 setClass

• Set Sets a placeholder referenced by the attribute name to the value specified by the
attribute value.

– name The name of a placeholder.

∗ Use: required
∗ Range: String

– value The value the placeholder is set to.

∗ Use: required
∗ Range: String

A.4.19 solverClass

• QuickSolver Requires that the simulation uses ODE’s QuickStep method.

– iterations The number of iterations that the QuickStep method performs per step.

∗ Default: -1
∗ Use: optional
∗ Range: (0,MAXINTEGER]

– skip Controls how often the normal solver is used instead of QuickStep.

∗ Default: 1
∗ Use: optional
∗ Range: (0,MAXINTEGER]
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A.4.20 surfaceClass

• Surface Specifies the visual properties of a material.

– diffuseColor The diffuse color, see A.4.23.

∗ Use: required

– ambientColor The ambient color, see A.4.23.

∗ Use: optional

– specularColor The specular color, see A.4.23.

∗ Use: optional

– emissionColor The color of the emitted light, see A.4.23.

∗ Use: optional

– shininess The shininess value.

∗ Default: 0

∗ Use: optional
∗ Range: [0, 128]

– diffuseTexture The path to a texture.

∗ Use: optional
∗ Range: String

A.4.21 translationClass

• Translation Specifies a translation of an object relative to its parent.

– x Translation along the x-axis.

∗ Units: mm, cm, dm, m, km
∗ Default: 0m
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– y Translation along the y-axis.

∗ Units: mm, cm, dm, m, km
∗ Default: 0m
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– z Translation along the z-axis.

∗ Units: mm, cm, dm, m, km
∗ Default: 0m
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]
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A.4.22 userInputClass

• UserInput Combines an actuator and a sensor. The values set for the actuator are di-
rectly returned by the sensor. Using the actuator view, this allows to feed user input to the
controller.

– name The name of the user input.

∗ Use: optional
∗ Range: String

– type The kind of data for which user input is provided.

∗ Default: length
∗ Use: optional
∗ Range: angle, angularVelocity, length, velocity, acceleration

– min The minimum value that can be set.

∗ Units: Units matching the type
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– max The maximum value that can be set.

∗ Units: Units matching the type
∗ Use: required
∗ Range: [−MAXFLOAT,MAXFLOAT ]

– default The value returned by the sensor if no value is set in the actuator view.

∗ Units: Units matching the type
∗ Default: 0
∗ Use: optional
∗ Range: [−MAXFLOAT,MAXFLOAT ]

A.4.23 Color Specification

There are two ways of specifying a color for a color-attribute.

• HTML-Style To specify a color in html-style the first character of the color value has to be
a # followed by hexadecimal values for red, blue, green (and an optional fourth value for
the alpha-channel). These values can be one-digit or two-digits, but not mixed.

– #rgb e. g. #f00

– #rgba e. g. #0f0a

– #rrggbb e. g. #f80011

– #rrggbbaa e. g. #1038bc80

• CSS-Style A css color starts with rgb (or rgba) followed by the values for red, green, and
blue put into parentheses and separated by commas. The values for r, g, and b have to
be between 0 and 255 or between 0% and 100%, the a-value has to be between 0 and 1.

– rgb(r, g, b) e. g. rgb(255, 128, 0)

– rgba(r, g, b, a) e. g. rgba(0%, 50%, 75%, 0.75)
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