Pose Extraction from Sample Sets in Robot
Self-Localization — A Comparison and a Novel
Approach

Tim Laue, Thomas Rofer
Deutsches Forschungszentrum fiir Kiinstliche Intelligenz, Safe and Secure Cognitive Systems, Bremen, Germany

Abstract—For state estimation in robotics applications, espe-
cially for robot self-localization, the Monte-Carlo approach has
been a popular choice in recent years. Since the original proposal
of the approach, several modifications and improvements, e.g.,
for more intelligent resampling or for efficiently coping with the
kidnapped robot problem, have been proposed. Nevertheless, the
currently used approaches for computing a final result given the
sample set bear several drawbacks. In this paper, we compare
the most common techniques and propose a new approach that
is computationally inexpensive and able to deal with multimodal
distributions in self-localization scenarios. All results have been
gained in experiments with a humanoid robot in a robot soccer
scenario.

Index Terms— Self-Localization, Monte-Carlo, Pose Extraction

I. INTRODUCTION

The Monte-Carlo localization approach [2] for robot self-
localization has been quite popular for several years. It approx-
imates a probability distribution by a set of discrete samples,
also referred to as particles, and is able to represent multimodal
distributions and to deal with non-linear motion models.
Having originally been applied to driving robots equipped with
comparably precise laser range finders, it has found its way to
a variety of different robots. Among these are, e. g., walking,
vision-based soccer robots with a rather limited field of view
and imprecise odometry that have become enabled to localize
precisely within a standardized soccer environment [8, 9].

In the RoboCup scenario (and probably in several others),
robot kidnapping is a common problem. This can be caused
by falling down, including undetectable rotations, or by being
replaced by a human. By adding new samples to the proba-
bility distributions computed from recent measurements, the
so-called sensor resetting by [7], the Monte-Carlo approach is
able to recover quickly from kidnapping actions.

In general, robot behavior and robot control components
that rely on an estimate of the robot’s pose within a given
frame of reference do not deal with probability distributions.
Instead, they usually require a single definite pose (often in 2-
D) as a base for further computations. This single pose needs
to be extracted from the probability distribution and should
be the position (in state space) having the highest probability
density.

Having a unimodal probability distribution, this is an almost
trivial task. However, in many self-localization scenarios,
especially when recovering from kidnapping or determining

an initial pose estimate (i.e. starting from an unknown po-
sition), the probability distributions representing the current
pose estimate are multimodal. For this computation different
approaches are known, but they have different drawbacks, e. g.
computational complexity or precision.

The contribution of this paper is a novel approach for com-
puting a pose given a sample-based probability distribution.
The algorithm — labeled particle history clustering — is precise,
very efficient, and straightforward. This is achieved through
keeping the resampling history of each particle from the
moment of sensor resetting. The approach has been evaluated
and compared to other approaches in real-robot experiments
that have been carried out on a humanoid robot in a soccer
scenario.

This paper is organized as follows: Section II describes
common approaches for computing a pose from a particle
set. In Sect. III, the proposed new approach is presented. All
methods are compared by experiments described in Sect. IV.
The paper does not contain a detailed description of the Monte
Carlo localization approach, a detailed introduction is given in
[11].

II. COMMON APPROACHES

For computing a robot pose given a sample set, several
approved approaches already exist. In this section, the most
important ones are described shortly together with their spe-
cific advantages and disadvantages.

A. Overall Averaging

When having a scenario in which the probability distribution
can be assumed to be always unimodal, e.g., when having
a known start position and no robot kidnapping, computing
the average (whether weighted or not) over all samples is a
reasonable choice. Nevertheless, this method completely fails
for multimodal probability distributions. Additionally, single
outliers might strongly influence the result.

B. Best Particle

A simplistic but the computationally least expensive ap-
proach is to select the particle having the best weighting. If
a resampling step is performed in each execution cycle (and
thus a particle’s weight is not kept over time), the best particle
depends only on the last measurement. Such a measurement
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Fig. 1.
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Visualization of two pose extraction approaches applied to a RoboCup scenario: a) Binning. The environment is divided into 10 x 10 cells. The

2 X 2 sub-square containing the most samples is highlighted. b) K-means clustering. Four clusters have been found. Each cluster center is marked by a filled

circle.

might be fitting well locally but not globally, e.g., when
perceiving a line on a RoboCup field the distance to that line
might by perfect according to the current state of a particle,
but it might actually be the wrong line.

C. Binning

A computationally inexpensive approach to deal with mul-
timodal distributions is Binning [11] discretized the state
space into so-called bins, as depicted in Fig. la. For density
extraction, for each bin, the included samples are counted.
Within the bin which contains the most samples, an average
is computed. For extracting multiple hypotheses, the averaging
can also be done for further bins.

Though being a straightforward, robust extension of the
general averaging approach, this method has two inherent
drawbacks: At first, the number and size of the bins needs to
be carefully chosen by the user. Choosing too large bins leads
to an improper handling of multimodal distributions, choosing
too small bins leads to an instable selection of the best bin. In
addition, there always exist instabilities at the edges of the
bins. As depicted in Fig. la, clusters might be situated at
the edge of two bins and thus the extracted robot pose might
oscillate between these two bins.

Both problems can be compensated by not only selecting a
single bin but a n X n subspace containing the most samples,
this has e. g. been done by [9, 5]. Larger sets of neighboring
bins stabilize the output, but the effects of the discretization
of space are still present. In addition, they are in conflict with
the goal of be able to represent multimodal distributions.

D. K-means Clustering

An obvious continuous solution for extracting multiple robot
pose hypotheses from a sample set would be the application
of a clustering algorithm, e. g. k-means clustering as proposed
in [11]. Given a sample set and a maximum number k of
possible clusters, the algorithm iteratively converges towards
the centers of k sample clusters, as depicted in Fig. 1b.

Although providing good results without the need of a
carefully chosen parameterization, this approach is computa-
tionally too expensive — being NP-hard in general — to become
applied on robots with low computing power.

IITI. PARTICLE HISTORY CLUSTERING

After having investigated the already existing approaches
and their drawbacks, we have developed a new pose extraction
method for multimodal distributions in self-localization sce-
narios. This approach, which is closely linked with the sensor
resetting mechanism for particle filters, is described in this
section together with some possible extensions.

A. Multimodal Distributions and Sensor Resetting

Modeling a robot’s pose as a set of particles offers a conve-
nient option for considering altervative robot positions (e. g.
to recover from kidnapping) through adding new samples.
This can be done randomly or — much more efficiently —
by considering recent sensor measurements [7] which might
already provide a rough estimate of a valid robot pose, as
depicted in Fig. 2. Such an insertion of particles can be done
permanently by replacing a fixed number of particles per time
frame or dynamically, e.g. based on the development of the
overall weight of the particle set [4, 11].

In the following, we consider every insertion of a new
particle as the establishment of a new hypothesis and as a
starting point for the robot pose extraction from a multimodal
distribution.

B. The Basic Algorithm

The approaches described in Sect. II have one thing in
common: They are completely separated from the execution
of the Monte Carlo algorithm, and they operate on the final
sample set only. In contrast, the proposed method is partially
linked into the particle filter — without modifying its func-
tionality in any way but through adding new operations —
and thus provides an elegant way to identify sample clusters
representing a robot pose hypothesis.



Fig. 2. Sensor resetting: A robot standing at position A observes the non-
unique goalpost at position . The red boxes denote a sample set which has
been fully generated using this single observation. All samples are situated
on circles around the two possible goal posts. The different distances to the
posts are a result of the sensor model’s uncertainty.

We assume the following:

1) Generating a new sample is considered as setting up a
new hypothesis (as described in Sect. III-A) and starting
a new cluster respectively.

2) If a sample is copied by the Monte-Carlo resampling
step, all copies of the sample belong to the same cluster
as the original sample.

3) Samples do not change the hypothesis they belong to
(unless this is forced, cf. III-C).

This leads to the following, straightforward approach: When
initializing the particle filter, every sample is treated as a single
cluster having a unique cluster identifier. During the resam-
pling step of the filter, some samples are copied one or more
time to the new sample set, some samples drop out. The copy
operation also copies the cluster index. Thus, some clusters
grow over time whilst some drop out. The total number of
different clusters decreases over time. Without the insertion of
new particles, this proceeding would converge towards a single
cluster. Through sensor resetting, new samples are generated.
Every new sample is again treated as a cluster and thus
receives an according identifier. These samples are — of course
— again processed as all others. By establishing this simple
assignment mechanism that does not interfere with the basic
Monte-Carlo algorithm the tracking of different hypotheses is
possible.

The pose computation can now be realized through averag-
ing all samples belonging to the largest cluster. If multiple
hypotheses have to be extracted, e.g., to be processed by
control modules that are able to deal with this kind of data,
poses for all other existing clusters can also be computed.

A formal description of the approach is given in Fig. 3. Let
S; be the current sample set, S;y; the sample set after the
resampling step, and C' the set of all unused cluster indices
and thus possible clusters respectively:

Initialization at startup:
for each s € S
ASSIGNFREECLUSTERINDEX(S,C)

Inside every Monte-Carlo resampling step:
for each s € Sy,
if s S,
ASSIGNCLUSTERINDEXOFPARENT(S)

After every Monte-Carlo resampling step:
for each s € S,
if s ¢ St+1
RETURNCLUSTERINDEXTOSET(S,C)

Insertion of a new sample:
for each s € Sy,
if s ¢ St
ASSIGNFREECLUSTERINDEX(S,C)

Fig. 3. Operations of particle history clustering.

C. Additional Merging Operations

When starting a new cluster based on an inserted sample,
there is no mechanism that prevents it from being at the same
position as (or very close to) an already existing cluster. Thus,
different clusters might evolve in parallel describing almost the
same hypothesis. In practice, this parallelism will vanish over
time since one cluster will slightly fit better and thus dominate
the other one step by step. This process can be accelerated by
different merging operations. Nevertheless, applying merging
operations is a trade-off between a fast execution of the pose
extraction and a fast stabilization of the clusters.

1) Merge Random with Largest Cluster: A simple merging
operation is to select a random cluster and to try to integrate
it into the currently largest cluster, as specified in Fig. 4.

MERGERANDOMTOLARGEST (Clusters)
Cr, <— GETLARGEST(Clusters)
Cr < GETRANDOM(Clusters)
if not Cp, = Cpg
if CoMPATIBLE(C,,CR)
MERGE (Cf,,CRr)

Fig. 4. Random cluster merging.

This operation can, e. g., be performed once per execution of
the self-localization component. Over time, all clusters will be
tested for merging. If the probability distribution is completely
covered by a single cluster only, this merging operation does
not occur. Whilst the merging action is trivial since it is
only an assignment of a new index to some samples, the
compatibility test might be more complex depending on the
function chosen for comparison, e.g. Mahalanobis distance,
geometric enclosure, or simply a threshold for the distance of
the cluster centers.

2) Merge Largest Clusters: Whilst the previous operation
tests all other clusters over time and thus might lead to a



continuous integration of many small clusters into the currently
largest one, merging the two largest clusters is almost the
same operation but has a slightly different aim. It ignores all
small clusters — which often consist of one particle only —
since they do not contribute to the final result anyway. The
two largest clusters are potential candidates for oscillations
between slightly different results. Thus merging them — if
possible — provides a more stable pose estimate. The possible
compatibility tests are the same as for the previous merging
scheme.

3) General Merging of Clusters: Of course, also general
merging tests could be performed, i.e. every cluster is tested
for being compatible to any other cluster. However, such tests
would be computationally expensive and contradictory to the
algorithm’s original simplicity.

4) Single Sample Transfer: Going one level deeper, from
clusters back to single samples, a modification of the
MergeRandomToLargest scheme is to check single samples for
their compatibility with the largest cluster and — if applicable
— to change their cluster identifier accordingly. This procedure
is specified in Fig. 5.

TRANSFERSAMPLETOLARGEST (Clusters, SampleSer)
Cr, < GETLARGEST(Clusters)
Sr <— DRAWRANDOMLY (SampleSet)
if not Sp € Cp,
if COMPATIBLE(SR,CL)
ADD (SR,CL)

Fig. 5. Single sample transfer to the largest cluster.

D. Known Drawbacks

As any other existing approach for the given problem,
also particle history clustering has some inherent drawbacks
that might make it inappropriate for some self-localization
scenarios.

One obvious problem is: the approach does not work if
no new samples are added to the sample set. For this case,
no reasonable scheme for assigning cluster indices to samples
can be established.

In Sect. ITII-C, some possible approaches for merging clus-
ters have been described. In some scenarios, the opposite
operation might be necessary: the splitting of a cluster. When
navigating freely in open space, e. g. as in a RoboCup scenario,
this rarely happens and can be neglected. But when navigating
along predefined routes, e.g. in an office space scenario, a
split-up might be necessary when the samples of a cluster
divide along different routes at a branching. Of course, analyz-
ing and splitting operations, similar to the merging operations,
could be implemented. But this is not a trivial task and would
come along with a much larger demand of computing time
and thus eliminate the advantages of the approach.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed approach and to compare it with
other common approaches for pose extraction, two different

Fig. 6. A Nao RoboCup robot used for the experiments. A colored pattern
for global tracking has been attached to its head.

experiments — one with several robot kidnappings and one
without any — have been conducted on a humanoid robot
platform. The computed robot poses are compared against a
globally tracked reference position.

A. Robot Platform and Environment

For the experiments, we have used the RoboCup edition of
the Nao robot [3] made by Aldebaran Robotics as shown in
Fig. 6. The robot is equipped with 21 degrees of freedom,
a 500 MHz processor, and a camera as main sensor'. In
addition, it provides measurements of joint angles which are
combined with accelerometer and gyroscope data for body
posture estimation. Image processing and self-localization are
performed at the camera’s frame rate, i.e. 30 Hz.

The experimental environment is a standard RoboCup Stan-
dard Platform League field as specified in [1]. The field size is
7.4m x 5.4m. The only unique features are two colored goals.
In addition, the robot is able to perceive points on the field
lines. These are non-unique features that are also be matched
by the self-localization module.

The robot runs the software framework of the RoboCup
team B-Human [10] in the same configuration as it is used
during real competitions, e.g., during the team’s win of the
RoboCup German Open. The self-localization component is
an improved version of the one described in [5] that is
based on [9], additionally including the Augmented MCL
resampling approach of [4]. The sample set of the filter has
been configured to use 100 samples.

As source for ground truth data, a global tracking system
has been used. For this purpose, a unique marker has been
fixed on the robot’s head (cf. Fig. 6) and been tracked by a

UIn fact, the robot has two cameras but only the lower one has been used
for these experiments.
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Fig. 7. Errors during position tracking. Comparision of the different approaches which were used to extract the pose of the walking robot from the particle

set.

camera hanging above the field, the software for this purpose
has been developed by the RoboCup Small Size team B-Smart
[6]. The system provides the position as well as the rotation
(which is fused with the robot’s head rotation) of the robot on
the field.

B. Experiment I - Continuously Walking

In this experiment, the robot has been walking omni-
directionally along a predefined eight-shaped route and look-
ing around on the field for several minutes. No robot kid-
napping occurred during the experiment but nevertheless, new
particles have been inserted whenever the localization quality
dropped.

Figure 7 illustrates the position errors resulting from the
different approaches. The average position errors are listed
in Tab. I. Binning, k-means clustering, and particle history
clustering seem to perform with the same precision within the
experimental environment (the position after the decimal point
in Tab. I can be considered as pure chance given the noise
of the environment). Averaging over all particles performs
slightly worse, probably due to outliers which negatively
influence the results.

TABLE I
ERRORS DURING POSITION TRACKING. IGNORED THE FIRST 200 FRAMES.

[ Approach [[ Avg. in cm [ Stdv. in cm |
Average 34.6 19.9
Best Particle 50.1 51.6
Binning 28.7 15.3
K-Means 28.4 17.3
Particle History 28.3 17.2

C. Experiment Il - Recovery from Kidnapping

In this experiment, the robot was standing and looking
around. During the experiment, four kidnappings occurred in
which the robot was carried to a different position and rotation.
The software configuration was the same as in the previous
experiment except for one parameter influencing the insertion
of new samples which was configured to be more likely.

Figure 8 illustrates the position errors resulting from the
different approaches. The average position errors are listed
in Tab. II. Again, binning, k-means clustering, and particle
history clustering seem to perform equally and the selection of
the best particle performs worst. At first sight, the performance
of the overall average might surprise. But as can be seen in
Fig. 8, this is due to the much lower peaks within the short
time frames after the kidnapping actions that result from taking
all samples into account for pose computation.

TABLE II
ERRORS WITH RELOCALIZATION. IGNORED THE FIRST 200 FRAMES.

[ Approach “ Avg. in cm [ Stdv. in cm ]
Average 46.8 31.2
Best Particle 54.0 49.0
Binning 50.2 36.3
K-Means 50.9 39.2
Particle History 50.8 39.2

V. CONCLUSIONS

In this paper, we presented a novel approach for pose extrac-
tion from Monte-Carlo sample sets in robot self-localization
scenarios. In contrast to commonly used methods, it is in-
tegrated into the standard filter algorithm and allows a very
efficient tracking of multiple hypotheses in multimodal proba-
bility distributions which are likely to occur when using sensor
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Fig. 8. Errors during relocalization. Comparision of the different approaches which were used to extract the pose of the kidnapped robot from the particle
set.

resetting mechanisms to overcome problems like robot kidnap-
ping. The algorithm does not share some of the drawbacks of
others approaches but has some other specific limitations. As
the real-robot experiments conducted in a RoboCup scenario
show, the approach is able to provide results of a similar qual-
ity than approved — but computationally or configurationally
more complex — algorithms. Thus, it appears to be an elegant
and efficient alternative for some scenarios.
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