
Efficient and Reliable Sensor Models for
Humanoid Soccer Robot Self-Localization

Tim Laue +1, Thijs Jeffry de Haas #2, Armin Burchardt #3, Colin Graf #4,
Thomas Röfer +5, Alexander Härtl #6, Andrik Rieskamp #7

+DFKI Bremen, Safe and Secure Cognitive Systems
Enrique-Schmidt-Str. 5, 28359 Bremen, Germany

1Tim.Laue@dfki.de, 5Thomas.Roefer@dfki.de
#Fachbereich 3 - Mathematik und Informatik, Universität Bremen,

Postfach 330 440, 28334 Bremen, Germany
2jeffry@informatik.uni-bremen.de, 3armin@informatik.uni-bremen.de,
4cgraf@informatik.uni-bremen.de, 6allli@informatik.uni-bremen.de,

7rieskamp@informatik.uni-bremen.de

Abstract— Although the precise structure of the color-coded
environment as well as different well-proven state estimation
algorithms are known, self-localization in a humanoid soccer
robot scenario remains a challenging task. Different problems
arise, e. g., from an inaccurate proprioception, the sparsity of
unique features, or the perception of false positives. In this
paper, we present approaches for reliable and efficient feature
extraction together with the features’ incorporation into a robust
state estimation process.

I. INTRODUCTION

Self-localization in the RoboCup soccer domain might ap-
pear easy on first sight due to the clearly structured and color-
coded environment. But in fact, the participating robots have
quite limited sensorial and computational resources for this
task. Their field of view is limited and the walking humanoid
body structure provides additional noise to the sensor data.
In addition, the scenario becomes more challenging over the
years. Having started on small fields with additional beacons
for localization and borders to prevent the robots perceiving
false positives in the audience or on the floor, the field becomes
larger – and thus significant features might be more far away
–, the surrounding less specified, and unique features become
reduced, e. g., in the Standard Platform League only colored
goal posts remained.

The contribution of this paper is to provide a summary
of approaches for processing the sensorial input in such a
domain to obtain robust and precise world state estimates. This
includes vision algorithms as well as a precise robot calibration
and a robust probabilistic model. A short state of the art in
the RoboCup domain is given in the respective sections.

All approaches described in this paper have been developed
using the hardware and software of the team B-Human that
has participated in the Humanoid Kid-Size League [1] and
later on in the Standard Platform League [2]. All experiments
have been conducted using the Nao robot platform [3].

This paper is structured as follows: Section II describes
approaches that are necessary for obtaining precise perspective
information based on proprioceptive data. In the following

Fig. 1. Body structure of the Nao robot including the positions significant for
perspective computations: The origin pfield, the inertia sensor pinertia and
the pcamera. The camera’s position offset δcamera resulting from walking
motions can be compensated by the measurable offset δinertia.

Sect. III, the currently used vision approach is described.
Section IV describes the integration of the perceived features
into a state estimation process. Finally, experiments and their
results are shown in Sect. V.

II. ESTIMATING THE PERSPECTIVE

For computing an object’s position relative to the robot, it is
necessary to determine the camera’s parameters as precise as
possible. In addition, imprecision resulting from the robot’s
walking motion or the head-mounted camera’s pan and tilt
movements needs to be compensated.

A. General Approach

A camera’s parameters can be divided into two groups:
intrinsic – including, e. g., focal length and lens distortion
– and extrinsic – describing the coordinate transformation
between the camera and a given point of reference – param-
eters. In general, the intrinsic parameters are provided by the
manufacturer, or can be determined easily using a standard
calibration approach, e. g. the one by [4].

Fig. 2. Projection of the field geometry into the camera image before (left)
and after (right) calibrating the additional camera parameters.

Most calibration approaches also allow determining ex-
trinsic parameters, but since a soccer robot’s camera is in
constant motion, a different solution is necessary. A reasonable
approach is to define an origin of the robot relative world
coordinate system – in our case the center between the two
feet, depicted as pfield in Fig. 1 – and to follow the robot’s
kinematic chain from this point to the camera.

B. Additional Camera Calibration

In addition to the previously described parameters, some ad-
ditional robot-specific parameters are required two overcome
two problems: the camera cannot be mounted perfectly plain –
this is especially the cases for self-assembled robots but also
for the commercially manufactured Nao – and the torso is
not always standing perfectly vertical due to backlash which
cannot be measured. In both cases, small variations can lead
to significant errors when projecting more distant objects onto
the field, as shown in Fig. 2.

These parameters, correcting the camera roll and tilt as well
as the overall body roll and tilt, are currently determined in a
manual calibration process.

C. Filtering and Integrating Inertia Data

During walking, a computation of the extrinsic camera pa-
rameters is still possible but subject to heavy noise. The sensor
data provided by the motors does not reflect the swinging of
the robot’s body during certain walk phases. Therefore, the
resulting camera offset δcamera needs to be compensated (cf.
Fig. 1). This is realized by estimating the torso’s offset δinertia
based on the measurements of the inertia sensor in the Nao’s
chest.

Estimating the pose of the torso consists of three different
tasks. First, discontinuities in the inertial sensor readings are
excluded. Second, the calibration offsets for the two gyro-
scopes are maintained. Third, the actual torso pose is estimated
using an Unscented Kalman filter (UKF) [5].

Excluding discontinuities in the sensor readings is neces-
sary, because some sensor measurements provided by the Nao
cannot be explained by the usual sensor noise. This mal-
function occurs sporadically and affects most measurements
from the inertia board within a single frame (cf. Fig. 3). The
corrupted frames are detected by comparing the difference of
each value and its predecessor to a predefined threshold.

Gyroscopes have a bias drift, i. e., the output when the
angular velocity is zero drifts over time due to factors such as

Fig. 3. The difference between the estimated pitch angle angleY and the
pitch angle rawAngleY provided by the inertia board of the Nao. Between the
frames 85 and 80, the Nao provided corrupted sensor values.

temperature that cannot be observed. The temperature changes
slowly as long as the robot runs, so that it is necessary to
redetermine the bias continuously. Therefore, it is hypoth-
esized that the torso of the robot and thereby the inertial
measurement unit has the same pose at the beginning and
the end of a walking phase (i. e. two steps). Therefore, the
average gyro measurement over a whole walking should be
zero. This should also apply if the robot is standing. So either,
the average measurements over a whole walking phase are
determined, or the average over 1 sec for a standing robot.
These averages are filtered through one-dimensional Kalman
filters and used as biases of the gyroscopes. The collection of
gyroscope measurements is limited to situations in which the
robot is either standing or walking slowly and has contact to
the ground (determined through the force sensitive resistors in
the Nao’s feet).

The UKF estimates the pose of the robot torso (cf. Fig. 3)
that is represented as three-dimensional rotation matrix. The
change of the rotation of the feet relative to the torso in each
frame is used as process update. The sensor update is derived
from the calibrated gyroscope values. Another sensor update is
added from a simple absolute measurement realized under the
assumption that the longer leg of the robot rests evenly on the
ground as long as the robot stands almost upright. In cases in
which this assumption is apparently incorrect, the acceleration
sensor is used instead.

It is not only possible to get the orientation from the
UKF, but also to get a “filtered” version of the gyroscope
measurements from the change in orientation, including a
calculated z-gyroscope value that is actually missing on the
Nao.

D. Compensating Image Distortion

The Nao robot – as well as most humanoid soccer robots –
is equipped with a simple CMOS camera. Such cameras have

Fig. 4. The field border: the thin dashed red line depicts the robot’s horizon,
the blue line connects the green points found, and the red dotted line is the
upper part of the convex hull around the field.

a central weakness, the so-called rolling shutter. Instead of
taking images at a certain point in time, a rolling shutter takes
an image pixel by pixel, row by row. Thus the last pixel of an
image is taken significantly later than the first one. By moving
its head, the Nao can point the camera in different directions.
Since an image is not taken all at once, the camera may point
to a different direction when the first pixel is recorded than
when the last pixel is taken. This results in a distorted image
and thus in inaccurate perceptions.

To overcome this problem, a mechanism – originally de-
veloped for the AIBO robot – based on the image recording
time and the speed of the head joints is applied. For a detailed
description see [6].

III. FEATURE EXTRACTION

The most time-consuming and often also most error-prone
software component of a soccer robot is its vision system. By
integrating knowledge about the spatial context, our approach
provides robust results without being too computationally
expensive.

A. General Approach

For computer vision in this domain, two main approaches
are popular: blob-based and grid-based systems. For extracting
blobs from an image, full color segmentation is necessary.
After the segmentation, connected regions of the same color
class become determined. A common solution for this task is
CMVision by [7]. This approach provides robust results but
is quite time-consuming (on robots such as the Nao) since
every pixel of the image needs to be examined. Grid-based
approaches can be significantly faster, since only a fraction
of all pixels becomes interpreted namely those on a (often
horizon-aligned) grid. This technique was introduced in the
Standard Platform League by [8]. Since the grid lines are
only one-dimensional, only a small context of a pixel can be
considered and thus makes this approach more sensitive to

Fig. 5. Body contour in 3-D (left) and projected to the camera image after
kicking the ball (right).

outliers. To overcome this problem, often so-called specialists
need to be applied, examining a feature’s region in more detail.

Our approach is a combination of both techniques: In a first
step, significant segments are searched on a grid. This grid is
bounded by the robot’s spatial context, i. e. the border of the
field and its own body contour (cf. Sect. III-B). In a second
step, the segments become merged to regions according to
a set of constraints. These regions are the base for the final
feature detection.

B. Context of Field and Body

Since the robot soccer environment is flat and all features
that need to be detected (ball, field lines, and goal post) have
their base on the ground, the segmentation only needs to
be done for the part of the image that is below the visible
field border. The field border itself is also on the ground and
therefore must be below the horizon in the image that serves as
a starting point for detecting the field border. This is done by
running scan lines, starting from the horizon, downwards until
a green segment of a minimum length is found. From these
points the upper half of the convex hull is used as field border.
Figure 4 depicts the necessary elements for this computation.

If the robot sees parts of its own body, it might confuse
white areas with field lines and – under certain conditions – red
parts with the ball. However, by using forward kinematics, the
robot can actually know where its body is visible in the camera
image and exclude these areas from image processing. This is
achieved by modeling the boundaries of body parts that are
potentially visible in 3-D (cf. Fig. 5 left) and projecting them
back to the camera image (cf. Fig. 5 right). The part of that
projection that intersects with the camera image or is above it
is used by the image processor as lower clipping boundary. The
projection relies on the image coordinate system (cf. Sect. II-
D), i. e., the linear interpolation of the joint angles to match the
time when the image was taken. However if joints accelerate
or decelerate, the projection may not be accurate, as can be
seen in Fig. 5 right), where the foot just stopped after a kick.
In that case, the clipping region might be too big or too small.

C. Segmentation and Region-Building

After all boundaries have been computed, scan lines within
the remaining valid area can be used to create segments. For
the goal detection two special scans are done to detect vertical
and horizontal yellow or blue segments above the horizon.

Fig. 6. Segmentation and region-building: The left image depicts the
segments found on scan lines and the finally computed lines (accepted red
lines and one orange line segment that is too short for later consideration).
The right image shows the regions that result from merging single segments.
Some failed constraints are denoted with numbers: (1) not connected because
of change in direction, (2) not connected because of the length ratio, (3)
maximum size reached

The horizontal scan lines are continued below the horizon
until there is a scan line in which no yellow or blue segment
is found. Based on these segments, regions are created by
uniting touching segments of the same color to a region. White
segments (being candidates for field lines) touching each other
need to fulfill certain constraints to become united to a region:

• There is a maximum region size
• The length ratio of the two touching segments may not

exceed a certain maximum
• The change in direction may not exceed a certain maxi-

mum (the vector connecting the middle of the segments
connected to the middle of the next segment is treated as
direction)

• If two segments are touching each other and both already
are connected to a region, they are not united

These restrictions are needed because we do not want to have
a single big region containing all field lines and robots. The
result of these restrictions is that we most likely get small
straight white regions (cf. Fig. 6).

This process is not applied to potential goal segments. Their
merging is described in cf. Sect. III-E.

The following region classification is done by iterating over
all regions and filtering all white regions to determine whether
the region could be a part of a line. Thus, a white region needs
to fulfill the following constraints:

• It has to have a certain minimum size.
• The axis of orientation must be determinable (since this

is the base information passed to further modules).
• The amount of neighboring uncolored regions must be

very small (since robot parts are classified as uncolored).
• It has to have a certain amount of green around.

D. Detecting Lines

For each white region that was classified as line region the
start and end point of the axis of orientation is transformed
to field coordinates. These two points form a line segment.
The lines are built by clustering the associated segments, as
shown in algorithm 1. The basic idea of the algorithm is similar
to the quality threshold clustering algorithm introduced by
[9], but it ensures that it runs in the worst-case-scenario in

O(n2) runtime. Therefore, it is not guaranteed to find optimal
clusters. Since the number of line segments is limited by the
field setup, practical usage showed that the algorithm has an
acceptable runtime and delivers satisfiable results.

Algorithm 1 Clustering LineSegments
while lineSegments 6= ∅ do

s← lineSegments.pop()
supporters← ∅
for all s′ ∈ lineSegments do

if similarity(s, s′) < similarityThreshold then
supporters.add(s′)

end if
end for
if supporters.size() > supporterThreshold then

createLine({s} ∪ supporters)
lineSegments← lineSegments\supporters

end if
end while

All remaining line segments are taken into account for
the circle detection. For each pair of neighboring segments
the intersection of the perpendicular from the middle of the
segments is calculated. If the distance of this intersection is
close to the real circle radius, for each segment a spot is
generated which has the distance of the radius to the segment.
Now the same clustering algorithm used for the lines is used
to find a cluster for the circle. For all line segments that were
neither clustered to a line nor to the circle and have a certain
minimum size, additional lines are created. This is necessary
because a vertical line might create one big single region. For
all lines the intersections are calculated and classified as L, T,
or X intersection.

E. Detecting Goals
To detect goal posts, a Hough Transformation on the hori-

zontal goal segments is performed to search for long vertical
blue or yellow lines. The lines found are then checked whether
they match some characteristic properties of a goal post, to
make sure not to accept blue robot parts or things outside the
field as goal posts. The most important checks are:

• Is there some green below the post?
• Is the bottom of the percept under the calculated horizon

and the top above it?
• Does the expected width of the goal post match the width

of the percept?
• Is the calculated distance of the goal post within a

plausible range?
• Do we see goal posts of only one color?
Percepts that do not fulfill these criteria are completely

discarded since for the state estimation process avoiding false
positives is more important than integrating new information.
For the remaining percepts, a determination of the side is
performed. If there are exactly two remaining percepts of the
same color, this can be done easily. Otherwise, the surrounding
of the head point of the only remaining percept is scanned in
order to try to detect parts of the crossbar and to determine
the side of the post.

Fig. 7. Two-dimensional example of a robot observing the base point of a
goal post. The distance d can be computed given the intrinsic (contributing
to α) and extrinsic (providing h, contributing to α) camera parameters.

IV. SELF-LOCALIZATION

Subsequent to the feature extraction, the self-localization
integrates the perceptions into the robot pose estimate. For
modeling the uncertainties in the probabilistic approach ap-
plied, especially the remaining errors of the perspective esti-
mation and the shortcomings of the vision system need to be
taken into account. In addition, the constraints resulting from
the computational limits demand a careful parameterization.

A. General Approach

For self-localization, we use a particle filter based on the
Monte Carlo method [10] as it is a proven approach to provide
accurate results in such an environment [11]. Additionally, it
is able to deal with the kidnapped robot problem that often
occurs in RoboCup scenarios. For a faster reestablishment
of a reasonable position estimate after a kidnapping, the
Augmented MCL approach by [12] has been implemented.
A comprehensive description of our general state estimation
implementation – applied to a Humanoid League scenario – is
given in [13], in the meantime extended by a new clustering
approach for pose extraction [14].

An alternative standard approach for robot self-localization
would be the application of a Kalman filter, but the major
drawback of this kind of technique is its missing ability
of recovering from a kidnapping situation. However, recent
results from [15] indicate the usage of Multiple Model Kalman
filters as a reasonable alternative to a particle filter. The
techniques described in the following sections might also be
applicable with reservations to that approach.

In the following, the state Xt to be estimated and thus the
content of every particle x[m]

t within a set of M particles (M =
100) is a simple pose in 2-D:

x
[m]
t := 〈px[m]

t , py
[m]
t , θ

[m]
t 〉 (1)

A sample’s weighting is denoted by w[m]
t .

B. Modeling Uncertainty

When performing the Monte Carlo sensor update step, each
sample’s weighting w

[m]
t becomes computed based on the

deviation of the model x[m]
t from the current perceptions.

Let p1, . . . , pn be the perceptions made within one execution
cycle and w(x, p) a function computing the likelihood of
an observation given a sample’s state, a weighting can be
computed as follows:

w
[m]
t = w(x[m]

t , p1)w(x[m]
t , p2) . . . w(x[m]

t , pn) (2)

To determine w(x[m]
t , p) for a perception p, two deviations

from the expected model need to be taken into account:
the deviation of the direction on the ground as well as
the difference of the distances. The crucial aspect of the
likelihood computation is its coordinate system. A vision
system might provide the perception as a vectorial offset or in
polar coordinates, but in both systems the distance uncertainty
resulting from the humanoid robot’s body shaking can only
be modeled insufficiently. As depicted in Fig. 7, the distance
depends on the angle α relative to the robot’s camera position.
During walking, α is subject to noise and small deviations can
obviously cause huge distance errors for far perceptions. Since
close perceptions are not affected by this problem and similar
problems occur for directional deviations in the ground plane,
it is a reasonable choice to compute w(x[m]

t , p) in angular
coordinates.

Given the angle αp determining the distance to a perception
(as depicted in Fig. 7), the angle βp determining the directional
deviation on the ground, the accordant model angles α

x
[m]
t

and
β
x
[m]
t

, and the percept type-related standard deviations σαp
and

σβp
, w[m]

t can be computed as follows:

δ[m]
α = |αp − αx[m]

t
| (3)

δ
[m]
β = |βp − βx[m]

t
| (4)

w
[m]
t = N (δ[m]

α , σ2
αp

)N (dist[m]
t , σ2

βp
) (5)

To save computation time, the current implementation does
not use all perceptions of an execution cycle but selects n
random perceptions to become integrated (currently, n = 6);
goalposts are preferred since they are the only unique elements
providing a global direction.

C. Preventing Particle Depletion

Since the computational resources are limited, a particle
filter can only be operating on a small particle set to remain
efficient. Our implementation is currently configured to use
only 100 samples. But even when using e. g. 500 samples,
only a sparse coverage of the state space can be realized. Thus,
the problem of particle depletion might occur, i. e. during the
MCL resampling step the probability distribution reduces to a
small set of particles. Especially in this scenario, having robots
with a strongly limited field of view, it might happen that
certain local observations – not necessarily being exceedingly
compatible to the global hypothesis – fit perfectly a small

subset of samples and thereby rule out the majority of other
samples approximating the current probability distribution.

To avoid such fluctuations without the need of keeping
weightings over multiple cycles, two mechanisms have been
incorporated: the configuration of high standard deviations as
well as the usage of base probabilities. Both lead to a more
balanced distribution of weightings and thus avoid situations
in which single samples accidentally (e. g. through perfectly
fitting a single observation) eliminate significant parts of the
sample set.

These approaches also stabilize the used Augmented MCL
approach that relies on the change of the sample set’s total
weighting over time.

D. Using Context to Exclude False Positives

For a precise localization near a goal, it is not only necessary
to perceive the goal posts – which are rarely seen to a utilizable
extent in such a situation – but also to avoid confusing the
goal net with field lines. The exclusion of this kind of false
positives turned out to be almost impossible using the current
image processing approach: When looking into a goal in a
certain angle, the projection of the net to the ground might
appear as a perfect line at a certain distance.

Being unsolvable for the vision system, this task has
been moved one level up to the self-localization since it
sets perceptions in context with its field model. Whenever a
sample’s weighting w

[m]
t is updated by line information, it

is possible to check whether it might be a goal net segment
given the context of x[m]

t . In that case, w[m]
t will not be

updated. To avoid any inconsistencies within the sample set, all
omitted samples become updated afterwards using the average
weighting update of all other samples.

To realize an efficient computation, the self-localization
component has access to a precomputed look-up table that
provides the maximum valid distance to a field line for a given
x

[m]
t . As all false positives (given a robot position inside the

field) resulting from the goal net lie beyond the goal line, this
is an effective way of excluding them from the sensor update.

Figure 8 shows an extract of the table used.

V. EXPERIMENTAL RESULTS

To evaluate the overall performance of the approaches
described, several experiments have been carried out. In addi-
tion, the system has also been used successfully in different
RoboCup competitions.

A. Quantitative Evaluation

To determine the system’s metrical precision, the self-
localization’s output has been compared to the ground truth
about the robot’s position within different experimental setups.

As source for ground truth data, a global tracking system
has been used. For this purpose, a unique marker has been
fixed on the robot’s head (cf. Fig. 9) and been tracked by a
camera hanging above the field; the software for this purpose is
the standard vision system of the RoboCup Small Size League
[16]. The system provides the position as well as the rotation

Fig. 8. Depiction of one layer of the goal net look-up table at a low resolution.
After rasterization of the environment, the maximum distance dg to a goal is
computed for a given angle (here: about -15◦) and drawn as a red line.

Fig. 9. Image taken by one of the cameras providing ground truth data. In
the lower center, a tracking pattern on a robot’s head can be seen. The field
has intentionally a wrong line layout (cf. Tab. I, experiment 6).

(which is fused with the robot’s head rotation) of the robot on
the field.

An overview of all experiments and the self-localization
precision achieved is given in Tab. I. In all experiments in
which the robot was walking around alone and scanning the
environment for features (No. 1 – 4), the average localization
error was significantly below 150 mm. Surprisingly, even
when walking on a changed field (which was not modeled in
software) – having a displaced goal (No. 5) or additional field
lines (No. 6, shown in Fig. 9)– the error remained significantly
below 200 mm.

The remaining experiments (No. 7 – 11) measured the pre-
cision during normal soccer play. They included the presence
of a second, adversarial robot, periods of time focusing on the
ball instead of features for self-localization, as well as several
tumbles. Due to these difficulties, the average error increased
but still stayed below 250 mm. The results of experiment 11

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-3000 -2500 -2000 -1500 -1000 -500 0 500

y
[m

m
]

x [mm]

Selflocator
Groundtruth

Fig. 10. Walking trajectory in experiment 11. The red crosses denote the
estimate computed by the self-localization. The dashed green line depicts the
ground truth.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2000 4000 6000 8000 10000 12000 14000

er
ro

r
[m

m
]

frame

randseed 1
randseed 2
randseed 3

Fig. 11. Localization error during experiment 11. The perceived data has
been processed offline multiple times using a different random seed to evaluate
its effect on the result. The robot leaves the visible area of the ceiling camera
around frame number 11500.

are depicted in detail: Figure 10 shows the difference between
estimated and the trajectory really walked, the error over time
is shown in Fig. 11, and the distribution of the mean error is
presented in Fig. 12.

The overall computing time of the system’s cognitive part
(i. e. image processing, state estimation, and action selection)
is always significantly below 33 ms to keep up with the cam-
era’s frame rate of 30 Hz. For self-localization, the computing
time is about 6 ms on average.

B. Qualitative Evaluation

The approaches described in this paper have not only been
tested under laboratory conditions but also in real RoboCup
competitions. For this participation, no ground truth data that
allows computing an average error exists. Thus, the overall

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

100-110

110-120

120-130

130-140

140-150

150-160

160-170

170-180

180-190

190-200

200-210

210-220

220-230

230-240

240-250

250-260

260-270

270-280

280-290

290-300

re
l.

fr
eq

ue
nc

y

average error in mm

Fig. 12. Histogram showing the distribution of the mean localization error
in experiment 11.

team performance has to be considered as an indicator.
Our team has successfully participated in the RoboCup

German Open 2009 as well as in RoboCup 2009. During the
soccer competitions, the precise and robust self-localization
provided a huge benefit, not only for kicking in the right
direction but also for approaching the ball in a configuration
allowing an immediate shoot, allowing us to score a total
of 91 goals in 13 matches. Additionally, the localization
enabled an automatic robot placement before kickoff – which
provides a clear advantage – as well as a proper goalie position
adjustment.

We also participated in the Localization with Obstacle
Avoidance Challenge that required a robot to walk as close as
possible to three specified (but previously unknown) positions
within a given amount of time without colliding with any
obstacle. The setup of this challenge is shown in Fig. 13. We
have been the only team accomplishing this challenge.

The software used by B-Human at RoboCup 2009 can
be downloaded from the team website (http://www.
b-human.de), including the implementation of the algo-
rithms described in this paper.

VI. CONCLUSION AND CURRENT WORK

In this paper, we presented different approaches for process-
ing the sensorial input in a humanoid soccer robot scenario to
obtain robust and precise world state estimates. This included a
more precise estimation of the robot’s perspective, the vision
system, as well as the integration into the state estimation
process. In several different experiments as well as during real
competitions, the overall precision of the system is shown.

One ongoing project is the optimization of a number of
self-localization parameters, e. g. different standard deviations,
the number of samples, or parameters for motion noise, by
applying a Particle Swarm Optimizer [17].

No. Description of experiment average error StdDev.
1 Walking eight figure; head moved by active vision 119.9mm 19.8%
2 Walking eight figure; fixed head motion pattern 116.7mm 6.2%
3 Walking eight figure; head mostly focused on goals 146.9mm 7.3%
4 Walking circles; fixed head motion pattern 116.5mm 9.4%
5 Walking circles; fixed head motion pattern; one goal displaced by about 0.5m 187.2mm 23.2%
6 Walking circles; fixed head motion pattern; field contains additional fake lines 125.2mm 18.7%
7 Robot Penny plays soccer 231.0mm 8.8%
8 Robot Penny plays soccer 204.2mm 5.5%
9 Robot Leonard plays soccer 220.8mm 5.7%

10 Robot Leonard plays soccer 204.9mm 5.2%
11 Robot Penny plays soccer 201.5mm 6.7%

TABLE I
PRECISION OF SELF-LOCALIZATION IN DIFFERENT SCENARIOS.

Fig. 13. B-Human accomplishing the Localization with Obstacle Avoidance
Challenge at RoboCup 2009, the numbered crosses denote the target positions
in visiting order.

ACKNOWLEDGEMENTS

The authors would like to thank all B-Human team members
for providing the software base for this work.

REFERENCES

[1] T. Röfer, T. Laue, A. Burchardt, E. Damrose, M. Fritsche, J. Müller,
and A. Rieskamp, “B-Human team description for robocup 2008,” in
RoboCup 2008: Robot Soccer World Cup XII Preproceedings, L. Iocchi,
H. Matsubara, A. Weitzenfeld, and C. Zhou, Eds. RoboCup Federation,
2008.

[2] T. Röfer, T. Laue, O. Bösche, I. Sieverdingbeck, T. Wiedemeyer,
and J.-H. Worch, “B-Human team description for robocup 2009,” in
RoboCup 2009: Robot Soccer World Cup XII Preproceedings, J. Baltes,
M. Lagoudakis, T. Naruse, and S. Shiry, Eds. RoboCup Federation,
2009.

[3] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafour-
cade, B. Marnier, J. Serre, and B. Maisonnier, “The NAO hu-
manoid: a combination of performance and affordability,” CoRR, vol.
abs/0807.3223, 2008.

[4] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 11, pp. 1330–1334, 2000.

[5] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach
for filtering nonlinear systems,” in American Control Conference, 1995.
Proceedings of the, vol. 3, 1995, pp. 1628–1632. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=529783

[6] T. Röfer, “Region-based segmentation with ambiguous color classes and
2-D motion compensation,” in RoboCup 2007: Robot Soccer World Cup
XI, ser. Lecture Notes in Artificial Intelligence, U. Visser, F. Ribeiro,
T. Ohashi, and F. Dellaert, Eds. Springer, 2008.

[7] J. Bruce, T. Balch, and M. Veloso, “Fast and inexpensive color image
segmentation for interactive robots,” in Proceedings of IROS-2000,
Japan, October 2000.

[8] J. Bach and M. Jüngel, “Using pattern matching on a flexible horizon-
aligned grid for robotic vision,” Concurrency Specification and Pro-
gramming - CSP’2002, vol. 1, pp. 11–19, 2002.

[9] L. Heyer, S. Kruglyak, and S. Yooseph, “Exploring expression data:
identification and analysis of coexpressed genes,” Genome research,
vol. 9, no. 11, pp. 1106–1115, 1999.

[10] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo Localiza-
tion: Efficient Position Estimation for Mobile Robots,” in Proc. of the
National Conference on Artificial Intelligence, 1999.

[11] T. Röfer, T. Laue, and D. Thomas, “Particle-filter-based self-localization
using landmarks and directed lines,” in RoboCup 2005: Robot Soccer
World Cup IX, ser. Lecture Notes in Artificial Intelligence, A. Breden-
feld, A. Jacoff, I. Noda, and Y. Takahashi, Eds., no. 4020. Springer,
2006, pp. 608–615.

[12] J.-S. Gutmann and D. Fox, “An experimental comparison of localization
methods continued,” Proceedings of the 2002 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2002. [Online].
Available: http://www.informatik.uni-freiburg.de/∼gutmann/

[13] T. Laue and T. Röfer, “Particle filter-based state estimation in a competi-
tive and uncertain environment,” in Proceedings of the 6th International
Workshop on Embedded Systems. VAMK, University of Applied
Sciences; Vaasa, Finland, 2007.

[14] T. Laue and T. Röfer, “Pose extraction from sample sets in robot self-
localization - a comparison and a novel approach,” in Proceedings of
the 4th European Conference on Mobile Robots - ECMR’09, I. Petrović
and A. J. Lilienthal, Eds., Mlini/Dubrovnik, Croatia, 2009, pp. 283–288.

[15] M. J. Quinlan and R. H. Middleton, “Multiple model kalman filters:
A localization technique for robocup soccer,” in RoboCup 2009: Robot
Soccer World Cup XIII, ser. Lecture Notes in Artificial Intelligence,
J. Baltes, M. G. Lagoudakis, T. Naruse, and S. Shiry, Eds. Springer,
to appear in 2010.

[16] S. Zickler, T. Laue, O. Birbach, M. Wongphati, and M. Veloso, “SSL-
vision: The shared vision system for the RoboCup Small Size League,”
in RoboCup 2009: Robot Soccer World Cup XIII, ser. Lecture Notes
in Artificial Intelligence, J. Baltes, M. G. Lagoudakis, T. Naruse, and
S. Shiry, Eds. Springer, to appear in 2010.

[17] R. C. Eberhart and J. Kennedy, “A new optimizer using particles swarm
theory,” in Sixth International Symposium on Micro Machine and Human
Science, 1995, pp. 39–43.

