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Chapter 1

Introduction

1.1 About us

B-Human is a joint RoboCup team of the Universität Bremen and the German Research Center
for Artificial Intelligence (DFKI). The team was founded in 2006 and it consists of numerous
undergraduate students as well as of researchers of these two institutions. The latter have already
been active in a number of RoboCup teams, such as the GermanTeam and the Bremen Byters
(both Four-Legged League), B-Human in the Humanoid Kid-Size League, the BreDoBrothers
(both in the Humanoid League and the Standard Platform League), and B-Smart (Small-Size
League).

The senior team members have also been part of a number of other successes, such as winning
the RoboCup World Championship three times with the GermanTeam (2004, 2005, and 2008),
winning the RoboCup German Open also three times (2007 and 2008 with the GermanTeam,
2008 with B-Smart), and winning the Four-Legged League Technical Challenge twice (2003 and
2007 with the GermanTeam). In 2007, the team was strengthened by further computer science
students, who support the team on the basis of their advanced study project.

In parallel to these activities, B-Human started as a part of the joint team BreDoBrothers, which
has been a cooperation of the Technische Universität Dortmund and the Universität Bremen.
The team participated in the Humanoid League in RoboCup 2006. The software was based on
previous works of the GermanTeam [12]. This team was split into two single Humanoid teams,
because of difficulties in developing and maintaining a robust robot platform across two locations.
The DoH!Bots from Dortmund as well as B-Human from Bremen participated in RoboCup 2007;
B-Human reached the quarter finals and was undefeated during round robin. In addition to the
participation in the Humanoid League at the RoboCup 2008, B-Human also attended a new
cooperation with the Technische Universität Dortmund. Hence, B-Human took part in the Two-
Legged Competition of the Standard Platform League as part of the team BreDoBrothers, who
reached the quarter finals. After the RoboCup 2008, we concentrated our work exclusively on
the Two-Legged SPL. By integrating all the students of the Humanoid League team B-Human,
the BreDoBrothers would have had more than thirty members. Therefore we decided to end the
cooperation by mutual agreement to facilitate a better workflow and work-sharing.

In 2009, we participated in the RoboCup German Open Standard Platform League and won
the competition. We scored 27 goals and received none in five matches against different teams.
Furthermore, B-Human took part in the RoboCup World Championship and won the compe-
tition, achieving a goal ratio of 64:1. In addition, we could also win first place in the technical
challenge, shared with Nao Team HTWK from Leipzig.
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Figure 1.1: The almost complete B-Human team at the RoboCup 2009 awards ceremony.

The current team consists of the following persons:

Diploma Students. Oliver Bösche, Armin Burchardt, Erik Damrose, Katharina Gillmann,
Colin Graf, Alexander Härtl, Thijs Jeffry de Haas, Judith Müller, Andrik Rieskamp, André
Schreck, Andreas Seekircher, Ingo Sieverdingbeck, Thiemo Wiedemeyer, Jan-Hendrik
Worch.

Researcher. Tim Laue.

Senior Researcher. Thomas Röfer (team leader).

1.2 About the Document

As we wanted to revive the tradition of the annual code release last year, it is obligatory for us
to continue with it this year.

This document, which is partially based on last year’s code release [19], gives a survey about
the evolved system we used at RoboCup 2009. Last year we introduced a working port of our
system, which was basically designed for the Humanoid League, to the Nao1 platform. Now we
completed porting, adjusted the system according to the rules of the Standard Platform League
[2] and optimized it to fit with the properties of the Nao.

Chapter 2 starts with a short introduction to the software required, as well as an explanation
of how to run the Nao with our software. Chapter 3 gives an introduction to the software
framework. Chapter 4 deals with the cognition system and will give an overview of our perception
and modeling components. In Chapter 5, we describe our walking approach and how to create
special motion patterns. Chapter 6 gives an overview about the behavior which was used at the

1The robot used in the Standard Platform League, manufactured by Aldebaran Robotics.
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RoboCup 20092 and how to create a new behavior. Chapter 7 explains our approaches that we
used to compete for the Challenges. Finally, Chapter 8 describes the usage of SimRobot, the
program that is both used as simulator and as debugging frontend when controlling real robots.

2In the CodeRelease, there is only a striker with a simple “go-to-ball-and-kick” behavior implemented which
is not described in this document
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Chapter 2

Getting Started

The aim of this chapter is to give an overview of the code release package, the software compo-
nents used, and instructions about how to enliven a Nao with our code. For the latter, several
steps are necessary: Unpacking the source code, compiling the code using Visual Studio 2008 or
Linux, setting up the Nao, copying the files to the robot, and starting the software.

2.1 Unpacking

The code release package should be unpacked to a location, the path of which must not contain
whitespaces. After the unpacking process, the chosen location should contain several subdirec-
tories, which are described below.

Build is the target directory for temporary files created during the compilation of source code.

Config contains configuration files used to configure the Nao and the Simulator. A more thor-
ough description of the individual files can be found below in the next section (cf. Sect. 2.2).

Doc contains some further documentation resources and is the target directory for the compiled
documentation of the simulator and the behavior, which can be created by using the
BehaviorDoc and the SimulatorDoc components (cf. Sect. 2.2).

Install contains all files needed to set up the flash drive of a Nao, two scripts to manage the
wireless configuration of the robots, and a script to update color tables.

Make contains the Visual Studio project files, makefiles, other files needed to compile the code
and the Copyfiles tool.

Src contains all the source code of the code release.

Util contains additional libraries and tools such as Doxygen [24].

2.2 Components and Configurations

The B-Human software is usable on Windows as well as on Linux and consists of a shared
library for NaoQi running on the real robot, an additional executable for the robot, the same
software running in our simulator SimRobot (without NaoQi), as well as some libraries and
tools. Therefore, the software is separated into the following components:

9
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Copyfiles is a tool for copying compiled code to the robot. For a more detailed explanation
see Sect. 2.7.

VcProjGeneration is a tool (for Windows only) for updating project files based on available
source files found in the Src directory. On Linux, all makefiles will be updated automati-
cally on each call to make.

BehaviorDoc is a tool for creating the documentation of the behavior. The results will be
located in Doc/Reference/BH2009BehaviorControl.

SimulatorDoc is a tool for creating the documentation of the complete simulator source code.
The results will be located in Doc/Reference/Simulator.

SimRobotGUI is a library that contains the graphical user interface of SimRobot. This GUI
is written in Qt4 and it is available in the configurations Release and Debug.

Controller is a library that contains Nao-specific extensions of the Simulator, the interface to
the robot code framework, and it is also required for controlling and high level debugging
of code that runs on a Nao. The library is also available in the configurations Release and
Debug.

SimRobotCore is a library that contains the simulation engine of SimRobot. It is compilable
with or without debug symbols (configurations Release and Debug).

libbhuman compiles the shared library used by the B-Human executable to interact with
NaoQi.

URC stands for Universal Resource Compiler and is a small tool for automatic generation of
some .xabsl files (cf. Sect. 6.1) and for compiling special actions (cf. Sect. 5.2.4).

Nao compiles the B-Human executable for the Nao. It is available in Release, Optimized,
and Debug configurations, where Release produces “game code” without any support for
debugging. The configuration Optimized produces optimized code, but still supports all
debugging techniques described in Sect. 3.6.

Simulator is the executable simulator (cf. Chapter 8) for running and controlling the B-Human
robot code. The robot code links against the components SimRobotCore, SimRobotGUI,
Controller and some third-party libraries. It is compilable in Optimized, Debug With
Release Libs, and Debug configurations. All these configurations contain debug code but
Optimized performs some optimizations and strips debug symbols (Linux). Debug With
Release Libs produces debuggable robot code while linking against non-debuggable Release
libraries.

Behavior compiles the behavior specified in .xabsl files into an internal format (cf. Sect. 6.1).

SpecialActions compiles motion patterns (.mof files) into an internal format (cf. Sect. 5.2.4).

2.3 Compiling using Visual Studio 2008

2.3.1 Required Software

• Visual Studio 2008 SP1

10



2.4. COMPILING ON LINUX B-Human 2009

• cygwin – 1.5 with the following additional packages: make, ruby, rsync, openssh, libxml2,
libxslt. Add the ...\cygwin\bin directory to the PATH environment variable.

• gcc, glibc – Linux cross compiler for cygwin, download from
http://www.b-human.de/download.php?file=coderelease09_crosscompiler, in or-
der to keep symbolic links use a cygwin shell to extract. This cross compiler package
is based on the cross compiler downloadable from http://sourceforge.net/project/
showfiles.php?group_id=135860. To use this cross compiler together with our software,
we placed the needed boost and python include files into the include directory.

• alcommon – copy the contents of extern/c/aldebaran/alcommon from the Nao SDK release
v1.3.13 linux (NaoQiRoboCup-1.3.13-Linux.tar.gz) to the directory Util/alcommon of the
unpacked B-Human software. The package is available at the internal RoboCup download
area of Aldebaran Robotics. Please note that this package is only required to compile the
code for the actual Nao robot.

2.3.2 Compiling

Open the Visual Studio 2008 solution file Make/BHuman.sln. It contains all projects needed to
compile the source code. Select the desired configuration (cf. Sect. 2.2) out of the drop-down
menu in Visual Studio 2008 and select Build/Build Solution to build everything including the
documentation. Otherwise click on the project to be built (usually Simulator or Nao) and
choose Build/Build Project in the menu bar. Select Simulator as start project.

2.4 Compiling on Linux

2.4.1 Required Software

Additional requirements (listed by common package names) for an x86-based Linux distribution
(e. g. Ubuntu Hardy):

• g++, make

• libqt4-dev – 4.3 or above (qt.nokia.com)

• ruby

• doxygen – For compiling the documentation.

• graphviz – For compiling the behavior documentation and for using the module view of
the simulator. (www.graphviz.org)

• xsltproc – For compiling the behavior documentation.

• openssh-client – For deploying compiled code to the Nao.

• rsync – For deploying compiled code to the Nao.

• alcommon – copy the contents of extern/c/aldebaran/alcommon from the Nao SDK release
v1.3.13 linux (NaoQiRoboCup-1.3.13-Linux.tar.gz) to the directory Util/alcommon of the
unpacked B-Human software. The package is available at the internal RoboCup download
area of Aldebaran Robotics. Please note that this package is only required to compile the
code for the actual Nao robot.
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2.4.2 Compiling

To compile one of the components described in section 2.2 (except Copyfiles and VcProjGener-
ation), simply select Make as the current working directory and type:

make <component> CONFIG=<configuration>

The Makefile in the Make directory controls all calls to generated sub-Makefiles for each com-
ponent. They have the name <component>.make and are also located in the Make directory.
Dependencies between the components are handled by the major Makefile. It is possible to
compile or cleanup a single component without dependencies by using:

make -f <component>.make [CONFIG=<configuration>] [clean]

To clean up the whole solution use:

make clean

2.5 Configuration Files

In this section the files and subdirectories in the directory Config are explained in greater detail.

ballPerceptor.cfg contains parameters for the BallPerceptor (cf. Sect. 4.1.3.5).

bodyContour.cfg contains parameters for the BodyContourProvider (cf. Sect. 4.1.2).

goalPerceptor.cfg contains parameters for the GoalPerceptor (cf. Sect. 4.1.3.4).

jointHardness.cfg contains the default hardness for every joint of the Nao.

linePerceptor.cfg contains parameters for the LinePerceptor (cf. Sect. 4.1.3.3).

odometry.cfg provides information for the self-locator while executing special actions. See the
file or section 5.2.4 for more explanations.

regionAnalyzer.cfg contains parameters for the RegionAnalyzer (cf. Sect. 4.1.3.2).

regionizer.cfg contains parameters for the Regionizer (cf. Sect. 4.1.3.1).

settings.cfg contains parameters to control the Nao. The entry model is obsolete and should
be nao. The teamNumber is required to determine which information sent by the Game-
Controller is addressed to the own team. The teamPort is the UDP port used for team
communication (cf. Sect. 3.5.4). The teamColor determines the color of the own team
(blue or red). The playerNumber must be different for each robot of the team. It is used
to identify a robot by the GameController and in the team communication. In addition,
it can be used in behavior control. location determines which directory in the Location
subdirectory is used to retrieve the location-dependent settings.

walking.cfg contains parameters for the WalkingEngine (cf. Sect. 5.2.3.2).

Images is used to save exported images from the simulator.

12
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Keys contains the SSH keys needed by the tool Copyfiles to connect remotely to the Nao.

Locations contains one directory for each location. These directories control settings that
depend on the environment, i. e. the lighting or the field layout. It can be switched quickly
between different locations by setting the according value in the settings.cfg. Thus different
field definitions, color tables, and behaviors can be prepared and loaded. The location
Default can be used as normal location but has a special status. Whenever a file needed is
not found in the current location, the corresponding file from the location Default is used.

Locations/<location>/behavior.cfg determines which agent behavior will be loaded when
running the code.

Locations/<location>/camera.cfg contains parameters to control the camera.

Locations/<location>/coltable.c64 is the color table that is used for this location. There
can also be a unique color table for each robot, in which case this color table is ignored.

Locations/<location>/field.cfg contains the field sizes and coordinates of features on the
field.

Locations/<location>/fieldModel.tab is a binary file which can be generated by the Self-
Locator. It contains look-up tables for mapping perceptions to lines and line crossings. It
is used by the self-locator (cf. Sect. 4.2.1).

Locations/<location>/goalNet.tab is a binary file which can be generated by the SelfLo-
cator. It contains a look-up table for distinguishing valid line perceptions from the goal
net.

Locations/<location>/modules.cfg contains information about which representations are
available and which module provides them while the code is running. Representations that
are exchanged between the two main processes are given in the section Shared.

Locations/<location>/selfloc.cfg contains parameters for the module SelfLocator (cf.
Sect. 4.2.1).

Logs contains logfiles that can be recorded and replayed using the simulator.

Robots contains one directory for each robot and the settings of the robot. The configuration
files found here are used for individual calibration settings for each robot. The directory
Nao is used by the simulator. For each robot, a subdirectory with the name of the robot
must exist.

Robots/<robotName>/cameraCalibration.cfg contains correction values for camera- and
body-roll and body-tilt and body translation (cf. Sect. 4.1.1.1).

Robots/<robotName>/jointCalibration.cfg contains calibration values for each joint. In
this file offset, sign, minimal and maximal joint angles can be set individually. The cali-
bration is also used to map between B-Human’s joint angles and NaoQi’s joint angles.

Robots/<robotName>/masses.cfg contains the masses of all robot limbs used to compute
the center of mass (cf. Sect. 5.1.3).

Robots/<robotName>/robotDimensions.cfg contains values that are used by forward
and inverse kinematics (cf. Sect. 5.2.3.4).

13
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Robots/<robotName>/sensorCalibration.cfg contains calibration settings for the sensors
of the robot.

Robots/<robotName>/walking.cfg . This file is optional. It contains the walking param-
eters for the robot. If this file exists, it is used instead of the general file in the Config
directory.

Scenes contains different scenes for the simulator.

Sounds contains the sound files that are played by the robot and the simulator.

2.6 Setting up the Nao

2.6.1 Requirements

Setting up the Nao is only possible from a Linux OS. First of all, download the OS image v1.3.13
that is available at the internal RoboCup download area. Unrar this file and move the extracted
image to Install/images. To save space it is possible to compress the image with bzip2. After
that, there should be a file opennao-robocup-1.3.13-nao-geode.ext3 or opennao-robocup-1.3.13-
nao-geode.ext.bz2. If your image file has a different name, you have the choice to change the
imageName variable in line 7 of flashAndInstall.sh or to use the -i option with the name of your
image file as argument when calling the install script. Note that the only supported compression
is bzip2, which is only detected if the image file has the bz2 extension. All other file extensions
are ignored and the image file is considered as uncompressed image file.

The only supported NaoQi and os image version is 1.3.13.

To use the scripts in the directory Install the following tools are needed:

sed, tune2fs, sfdisk, mount, umount, grep, awk, patch, bunzip2, tar, mktemp, whoami, mkfs.vfat,
dd, and tr or bash in version 4.x

Each script will check its own requirements and will terminate with an error message if a tool
needed is not found.

2.6.2 Creating Robot Configuration

Before you start setting up the Nao, you need to create configuration files for each robot you
want to set up. To create a robot configuration run createNewRobot.sh. The script expects
a team id, a robot id, and a robot name. The team id is usually equal to your team number
configured in Config/settings.cfg but you can use any number between 1 and 254. The given
team id is used as third part of the IP version 4 address of the robot on both interfaces. All
robots playing in the same team need the same team id to be able to communicate with each
other. The robot id is the last part of the IP address and must be unique for each team id. The
robot name is used as hostname in the Nao operating system and is saved in the chestboard of
the Nao as BodyNickname.

Here is an example for creating a new set of configuration files:

createNewRobot.sh -t 3 -r 25 Penny

Before creating your first robot configuration, check that the network configuration template file
interfaces template matches the requirements of your local network configuration.

Help for createNewRobot.sh is available using the option -h.
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Running createNewRobots.sh creates all needed files to flash the robot. This script also creates
a robot directory in Config/Robots as a copy of the template directory.

2.6.3 Wireless configuration

To use the wireless interface of the Nao, you need to create a wpa supplicant.conf file. The easiest
way is to copy the file Install/files/wpa supplicant.conf template and change it in the way needed
for your wireless network. The name of the new configuration must be wpa supplicant <suffix>
in order to use this file with our install script. To use this new configuration as default for all in-
stalls, change the variable wlanConfigSuffix in line 15 of Install/flashAndInstall.sh to the chosen
suffix or use the option -W of the install script with the suffix as argument. To manage the wire-
less configurations of your robots, for example to copy new or updated configurations or switching
the active configuration, you can use the scripts updateWirelessConfig.sh and switchActiveWire-
lessConfiguration.sh. updateWirelessConfig.sh copies all found wpa supplicant.conf files to all
known and reachable robots. For switchActiveWirelessConfiguration.sh, help is available using
the option -h. This script activates the configuration specified by the argument on all known and
reachable robots. While switching the active wireless configuration you should be connected via
a cable connection. Switching the wireless configuration via a wireless connection is untested.

A robot is known if an interfaces file exists for that robot. Both scripts use all ip addresses
found in all interfaces files except the interfaces template file to connect to the robots. If you
are connected to a robot via a cable and a wireless connection, all changes are done twice.

2.6.4 Setup

Open the head of the Nao and remove the USB flash memory. Plug the USB flash drive into the
computer. Run flashAndInstall.sh as root with at least the name of the robot as argument. With
-h as option flashAndInstall.sh prints a short help. The install script uses different mechanisms
to detect the flash drive. If it fails or if the script detects more than one appropriate flash drive,
you have to call the script using the option -d with the device name as argument.

With -d or with device auto detection some safety checks are enabled to prevent possible data
loss on your harddrive. To disable these safety checks you can use -D. With -D flashAndInstall.sh
will accept any given device name and will write to this device. Use -D only if it is necessary
and you are sure what you are doing.

The install script writes the os image to the flash drive and formats the userdata partition of
the drive. After that, the needed configuration files for the robot and all files needed to run
copyfiles.sh for this robot and to use it with the B-Human software are copied to the drive.
If the script terminates without any error message you can remove the flash drive from your
computer and plug it into the Nao.

Start your Nao and wait until the boot finished. Connect via SSH to the Nao and log in as root
with the password cr2009. Start ./phase2.sh and reboot the Nao. After the reboot the Nao is
ready to be used with the B-Human software.

2.7 Copying the Compiled Code

The tool Copyfiles is used to copy compiled code to the Nao.

Running Windows you have two possibilities to use Copyfiles. On the one hand, in Visual
Studio you can do that by “building” the tool Copyfiles. Copyfiles can be built in the known
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configurations (Debug, DebugWithReleaseLibs, Optimized, or Release). It will check if the code
built is up-to-date. If the code is not up-to-date in the desired configuration, it will be built.
Otherwise you will be prompted for entering parameters. On the other hand you can just execute
the file copyfiles.cmd at the command prompt.

Running Linux you have to execute the file copyfiles.sh, which is located in the Make directory.

Copyfiles requires two mandatory parameters. First, the configuration the code was compiled
with (Debug, Optimized, or Release), and second, the IP address of the robot. To adjust the
desired settings, it is possible to set the following optional parameters:

Option Description
-l <location> sets the location
-t <color> sets the team color to blue or red
-p <number> sets the player number
-d deletes the local cache and the target directory
-m n <ip> copy to <ip> and set player number to n

Possible calls could be:

copyfiles Optimized 10.0.1.103 -t red -p 2
copyfiles Release -d -m 1 10.0.1.101 -m 3 10.0.1.102

The destination directory on the robot is /media/userdata/Config.

2.8 Working with the Nao

After pressing the chest button, it takes about 55 seconds until NaoQi is started. Currently
the B-Human software consists of a shared library (libbhuman.so) that is loaded by NaoQi at
startup, and an executable (bhuman) also loaded at startup.

/home/root contains scripts to start and stop NaoQi via SSH:

./stop stops running instances of NaoQi and bhuman.

./naoqi executes NaoQi in the foreground. Press Ctrl+C to terminate the process. Please
note that the process will automatically be terminated if the SSH connection is closed.

./naoqid start|stop|restart starts, stops or restarts NaoQi. After updating libbhuman with
Copyfiles NaoQi needs a restart.

./bhuman executes the bhuman executable in foreground. Press Ctrl+C to terminate the pro-
cess. Please note that the process will automatically be terminated if the SSH connection
is closed.

./bhumand start|stop|restart starts, stops or restarts the bhuman executable. After up-
loading files with Copyfiles bhuman must be restarted.

./status shows the status of NaoQi and bhuman.

The Nao can be shut down in two different ways:
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shutdown -h now will shut down the Nao, but it can be booted again by pressing the chest
button because the chestboard is still energized. If the B-Human software is running, this
can also be done by pressing the chest button longer than three seconds.

./naoqid stop && harakiri - -deep && shutdown -h now will shut down the Nao. If the
Nao runs on battery it will be completely switched off after a couple of seconds. In this
case an external power supply may be needed to start the Nao again.

2.9 Starting SimRobot

On Windows, the simulator can either be started from Microsoft Visual Studio, or by start-
ing a scene description file in Config/Scenes1. In the first case, a scene description file has
to be opened manually, whereas it will already be loaded in the latter case. On Linux, just
run Build/Simulator/Linux/<configuration>/Simulator, and load a scene description file after-
wards. When a simulation is opened for the first time, a scene graph, console and editor window
appear. All of them can be docked into the main window. Immediately after starting the sim-
ulation using the Simulation/Start entry in the menu, the scene graph will appear in the scene
graph window. A scene view showing the soccer field can be opened by double-clicking scene
RoboCup. The view can be adjusted by using the context menu of the window or the toolbar.

After starting a simulation, a script file may automatically be executed, setting up the robot(s)
as desired. The name of the script file is the same as the name of the scene description file but
with the extension .con. Together with the ability of SimRobot to store the window layout, the
software can be configured to always start with a setup suitable for a certain task.

Although any object in the scene graph can be opened, only displaying certain entries in the
object tree makes sense, namely the scene, the objects in the group robots, and all information
views.

To connect to a real Nao, enter its IP address in the file Config/Scenes/connect.con on the
PC. Afterwards, start the simulation scene Config/Scenes/RemoteRobot.ros (cf. Sect. 8.6.3). A
remote connection to the Nao is only possible if the code running on the Nao was compiled in
either the Debug or the Optimized configuration.

For more detailed information about SimRobot see Chapter 8.

1This will only work if the simulator was started at least once before.
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Chapter 3

Architecture

The B-Human architecture is based on the framework of the GermanTeam 2007 [21], adapted
to the Nao. This chapter summarizes the major features of the architecture: binding, processes,
modules and representations, communication, and debugging support.

3.1 Binding

The only appropriate way to access the actuators and sensors (except the camera) of the Nao
is to use the NaoQi SDK that is actually a stand-alone module framework that we do not use
as such. Therefore, we deactivated all non essential pre-assembled modules and implemented
the very basic module libbhuman for accessing the actuators and sensors from another native
platform process called bhuman that encapsulates the B-Human module framework.

Whenever the Device Communication Manager (DCM) reads a new set of sensor values, it
notifies the libbhuman about this event using an atPostProcess callback function. After this
notification, libbhuman writes the newly read sensor values into a shared memory block and
raises a semaphore to provide a synchronization mechanism to the other process. The bhuman
process waits for the semaphore, reads the sensor values that were written to the shared memory
block, calls all registered modules within B-Human’s process Motion and writes the resulting
actuator values back into the shared memory block right after all modules have been called.
When the DCM is about to transmit desired actuator values (e. g. target joint angles) to the
hardware, it calls the atPreProcess callback function. On this event libbhuman sends the
desired actuator values from the shared memory block to the DCM.

It would also be possible to encapsulate the B-Human framework as a whole within a single
NaoQi module, but this would lead to a solution with a lot of drawbacks. The advantages of
the separated solution are:

• Both frameworks use their own address space without losing their real-time capabilities
and without a noticeable reduction of performance. Thus, a malfunction of the process
bhuman cannot affect NaoQi and vice versa.

• Whenever bhuman crashes, libbhuman is still able to display this malfunction using red
blinking eye LEDs and to make the Nao sit down slowly. Therefore, the bhuman process
uses its own watchdog that can be activated using the -w flag1 when starting the bhuman
process. When this flag is set, the process forks itself at the beginning where one instance

1The start up scripts bhuman and bhumand set this flag by default.
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Figure 3.1: The processes used on the Nao

waits for a regular or irregular exit of the other. On an irregular exit the exit code can
be written into the shared memory block. The libbhuman monitors whether sensor values
were handled by the bhuman process using the counter of the semaphore. When this
counter exceeds a predefined value the error handling code will be initiated. When using
release code (cf. Sect. 2.2), the watchdog automatically restarts the bhuman process after
an irregular exit.

• The process bhuman can be started or restarted within only a few seconds. The start up of
NaoQi takes about 15 seconds, but because of the separated solution restarting of NaoQi
is not necessary as long as the libbhuman was not changed.

• Debugging with a tool such as the GDB is much simpler since the bhuman executable can
be started within debugger without taking care of NaoQi.

3.2 Processes

Most robot control programs use concurrent processes. The number of parallel processes is best
dictated by external requirements coming from the robot itself or its operating system. The
Nao provides images at a frequency of 15 Hz or 30 Hz and accepts new joint angles at 50 Hz.
Therefore, it makes sense to have two processes running at these frequencies. In addition, the
TCP communication with a host PC (for the purpose of debugging) may block while sending
data, so it also has to reside in its own process. This results in the three processes Cognition,
Motion, and Debug used in the B-Human system (cf. Fig. 3.1). Cognition receives camera
images from Video for Linux, as well as sensor data from the process Motion. It processes this
data and sends high-level motion commands back to the process Motion. This process actually
executes these commands by generating the target angles for the 21 joints of the Nao. It sends
these target angles to Nao’s Device Communication Manager, and it receives sensor readings
such as the actual joint angles, acceleration and gyro measurements, etc. In addition, Motion
reports about the motion of the robot, e. g., by providing the results of dead reckoning. The
process Debug communicates with the host PC. It distributes the data received from it to the
other two processes, and it collects the data provided by them and forwards it back to the host
machine. It is inactive during actual games.

Processes in the sense of the architecture described can be implemented as actual operating
system processes, or as threads. On the Nao and in the simulator, threads are used. In contrast,
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in B-Human’s team in the Humanoid League, framework processes were mapped to actual
processes of the operating system (i. e. Windows CE).

3.3 Modules and Representations

A robot control program usually consists of several modules each of which performs a certain
task, e. g. image processing, self-localization, or walking. Modules require a certain input and
produce a certain output (i. e. so-called representations). Therefore, they have to be executed
in a specific order to make the whole system work. The module framework introduced in [21]
simplifies the definition of the interfaces of modules, and automatically determines the sequence
in which the modules are executed. It consists of the blackboard, the module definition, and a
visualization component (cf. Sect. 8.3.9).

3.3.1 Blackboard

The blackboard [9] is the central storage for information, i. e. for the representations. Each
process has its own blackboard. Representations are transmitted through inter-process com-
munication if a module in one process requires a representation that is provided by a module
in another process. The blackboard itself only contains references to representations, not the
representations themselves:

class BallPercept;
class FrameInfo;
// ...
class Blackboard
{
protected:
const BallPercept& theBallPercept;
const FrameInfo& theFrameInfo;

// ...
};

Thereby, it is possible that only those representations are constructed, that are actually used
by the current selection of modules in a certain process. For instance, the process Motion
does not process camera images. Therefore, it does not require to instantiate an image object
(approximately 300 KB in size).

3.3.2 Module Definition

The definition of a module consists of three parts: the module interface, its actual implementa-
tion, and a statement that allows to instantiate the module. Here an example:

MODULE(SimpleBallLocator)
REQUIRES(BallPercept)
REQUIRES(FrameInfo)
PROVIDES(BallModel)

END_MODULE

class SimpleBallLocator : public SimpleBallLocatorBase
{
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void update(BallModel& ballModel)
{
if(theBallPercept.wasSeen)
{
ballModel.position = theBallPercept.position;
ballModel.wasLastSeen = theFrameInfo.frameTime;

}
}

}

MAKE_MODULE(SimpleBallLocator, World Modeling)

The module interface defines the name of the module (e. g. MODULE(SimpleBallLocator)), the
representations that are required to perform its task, and the representations provided by the
module. The interface basically creates a base class for the actual module following the naming
scheme <ModuleName>Base. The actual implementation of the module is a class that is derived
from that base class. It has read-only access to all the required representations in the black-
board (and only to those), and it must define an update method for each representation that
is provided. As will be described in Section 3.3.3, modules can expect that all their required
representations have been updated before any of their provider methods is called. Finally, the
MAKE MODULE statement allows the module to be instantiated. It has a second parameter that
defines a category that is used for a more structured visualization of the module configuration
(cf. Sect. 8.3.9).

The module definition actually provides a lot of hidden functionality. Each PROVIDES statement
makes sure that the representation provided can be constructed and deconstructed (remember,
the blackboard only contains references), and will be available before it is first used. In addition,
representations provided can be sent to other processes, and representations required can be
received from other processes. The information that a module has certain requirements and
provides certain representations is not only used to generate a base class for that module, but
is also available for sorting the providers, and can be requested by a host PC. There it can
be used to change the configuration, for visualization (cf. Sect. 8.3.9), and to determine which
representations have to be transferred from one process to the other. Please note that the latter
information cannot be derived by the processes themselves, because they only know about their
own modules, not about the modules defined in other processes. Last but not least, the execution
time of each module can be determined (cf. Sect. 3.6.6) and the representations provided can be
sent to a host PC or even altered by it.

The latter functionality is achieved by variants of the macro PROVIDES that add support for
MODIFY (cf. Sect. 3.6.5), support for streaming the representation to be recorded in a log file
(OUTPUT, requires a message id with the same name as the representation, cf. Sect. 3.5), and
drawing based on a parameterless method draw implemented by the representation itself. The
maximum version of the macro is PROVIDES WITH MODIFY AND OUTPUT AND DRAW. For a reduced
functionality, the sections of the name that are not required or not supported can be left out.

Besides the macro REQUIRES, there also is the macro USES(<representation>). USES simply
gives access to a certain representation, without defining any dependencies. Thereby, a module
can access a representation that will be updated later, accessing its state from the previous
frame. Hence, USES can be used to model cyclic relations. The module view (cf. Sect. 8.3.9)
does not display USES connections.
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3.3.3 Configuring Providers

Since modules can provide more than a single representation, the configuration has to be per-
formed on the level of providers. For each representation it can be selected which module will
provide it or that it will not be provided at all. In addition it has to be specified which repre-
sentations have to be shared between the processes, i. e. which representations will be sent from
one process to the other. The latter can be derived automatically from the providers selected in
each process, but only on a host PC that has the information about all processes. Normally the
configuration is read from the file Config/Location/<location>/modules.cfg during the boot-
time of the robot, but it can also be changed interactively when the robot has a debugging
connecting to a host PC.

The configuration does not specify the sequence in which the providers are executed. This
sequence is automatically determined at runtime based on the rule that all representations
required by a provider must already have been provided by other providers before, i. e. those
providers have to be executed earlier.

In some situations it is required that a certain representation is provided by a module before any
other representation is provided by the same module, e. g., when the main task of the module
is performed in the update method of that representation, and the other update methods rely
on results computed in the first one. Such a case can be implemented by both requiring and
providing a representation in the same module.

3.3.4 Pseudo-Module default

During the development of the robot control software it is sometimes desirable to simply deacti-
vate a certain provider or module. As mentioned above, it can always be decided not to provide
a certain representation, i. e. all providers generating the representation are switched off. How-
ever, not providing a certain representation typically makes the set of providers inconsistent,
because other providers rely on that representation, so they would have to be deactivated as
well. This has a cascading effect. In many situations it would be better to be able to deac-
tivate a provider without any effect on the dependencies between the modules. That is what
the module default was designed for. It is an artificial construct – so not a real module – that
can provide all representations that can be provided by any module in the same process. It will
never change any of the representations – so they basically remain in their initial state – but it
will make sure that they exist, and thereby, all dependencies can be resolved. However, in terms
of functionality a configuration using default is never complete and should not be used during
actual games.

3.4 Streams

In most applications, it is necessary that data can be serialized, i. e. transformed into a sequence
of bytes. While this is straightforward for data structures that already consist of a single
block of memory, it is a more complex task for dynamic structures, as e. g. lists, trees, or
graphs. The implementation presented in this document follows the ideas introduced by the
C++ iostreams library, i. e., the operators << and >> are used to implement the process
of serialization. It is also possible to derive classes from class Streamable and implement the
mandatory method serialize(In*, Out*). In addition, the basic concept of streaming data was
extended by a mechanism to gather information on the structure of the data while serializing it.

There are reasons not to use the C++ iostreams library. The C++ iostreams library does not
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guarantee that the data is streamed in a way that it can be read back without any special
handling, especially when streaming into and from text files. Another reason not to use the
C++ iostreams library is that the structure of the streamed data is only explicitly known in the
streaming operators themselves. Hence, exactly those operators have to be used on both sides
of a communication, which results in problems regarding different program versions or even the
use of different programming languages.

Therefore, the Streams library was implemented. As a convention, all classes that write data
into a stream have a name starting with “Out”, while classes that read data from a stream start
with “In”. In fact, all writing classes are derived from class Out, and all reading classes are
derivations of class In.

All streaming classes derived from In and Out are composed of two components: One for
reading/writing the data from/to a physical medium and one for formatting the data from/to
a specific format. Classes writing to physical media derive from PhysicalOutStream, classes
for reading derive from PhysicalInStream. Classes for formatted writing of data derive from
StreamWriter, classes for reading derive from StreamReader. The composition is done by the
OutStream and InStream class templates.

3.4.1 Streams Available

Currently, the following classes are implemented:

PhysicalOutStream. Abstract class

OutFile. Writing into files

OutMemory. Writing into memory

OutSize. Determine memory size for storage

OutMessageQueue. Writing into a MessageQueue

StreamWriter. Abstract class

OutBinary. Formats data binary

OutText. Formats data as text

OutTextRaw. Formats data as raw text (same output as “cout”)

Out. Abstract class

OutStream<PhysicalOutStream,StreamWriter>. Abstract template class

OutBinaryFile. Writing into binary files
OutTextFile. Writing into text files
OutTextRawFile. Writing into raw text files
OutBinaryMemory. Writing binary into memory
OutTextMemory. Writing into memory as text
OutTextRawMemory. Writing into memory as raw text
OutBinarySize. Determine memory size for binary storage
OutTextSize. Determine memory size for text storage
OutTextRawSize. Determine memory size for raw text storage
OutBinaryMessage. Writing binary into a MessageQueue
OutTextMessage. Writing into a MessageQueue as text
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OutTextRawMessage. Writing into a MessageQueue as raw text

PhysicalInStream. Abstract class

InFile. Reading from files

InMemory. Reading from memory

InMessageQueue. Reading from a MessageQueue

StreamReader. Abstract class

InBinary. Binary reading

InText. Reading data as text

InConfig. Reading configuration file data from streams

In. Abstract class

InStream<PhysicalInStream,StreamReader>. Abstract class template

InBinaryFile. Reading from binary files
InTextFile. Reading from text files
InConfigFile. Reading from configuration files
InBinaryMemory. Reading binary data from memory
InTextMemory. Reading text data from memory
InConfigMemory. Reading config-file-style text data from memory
InBinaryMessage. Reading binary data from a MessageQueue
InTextMessage. Reading text data from a MessageQueue
InConfigMessage. Reading config-file-style text data from a MessageQueue

3.4.2 Streaming Data

To write data into a stream, Tools/Streams/OutStreams.h must be included, a stream must be
constructed, and the data must be written into the stream. For example, to write data into a
text file, the following code would be appropriate:

#include "Tools/Streams/OutStreams.h"
// ...
OutTextFile stream("MyFile.txt");
stream << 1 << 3.14 << "Hello Dolly" << endl << 42;

The file will be written into the configuration directory, e. g. Config/MyFile.txt on the PC. It
will look like this:

1 3.14000 "Hello Dolly"
42

As spaces are used to separate entries in text files, the string “Hello Dolly” is enclosed in double
quotes. The data can be read back using the following code:

#include "Tools/Streams/InStreams.h"
// ...
InTextFile stream("MyFile.txt");
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int a,d;
double b;
std::string c;
stream >> a >> b >> c >> d;

It is not necessary to read the symbol endl here, although it would also work, i. e. it would be
ignored.

For writing to text streams without the separation of entries and the addition of double quotes,
OutTextRawFile can be used instead of OutTextFile. It formats the data such as known from
the ANSI C++ cout stream. The example above is formatted as following:

13.14000Hello Dolly
42

To make streaming independent of the kind of the stream used, it could be encapsulated in
functions. In this case, only the abstract base classes In and Out should be used to pass streams
as parameters, because this generates the independence from the type of the streams:

#include "Tools/Streams/InOut.h"

void write(Out& stream)
{
stream << 1 << 3.14 << "Hello Dolly" << endl << 42;

}

void read(In& stream)
{
int a,d;
double b;
std::string c;
stream >> a >> b >> c >> d;

}
// ...
OutTextFile stream("MyFile.txt");
write(stream);
// ...
InTextFile stream("MyFile.txt");
read(stream);

3.4.3 Making Classes Streamable

A class is made streamable by deriving it from the class Streamable and implementing the ab-
stract method serialize(In*, Out*). For data types derived from Streamable streaming operators
are provided, meaning they may be used as any other data type with standard streaming oper-
ators implemented. To realize the modify functionality (cf. Sect. 3.6.5), the streaming method
uses macros to acquire structural information about the data streamed. This includes the data
types of the data streamed as well as that names of attributes. The process of acquiring names
and types of members of data types is automated. The following macros can be used to specify
the data to stream in the method serialize:

STREAM REGISTER BEGIN() indicates the start of a streaming operation.
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STREAM BASE(<class>) streams the base class.

STREAM(<attribute>) streams an attribute, retrieving its name in the process.

STREAM ENUM(<attribute>, <numberOfEnumElements>,
<getNameFunctionPtr>) streams an attribute of an enumeration type, retriev-
ing its name in the process, as well as the names of all possible values.

STREAM ARRAY(<attribute>) streams an array of constant size.

STREAM ENUM ARRAY(<attribute>, <numberOfEnumElements>,
<getNameFunctionPtr>) streams an array of constant size. The elements of
the array have an enumeration type. The macro retrieves the name of the array, as well
as the names of all possible values of its elements.

STREAM DYN ARRAY(<attribute>, <numberOfElements>) streams a dynamic ar-
ray with a certain number of elements. Note that the number of elements will be overridden
when the array is read.

STREAM VECTOR(<attribute>) streams an instance of std::vector.

STREAM REGISTER FINISH() indicates the end of the streaming operation for this data
type.

These macros are intended to be used in the serialize method. For instance, to stream an
attribute test and a vector called testVector:

virtual void serialize(In* in, Out* out)
{
STREAM_REGISTER_BEGIN();
STREAM(test);
STREAM_VECTOR(testVector);
STREAM_REGISTER_FINISH();

}

3.5 Communication

Three kinds of communication are implemented in the B-Human framework, and they are all
based on the same technology: message queues. The three kinds are: inter-process communica-
tion, debug communication, and team communication.

3.5.1 Message Queues

The class MessageQueue allows storing and transmitting a sequence of messages. Each message
has a type (defined in Src/Tools/MessageQueue/MessageIDs.h) and a content. Each queue has
a maximum size which is defined in advance. On the robot, the amount of memory required
is pre-allocated to avoid allocations during runtime. On the PC, the memory is allocated on
demand, because several sets of robot processes can be instantiated at the same time, and the
maximum size of the queues is rarely needed.

Since almost all data types have streaming operators, it is easy to store them in message queues.
The class MessageQueue provides different write streams for different formats: messages that are
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stored through out.bin are formatted binary. The stream out.text formats data as text and
out.textRaw as raw text. After all data of a message was streamed into a queue, the message
must be finished with out.finishMessage(MessageID), giving it a message id, i. e. a type.

MessageQueue m;
m.setSize(1000); // can be omitted on PC
m.out.text << "Hello world!";
m.out.finishMessage(idText);

To declare a new message type, an id for the message must be added to the enumeration
type MessageID in Src/Tools/MessageQueue/MessageIDs.h. The enumeration type has three
sections: the first for representations that should be recorded in log files, the second for team
communication, and the last for infrastructure. These sections should always be extended at
the end to avoid compatibility issues with existing log files or team mates running an older
version of the software. For each new id, a string for the type has to be added to the method
getMessageIDName(MessageID) in the same file.

Messages are read from a queue through a message handler that is passed to the queue’s
method handleAllMessages(MessageHandler&). Such a handler must implement the method
handleMessage(InMessage&). That method will be called for each message in the queue. It
must be implemented in a way as the following example shows:

class MyClass : public MessageHandler
{
protected:
bool handleMessage(InMessage& message)
{
switch(message.getMessageID())
{
default:
return false;

case idText:
{
std::string text;
message.text >> text;
return true;

:

The handler has to return whether it handled the message or not. Messages are read from a
MessageQueue via streams. Thereto, message.bin provides a binary stream, message.text a
text stream, and message.config a text stream that skips comments.

3.5.2 Inter-process Communication

The representations sent back and forth between the processes Cognition and Motion are defined
in the section Shared of the file Config/Location/<location>/modules.cfg. The ModuleManager
automatically derives the direction in which they are sent from the information about which
representation is provided in which process.
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3.5.3 Debug Communication

For debugging purposes, there is a communication infrastructure between the processes Cogni-
tion and Motion and the PC. This is accomplished by debug message queues. Each process has
two of them: theDebugSender and theDebugReceiver, often also accessed through the refer-
ences debugIn and debugOut. The macro OUTPUT(<id>, <format>, <sequence>) defined
in Src/Tools/Debugging/Debugging.h simplifies writing data to the outgoing debug message
queue. id is a valid message id, format is text, bin, or textRaw, and sequence is a streamable
expression, i. e. an expression that contains streamable objects, which – if more than one – are
separated by the streaming operator <<.

OUTPUT(idText, text, "Could not load file " << filename << " from " << path);
OUTPUT(idImage, bin, Image());

As most of the debugging infrastructure, the macro OUTPUT is ignored in the configuration
Release. Therefore, it should not produce any side effects required by the surrounding code.

For receiving debugging information from the PC, each process also has a message handler, i. e.
it implements the method handleMessage to distribute the data received.

The process Debug manages the communication of the robot control program with the tools on
the PC. For each of the other processes (Cognition and Motion) it has a sender and a receiver
for their debug message queues (cf. Fig. 3.1). Messages that arrive via WLAN from the PC are
stored in debugIn. The method Debug::handleMessage(InMessage&) distributes all messages
in debugIn to the other processes. The messages received from Cognition and Motion are stored
in debugOut. When a WLAN connection is established, they are sent to the PC via TCP/IP.
To avoid communication jams, it is possible to send a QueueFillRequest to the process Debug.
The command qfr to do so is explained in Section 8.5.3.

3.5.4 Team Communication

The purpose of the team communication is to send messages to the other robots in the team.
These messages are always broadcasted, so all teammates can receive them. The team commu-
nication uses a message queue embedded in a UDP package. The first message in the queue
is always idRobot that contains the number of the robot sending the message. Thereby, the
receiving robots can distinguish between the different packages they receive. The reception of
team communication packages is implemented in the module TeamDataProvider. It also imple-
ments the network time protocol (NTP) and translates time stamps contained in packages it
receives into the local time of the robot.

Similar to debug communication, data can be written to the team communication message
queue using the macro TEAM OUTPUT(<id>, <format>, <sequence>). The macro can only
be used in process Cognition. In contrast to the debug message queues, the one for team
communication is rather small (1396 bytes). So the amount of data written should be kept to a
minimum. In addition, team packages are only broadcasted approximately every 100 ms. Hence,
and due to the use of UDP in general, data is not guaranteed to reach its intended receivers.
The representation TeamMateData contains a flag that states whether a team communication
package will be sent out in the current frame or not.
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3.6 Debugging Support

Debugging mechanisms are an integral part of the B-Human framework. They are all based on
the debug message queues already described in Section 3.5.3. All debugging mechanisms are
available in all project configurations but Release. In Release, they are completely deactivated
(i. e. not even part of the executable), and the process Debug is not started.

3.6.1 Debug Requests

Debug requests are used to enable and disable parts of the source code. They can be seen as
a runtime switch available only in debugging mode. This can be used to trigger certain debug
messages to be sent, as well as to switch on certain parts of algorithms. Two macros ease the
use of the mechanism as well as hide the implementation details:

DEBUG RESPONSE(<id>, <statements>) executes the statements if the debug request
with the name id is enabled.

DEBUG RESPONSE NOT(<id>, <statements>) executes the statements if the debug
request with the name id is not enabled. The statements are also executed in the release
configuration of the software.

These macros can be used anywhere in the source code, allowing for easy debugging. For
example:

DEBUG_RESPONSE("test", test());

This statement calls the method test() if the debug request with the identifier ”test” is enabled.
Debug requests are commonly used to send messages on request, as the following example shows:

DEBUG_RESPONSE("sayHello", OUTPUT(idText, text, "Hello"); );

This statement sends the text “Hello” if the debug request with the name "sayHello" is ac-
tivated. Please note that only those debug requests are usable that are in the current path
of execution. This means that only debug request in those modules can be activated that
are currently executed. To determine which debug requests are currently available, a method
called polling is employed. It asks all debug responses to report the name of the debug request
that would activate it. This information is collected and sent to the PC (cf. command poll in
Sect. 8.5.3).

3.6.2 Debug Images

Debug images are used for low level visualization of image processing debug data. They can
either be displayed as background image of an image view (cf. Sect. 8.3.1) or in a color space view
(cf. Sect. 8.3.2). Each debug image has an associated textual identifier that allows referring to it
during image manipulation, as well as for requesting its creation from the PC. The identifier can
be used in a number of macros that are defined in file Src/Tools/Debugging/DebugImages.h,
and that facilitate the manipulation of the debug image.

DECLARE DEBUG IMAGE(<id>) declares a debug image with the specified identifier.
This statement has to be placed where declarations of variables are allowed, e. g. in a class
declaration.
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INIT DEBUG IMAGE(<id>, image) initializes the debug image with the given identifier
with the contents of an image.

INIT DEBUG IMAGE BLACK(<id>) initializes the debug image as black.

SEND DEBUG IMAGE(<id>) sends the debug image with the given identifier as bitmap
to the PC.

SEND DEBUG IMAGE AS JPEG(<id>) sends the debug image with the given identifier
as JPEG-encoded image to the PC.

DEBUG IMAGE GET PIXEL <channel>(<id>, <x>, <y>) returns the value of a
color channel (Y , U , or V ) of the pixel at (x, y) of the debug image with the given
identifier.

DEBUG IMAGE SET PIXEL YUV(<id>, <xx>, <yy>, <y>, <u>, <v>) sets the
Y , U , and V -channels of the pixel at (xx, yy) of the image with the given identifier.

DEBUG IMAGE SET PIXEL <color>(<id>, <x>, <y>) sets the pixel at (x, y) of the
image with the given identifier to a certain color.

GENERATE DEBUG IMAGE(<id>, <statements>) only executes a sequence of state-
ments if the creation of a certain debug image is requested. This can significantly improve
the performance when a debug image is not requested, because for each image manipula-
tion it has to be tested whether it is currently required or not. By encapsulating them in
this macro (and maybe in addition in a separate method), only a single test is required.

DECLARE DEBUG GRAY SCALE IMAGE(<id>) declares a grayscale debug image.
Grayscale debug images only represent the brightness channel of an image, even reducing
it to only seven bits per pixel. The remaining 128 values of each byte representing a pixel
are used for drawing colored pixels from a palette of predefined colors.

INIT DEBUG GRAY SCALE IMAGE(<id>, image) initializes the grayscale debug
image with the given identifier with the contents of an image.

INIT DEBUG GRAY SCALE IMAGE BLACK(<id>) initializes the grayscale debug
image as black.

SEND DEBUG GRAY SCALE IMAGE(<id>) sends the grayscale debug image with
the given identifier as bitmap to the PC.

SET COLORED PIXEL IN GRAY SCALE IMAGE(<id>, <x>, <y>, <color>)
sets a colored pixel in a grayscale debug image. All available colors are defined in class
ColorIndex (declared in file Src/Tools/ColorIndex.h).

These macros can be used anywhere in the source code, allowing for easy creation of debug
images. For example:

DECLARE_DEBUG_IMAGE(test);
INIT_DEBUG_IMAGE(test, image);
DEBUG_IMAGE_SET_PIXEL_YUV(test, 0, 0, 0, 0, 0);
SEND_DEBUG_IMAGE_AS_JPEG(test);

The example initializes a debug image from another image, sets the pixel (0, 0) to black and
sends it as a JPEG-encoded image to the PC.
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3.6.3 Debug Drawings

Debug drawings provide a virtual 2-D drawing paper and a number of drawing primitives, as
well as mechanisms for requesting, sending, and drawing these primitives to the screen of the
PC. In contrast to debug images, which are raster-based, debug drawings are vector-based, i. e.,
they store drawing instructions instead of a rasterized image. Each drawing has an identifier
and an associated type that enables the application on the PC to render the drawing to the right
kind of drawing paper. In addition, a description can be specified (currently, it is not used).
In the B-Human system, two standard drawing papers are provided, called drawingOnImage
and drawingOnField. This refers to the two standard applications of debug drawings, namely
drawing in the system of coordinates of an image and drawing in the system of coordinates of
the field. Hence, all debug drawings of the type drawingOnImage can be displayed in an image
view (cf. Sect. 8.3.1) and all drawings of type drawingOnField can be rendered into a field view
(cf. Sect. 8.3.3).

The creation of debug drawings is encapsulated in a number of macros in Src/Tools/Debug-
ging/DebugDrawings.h. Most of the drawing macros have parameters such as pen style, fill
style, or color. Available pen styles (ps solid, ps dash, ps dot, and ps null) and fill styles
(bs solid and bs null) are part of the class Drawings. Colors can be specified as ColorRGBA
or using the enumeration type ColorClasses::Color. A few examples for drawing macros are:

DECLARE DEBUG DRAWING(<id>, <type>) declares a debug drawing with the
specified id and type. In contrast to the declaration of debug images, this macro has
to be placed in a part of the code that is regularly executed.

CIRCLE(<id>, <x>, <y>, <radius>, <penWidth>, <penStyle>, <penColor>,
<fillStyle>, <fillColor>) draws a circle with the specified radius, pen width, pen style,
pen color, fill style, and fill color at the coordinates (x, y) to the virtual drawing paper.

LINE(<id>, <x1>, <y1>, <x2>, <y2>, <penWidth>, <penStyle>, <penColor>)
draws a line with the pen color, width, and style from the point (x1, y1) to the point
(x2, y2) to the virtual drawing paper.

DOT(<id>, <x>, <y>, <penColor>, <fillColor>) draws a dot with the pen color and fill
color at the coordinates (x, y) to the virtual drawing paper. There also exist two macros
MID DOT and LARGE DOT with the same parameters that draw dots of larger size.

DRAWTEXT(<id>, <x>, <y>, <fontSize>, <color>, <text>) writes a text with a
font size in a color to a virtual drawing paper. The upper left corner of the text will
be at coordinates (x, y).

TIP(<id>, <x>, <y>, <radius>, <text>) adds a tool tip to the drawing that will pop up
when the mouse cursor is closer to the coordinates (x, y) than the given radius.

ORIGIN(<id>, <x>, <y>, <angle>) changes the system of coordinates. The new origin
will be at (x, y) and the system of coordinates will be rotated by angle (given in radians).
All further drawing instructions, even in other debug drawings that are rendered afterwards
in the same view, will be relative to the new system of coordinates, until the next origin
is set. The origin itself is always absolute, i. e. a new origin is not relative to the previous
one.

COMPLEX DRAWING(<id>, <statements>) only executes a sequence of statements if
the creation of a certain debug drawing is requested. This can significantly improve the
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performance when a debug drawing is not requested, because for each drawing instruction
it has to be tested whether it is currently required or not. By encapsulating them in
this macro (and maybe in addition in a separate method), only a single test is required.
However, the macro DECLARE DEBUG DRAWING must be placed outside of COMPLEX DRAWING.

These macros can be used wherever statements are allowed in the source code. For example:

DECLARE_DEBUG_DRAWING("test", "drawingOnField");
CIRCLE("test", 0, 0, 1000, 10, Drawings::ps_solid, ColorClasses::blue,

Drawings::bs_solid, ColorRGBA(0, 0, 255, 128));

This example initializes a drawing called test of type drawingOnField that draws a blue circle
with a solid border and a semi-transparent inner area.

3.6.4 Plots

The macro PLOT(<id>, <number>) allows plotting data over time. The plot view (cf.
Sect. 8.3.7) will keep a history of predefined size of the values sent by the macro PLOT and
plot them in different colors. Hence, the previous development of certain values can be observed
as a time series. Each plot has an identifier that is used to separate the different plots from each
other. A plot view can be created with the console commands vp and vpd (cf. Sect. 8.5.3).

For example, the following statement plots the measurements of the gyro for the pitch axis.
Please note that the measurements are converted to degrees.

PLOT("gyroY", toDegrees(theSensorData.data[SensorData::gyroY]));

The macro DECLARE PLOT(<id>) allows using the PLOT(<id>, <number>) macro within a
part of code that is not regularly executed as long as the DECLARE PLOT(<id>) macro is executed
regularly.

3.6.5 Modify

The macro MODIFY(<id>, <object>) allows reading and modifying of data on the actual
robot during runtime. Every streamable data type (cf. Sect. 3.4.3) can be manipulated and read,
because its inner structure is gathered while it is streamed. This allows generic manipulation
of runtime data using the console commands get and set (cf. Sect. 8.5.3). The first parameter
of MODIFY specifies the identifier that is used to refer to the object from the PC, the second
parameter is the object to be manipulated itself. When an object is modified using the console
command set, it will be overridden each time the MODIFY macro is executed.

int i = 3;
MODIFY("i", i);
WalkingEngineParameters p;
MODIFY("parameters:WalkingEngine", p);

The macro PROVIDES of the module framework (cf. Sect. 3.3) also is available in versions that
include the MODIFY macro for the representation provided (e. g. PROVIDES WITH MODIFY). In these
cases the representation, e. g., Foo is modifiable under the name representation:Foo.
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3.6.6 Stopwatches

Stopwatches allow the measurement of the execution time of parts of the code.
The statements the runtime of which should be measured have to be placed into
the macro STOP TIME ON REQUEST(<id>, <statements>) (declared in Src/Tools/Debug-
ging/Stopwatch.h) as second parameter. The first parameter is a string used to identify
the time measurement. To activate a certain time measurement, e. g., Foo, a debug request
stopwatch:Foo has to be sent. The measured time can be seen in the timing view (cf.
Sect. 8.3.8). By default, a stopwatch is already defined for each representation that is cur-
rently provided. In the release configuration of the code, all stopwatches in process Cognition
can be activated by sending the release option stopwatches (cf. command ro in Sect. 8.5.3).

An example to measure the runtime of a method called myCode:

STOP_TIME_ON_REQUEST("myCode", myCode(); );
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Chapter 4

Cognition

In the B-Human system, the process Cognition (cf. Sect. 3.2) can be structured into the three
functional units perception, modeling, and behavior control. The major task of the perception
modules is to detect landmarks such as goals and field lines, as well as the ball in the image
provided by the camera. The modeling modules work on these percepts and determine the
robot’s position on the field, the relative position of the goals, the position and speed of the ball,
and the free space around the robot. Only these modules are able to provide useful information
for the behavior control that is described separately (cf. Chapter 6).

4.1 Perception

B-Human uses a scan line-based perception system. The YUV422 images provided by the Nao
camera have a resolution of 640 × 480 pixels. They are interpreted as YUV444 images with a
resolution of 320 × 240 pixels by ignoring every second row and the second Y channel of each
YUV422 pixel pair. The images are scanned on vertical scan lines (cf. Fig. 4.8). Thereby, the
actual amount of scanned pixels is much smaller than the image size. The perception modules
provide representations for the different features. The BallPercept contains information about
the ball if it was seen in the current image. The LinePercept contains all field lines, intersections,
and the center-circle seen in the current image, and the GoalPercept contains information about
the goals seen in the image. All information provided by the perception modules is relative to
the robot’s position.

An overview of the perception modules and representations is visualized in Fig. 4.1.

4.1.1 Definition of Coordinate Systems

The global coordinate system (cf. Fig. 4.2) is described by its origin lying at the center of the
field, the x-axis pointing toward the opponent goal, the y-axis pointing to the left, and the z-axis
pointing upward. Rotations are specified counter-clockwise with the x-axis pointing toward 0◦,
and the y-axis pointing toward 90◦.

In the egocentric system of coordinates (cf. Fig. 4.3) the axes are defined as followed: the x-axis
points forward, the y-axis points to the left, and the z-axis points upward.
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Figure 4.1: Perception module graph
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Figure 4.2: Visualization of the global coordinate
system

Figure 4.3: Visualization of the robot
relative coordinate system

4.1.1.1 Camera Matrix

The CameraMatrix is a representation containing the transformation matrix of the lower camera
of the Nao (we only use the lower camera) that is provided by the CameraMatrixProvider. It is
computed based on the InertiaMatrix that represents the orientation and position of a specific
point within the robot’s torso relative to the ground (cf. sect. 5.1.5). Using the RobotDimensions
and the current position of the joints the transformation of the camera matrix relative to the
inertia matrix is computed (this relative transformation matrix is also provided as RobotCam-
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eraMatrix, which is used to compute the BodyContour (cf. Sect. 4.1.2)). In addition to these
fixed parameters some robot-specific parameters from the CameraCalibration are integrated that
are necessary because the camera cannot be mounted perfectly plain and the torso is not always
perfectly vertical (a small variation can lead to significant errors when projecting farther objects
onto the field).
The CameraMatrix is used for projecting objects onto the field as well as the creation of the
ImageCoordinateSystem (cf. Sect. 4.1.1.2).

For the purpose of calibrating the mentioned robot-specific parameters there is a debug drawing
that projects the field lines into the camera image. To activate this drawing type vid raw module:-
CameraMatrixProvider:calibrationHelper in the simulator console. This drawing is helpful for
calibrating because the real lines and the projected lines only match if the camera matrix and
hence the camera calibration is correct (assuming that the real position corresponds to the
self-localization of the robot).

Figure 4.4: Camera calibration using calibrationHelper: Projected lines before (left) and after (right)
calibration procedure

The calibration procedure is as follows:

1. Connect the simulator to a robot on the field.

2. Place the robot on one of the crosses facing the opposite goal.

3. Run the SimRobot configuration file CameraCalibration.con (in the console type call
CameraCalibration).

4. Modify the parameters of CameraCalibration so that the projected lines match the field
lines in the image.

5. Move the head to check that the lines match for different rotations of the head.

6. Repeat 4. and 5. until the lines match in each direction.

4.1.1.2 Image Coordinate System

Based on the camera transformation matrix, another coordinate system is provided which applies
to the camera image. The ImageCoordinateSystem is provided by the module CoordinateSystem-
Provider. Its origin of the y-coordinate lies on the horizon within the image (even if it is not
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Figure 4.5: Origin of the ImageCoordinateSystem

visible in the image). The x-axis points right along the horizon whereas the y-axis points down-
wards orthogonal to the horizon (cf. Fig. 4.5). For more information see also [23].

The ImageCoordinateSystem provides a mechanism to compensate image distortion caused by
the rolling shutter that is based on the image recording time and the speed of the head joints.
For a detailed description see [20].

4.1.2 BodyContourProvider

If the robot sees parts of its body, it might confuse white areas with field lines and – under
certain conditions – red parts with the ball. However, by using forward kinematics, the robot
can actually know where its body is visible in the camera image and exclude these areas from
image processing. This is achieved by modeling the boundaries of body parts that are potentially
visible in 3-D (cf. Fig. 4.6 left) and projecting them back to the camera image (cf. Fig. 4.6 right).
The part of that projection that intersects with the camera image or is above it is provided in
the representation BodyContour. It is used by the image processor as lower clipping boundary.
The projection relies on ImageCoordinateSystem, i. e., the linear interpolation of the joint angles
to match the time when the image was taken. However if joints accelerate or decelerate, the
projection may not be accurate, as can be seen in Fig. 4.6 right), where the foot just stopped
after a kick. In that case, the clipping region might be too big or too small.

4.1.3 Image Processing

The image processing is split into the three steps segmentation and region-building (cf.
Sect. 4.1.3.1), region classification (cf. Sect. 4.1.3.2) and feature extraction (cf. Sect. 4.1.3.3,
4.1.3.4, 4.1.3.5). Since the goals are the only features that are above the horizon and the field
border, the goal detection is based on special segments and is not integrated in the region
classification.
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Figure 4.6: Body contour in 3-D (left) and projected to the camera image after kicking the ball (right).

Figure 4.7: Field borders: the small red-dotted line is the horizon, the blue line connects the green points
found, the red line is the upper part of the convex hull with a dot for each scan line, the ball in front of
the post would be missed without the convex hull.

4.1.3.1 Segmentation and Region-Building

The Regionizer works on the camera image and creates regions based on segments found on scan
lines. It provides the RegionPercept containing the segments, the regions, the field borders and
the horizontal and vertical goal segments.
First the field borders are detected. This is done by running scan lines, starting from the horizon,
downwards until a green segment of a minimum length is found. From these points the upper
half of the convex hull is used as field border. Using the convex hull ensures that we cannot
miss a ball that is in front of a goal post or a robot and therefore has no green above (cf.
Fig. 4.7). Since all features that are detected based on regions are on the field (ball and field
lines) further segmentation starts from these field border points. Because we do not want to
accidentally detect features inside the body of the robot, the BodyContour is used to determine
the end of each scan line. Now scan lines running from the field border to the bottom of the
image, clipped by the BodyContour, are used to create segments. To be tolerant against noise in
the segmentation, a certain number of different colored pixels in a row may be skipped without
starting a new segment. Since we want to create regions based on the segments and our scan
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lines are not very close to each other, non-green segments are explored. This means we are
trying to find equally colored runs between the current scan line and the last one which touches
the segment and starts before or ends after the current segment. This is necessary since a field
line that is far away might create segments that do not touch each other because of the distance
of the scan lines. However, we still want to be able to unite them to a region (cf. Fig. 4.8).
For the goal detection two special scans are done to detect vertical and horizontal yellow or
blue segments above the horizon. The horizontal scan lines are continued below the horizon
until there is a scan line in which no yellow or blue segment is found. These segments are
stored separately from the normal segments in the RegionPercept and are only used by the
GoalPerceptor.
Based on these segments regions are created using the algorithm shown in Algorithm 1 and 2. It
iterates over all segments (sorted by y- and x-coordinates) and connects the current segment to
the regions already created or creates a new one in each iteration. To connect each segment to
the regions already found, a function is called that takes as input the segment and a pointer to
a segment in the previous column that is the first segment that might touch the segment to be
connected. The function returns a pointer to the segment in the last column that might touch
the next segment. This pointer is passed again to the function in the next iteration for the next
segment. The algorithm is capable of handling overlapping segments, which is needed because
the region-building is done on the explored segments. While building the regions, information
about neighboring regions is collected and stored within the regions.

Algorithm 1 Region-building
lastColumnPointer ← NULL
firstInColumn← NULL
s′ ← NULL
for all s ∈ segments do

if s.color = green then
continue

end if
if column(s) 6= column(s′) then
lastColumnPointer ← firstInColumn
firstInColumn← s

end if
lastColumnPointer ← connectToRegions(s, lastColumnPointer)
s′ ← s

end for

We do not create green regions, since green is treated as background and is only needed to
determine the amount of green next to white regions, which can be determined based on the
segments.
Two segments of the same color touching each other need to fulfill certain criteria to be united
to a region:

• For white and uncolored regions there is a maximum region size

• The length ratio of the two touching segments may not exceed a certain maximum

• For white regions the change in direction may not exceed a certain maximum (vector
connecting the middle of the segments connected to the middle of the next segment is
treated as direction)
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Algorithm 2 ConnectToRegions(s, lastColumnPointer)
if lastColumnPointer = NULL then
createNewRegion(s)
return NULL

end if
while lastColumnPointer.end < s.exploredStart & column(lastColumnPointer) + 1 =
column(s) do
lastColumnPointer ← lastColumnPointer.next()

end while
if column(lastColumnPointer) + 1 6= column(s) then
createNewRegion(s)
return NULL

end if
if lastColumnPointer.start ≤ s.exploredEnd & lastColumnPointer.color = s.color then
uniteRegions(lastColumnPointer, s)

end if
lastColumnPointer′ ← lastColumnPointer
while lastColumnPointer′.end ≤ s.exploredEnd do
lastColumnPointer′ ← lastColumnPointer′.next()
if column(lastColumnPointer′) + 1 6= column(s) then

if !s.hasRegion then
createNewRegion(s)

end if
return lastColumnPointer

end if
if lastColumnPointer′.start ≤ s.exploredEnd & lastColumnPointer′.color = s.color
then
uniteRegions(lastColumnPointer′, s)

else
return lastColumnPointer

end if
end while
if !s.hasRegion then
createNewRegion(s)

end if
return lastColumnPointer
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Figure 4.8: Segmentation and region-building: (1) segment is not touching the other, but the explored
runs (dotted lines) are touching the other segment, (2) not connected because of length ratio, (3) not
connected because of change in direction.

• If two white segments are touching each other and both already are connected to a region,
they are not united

These criteria (and all other thresholds mentioned before) are configurable through the file
regionizer.cfg. For some colors these features are turned off in the configuration file. These
restrictions are especially needed for white regions, since we do not want to have a single big
region containing all field lines and robots. The result of these restrictions is that we most likely
get small straight white regions (cf. Fig. 4.8). For example, at a corner the change in direction
of the white segments should exceed the maximum change in direction, and therefore they are
not united or if a robot stands on a field line, the length ratio of the two segments is most likely
too big and the regions are not united.

4.1.3.2 Region Classification

The region classification is done by the RegionAnalyzer. It classifies the regions within the
RegionPercept whether they could be parts of a line or the ball and discards all others. It
provides the LineSpots and BallSpots.
The RegionAnalyzer iterates over all regions in the RegionPercept and filters all white regions
through a filter that determines whether the region could be a part of a line and filters all orange
regions through a filter that determines whether the region could be a ball.
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A white region needs to fulfill the following conditions to be accepted as a part of a line:

• The region must consists of a certain number of segments, and it must have a certain size.
If a region does not have enough children but instead has a size that is bigger than a
second threshold it is also accepted as a line. This case occurs for example when a vertical
line only creates a single very long segment.

• The axis of orientation must be determinable (since this is the base information passed to
further modules).

• The size of neighboring uncolored regions must not exceed a certain size and the ratio
of the size of the white region and the neighboring uncolored regions must not exceed a
certain ratio (this is because robot parts are most likely classified as uncolored regions).

• A horizontally oriented white region must have a certain amount of green above and below,
while a vertically oriented white region must have a certain amount of green on its left
and right side.

For each region that was classified as a part of a line the center of mass, the axis of orientation,
the size along the axis of orientation, the size orthogonal to the axis of orientation, and the
start and end point of the axis of orientation in image coordinates are stored as LineSpot in the
LineSpots. All white regions that did not fulfill the criteria to be a part of a line are filtered
again through a very basic filter that determines whether the region could be a part of a robot.
The conditions for this filter are the following:

• Does the region have a certain size?

• Does the region have a vertical orientation (since most regions found in robots have a
vertical orientation)?

• Does the width/height ratio exceed a certain threshold (since most regions found in robots
have a big ratio)?

If all of these conditions are met a NonLineSpot is added to the LineSpots. These NonLineSpots
are used in the LinePerceptor to find regions in the image where there are a lot of NonLineSpots.
These are excluded from line detection.
Orange regions need to have a certain eccentricity to be accepted as BallSpots. For orange
regions that are accepted as possible balls the center of mass and the eccentricity is stored as
BallSpot in the BallSpots.
All thresholds are configurable through the file regionAnalyzer.cfg.

4.1.3.3 Detecting Lines

The LinePerceptor works on the LineSpots provided by the RegionAnalyzer. It clusters the
LineSpots to lines and tries to find a circle within the line spots not clustered to lines. Af-
terwards the intersections of the lines and the circle are computed. The results are stored in the
LinePercept.
To avoid detecting false lines in robots first of all the NonLineSpots within the LineSpots are
clustered to so called ban sectors. The NonLineSpots are transformed to field coordinates using
the 3-D camera equation. Since the NonLineSpots are most likely parts of robots that are above
the field, this creates a very characteristic scheme in field coordinates (cf. Fig. 4.9). After cre-
ating the ban sectors, the LinePerceptor creates line segments from the line spots. For each line
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Figure 4.9: Ban sector built from NonLineSpots. The red arrow is a false line spot detected in the robot
and discarded because of the ban sector.

spot that has a certain width/height ratio the start and end point of the spot is transformed to
field coordinates using the 3-D camera equation. If one of the two points is farther away than a
certain threshold the segment is discarded, since we can assume no line can be farther away than
the diagonal of the field size. The threshold is chosen a little bit smaller than the diagonal of the
field size because a line which has almost this distance is too small to be recognized by our vision
system. If the spot is similar to the regions that are created by robots (certain width/height
ratio, vertical, and a certain length), the LinePerceptor checks whether that spot is inside a ban
sector. If that is the case the segment is discarded. For all segments created the Hesse normal
form is calculated.
From these segments the lines are built. This is done by clustering the line segments. The
clustering is done by the algorithm shown in cf. Algorithm 3. The basic idea of the algorithm
is similar to the quality threshold clustering algorithm introduced by Heyer et al. in [8], but it
ensures that it runs in the worst-case-scenario in O(n2) runtime. Therefore it is not guaranteed
to find optimal clusters. Since the number of line spots is limited by the field setup, practical
usage showed that the algorithm has an acceptable runtime and delivers satisfiable results. The
difference of the directions and distances of the Hesse normal form of two segments need to be
less than a certain threshold to be accepted as parts of the same line. Each cluster of segments
also needs a segment with a length bigger than a certain threshold. This is necessary to avoid
creating lines from small pieces, for example a cross and a part of the circle. The lines are also
represented as Hesse normal form.

All remaining line segments are taken into account for the circle detection. For each pair of
segments with a distance smaller than a threshold the intersection of the perpendicular from
the middle of the segments is calculated. If the distance of this intersection is close to the real
circle radius, for each segment a spot is generated which has the distance of the radius to the
segment. After the spots are created the same clustering algorithm used for the lines is used
to find a cluster for the circle. As soon as a cluster is found which fulfills the criteria to be a
circle it is assumed to be the circle (cf. Fig. 4.10). For all remaining line segments which have a
certain length additional lines are created. Since it might happen that a circle is detected but
single segments on the circle were not recognized as part of it, all lines which are aligned on the
circle are deleted. It might also happen that a single line in the image created multiple lines
(because the line was not clustered but the single segments were long enough to create lines on
their own) therefore lines which are similar (with respect to the Hesse normal form) are merged
together. Since it might happen that single segments where not clustered to a line (for example
because the line spot is not perfectly aligned with the line, what can be caused by an inaccurate
segmentation) the remaining single segments are merge to the lines, if the distance of their start
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Algorithm 3 Clustering LineSegments
while lineSegments 6= ∅ do
s← lineSegments.pop()
supporters← ∅
maxSegmentLength← 0
for all s′ ∈ lineSegments do

if similarity(s, s′) < similarityThreshold then
supporters.add(s′)
if length(s′) > maxSegmentLength then
maxSegmentLength = length(s′)

end if
end if

end for
if supporters.size() > supporterThreshold and maxSegmentLength >
segmentLengthThreshold then
createLine({s} ∪ supporters)
lineSegments← lineSegments\supporters

end if
end while

Figure 4.10: Circle detection: blue crosses: circleSpots, blue circles: threshold area, orange lines: per-
pendiculars of segments

and end point is close to a line. For each resulting line the summed length of the segments must
cover a certain percentage of the length of the line. Otherwise the line will be discarded. This
avoids creating lines for segments which a far away from each other, for example the cross and
a part of the circle.
All resulting lines are intersected. If the intersection of two lines is between the start and end
point or close enough to the start/end point of both lines, an intersection is created. There are
different types of intersections (L, T and X). Whether an intersection is an L, T or X intersection
is determined by the distance of the intersection to the start/end points of the lines.
All thresholds used in the LinePerceptor are configurable through the lineperceptor.cfg.
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4.1.3.4 Detecting the Goal

The GoalPerceptor works directly on the RegionPercept output of the Regionizer. It provides the
representation GoalPercept that contains information about the goal posts.

The main idea of the GoalPerceptor is to perform a Hough-Transformation on the horizontal goal
segments in the RegionPercepts to search for long vertical lines in the color of the two goals in
the image and to perform some further checks to decide whether these objects might be a goal
post or not. If they are supposed to be goal posts the GoalPerceptor also tries to determine the
type of the detected goal post, which means to decide whether it is a left or a right post of the
goal.
Because of performance issues the GoalPerceptor at first ignores the angle of the goal posts in the
image and assumes that in most of the relevant cases the goal posts lie roughly vertical in the
image. After one or more long vertical segments have been detected in the image, the precise
top and bottom of these percepts are explored by looking into the image (small noise allowed).
The next step is to check in these percepts whether they match all the characteristic properties
of a goal post and to make sure not to accept blue robot parts or things outside the field as goal
posts. The most important checks are:

• Is there enough green below the foot point of the percept?

• Is the bottom of the percept under the calculated horizon and the top above it?

• Does the expected width of the goal post match the width of the percept?

• Is the calculated distance of the goal post within a plausible range?

Percepts that do not fulfill these criteria are discarded. For the remaining percepts a determina-
tion of the side is performed. If there are exactly two remaining percepts of the same color this
can be done easily. Otherwise the surrounding of the head point of the only remaining percept
is scanned in order to try to detect parts of the crossbar and to determine the side of the post.

Since for a robot standing on the field it is impossible to see two goal posts of different colors at
the same time. This fact is also used for another plausibility filter. If the GoalPerceptor perceives
two goal posts of different colors it discards both, if it sees a complete goal consisting of two
clearly visible goal posts and an additional single goal post of the other color it discards the
single one and if it detects two complete goals consisting of two goal posts each it discards both
of them. After this check the remaining goal posts are inserted into the GoalPercept, containing
information about their position in the image, their position relative to the robot, their color,
their type (which side), the time when they were perceived and the type how their distance to
the robot was calculated (by projecting of the bottom point to the field or by using their height
in the image).

4.1.3.5 Detecting the Ball

The BallPerceptor requires the representation BallSpots that is provided by the module Region-
Analyzer. The BallSpots is a list containing the center of mass of each orange region which could
be considered as a ball.

The BallPerceptor calculates the validity (0. . . 1) for each BallSpot in several steps. To determine
whether an orange cluster can be considered as a ball, the image is scanned in eight different
directions (left and right, up and down, and in all four diagonal directions) starting at the
BallSpot. If the border of the image is reached or the last five points viewed are not orange,
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Figure 4.11: Test case for the BallPerceptor. The crosses mark BallSpots, the black circle marks the
recognized Ball.

the search is stopped and the last orange point is saved. If the ball points found are considered
valid, the correct center and the radius of the ball can be calculated. Therefore, we have to
distinguish between a ball at the image border and a ball that is completely inside the image.

The center and the radius of a ball that is partially inside the image are calculated using the
Levenberg-Marquardt method [1]. First, only hard edge points, i. e., points with a high contrast
that are next to a green point are passed to the method. If there are not enough of those points
or if the method fails, all hard edge points are taken into account. If that does not work either,
all points that are not at the image border are used. If that still does not work out, the last
attempt is to use all ball points.

For a ball that is completely inside the image the center and radius can be calculated by taking
the two points of the ball which are farthest away from each other. The half of the distance is
the radius of the ball and the center of the ball is the average of the x and y coordinates.

If the center of the ball is below the horizon, the offset to the ball is calculated based on its
size in the image (for far balls) or its bearing (for close balls), resulting in the world coordinates
relative to the robot. Due to this information we can project the ball back to the image. This
results in a means for calculating the validity. The validity is calculated from the eccentricity,
the projection factor and the quality of the edge points. A BallSpot is considered as possible ball
if the validity is bigger than a certain threshold, it is considered not to be a ball if the validity
is smaller than another threshold. If the validity is between the two thresholds we run another
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test to determine whether it could be a ball or not.

In this last test we analyze the color classes in the calculated ball and its surrounding area.

For this test we calculate three regions for the BallSpot. The first region is the biggest square
that fits into the calculated ball. The second region is the smallest square bigger than the
complete ball without all points inside the first region. The last region is a square with an edge
length of

√
2 · diameter and center point on the center of the ball without any points inside the

two other regions (cf. Fig. 4.11). For each region the color classes of the points inside this region
are counted.

The counted values are compared to configured thresholds for the first and the third region1.
For example we expect at least 90 percent of orange points in the first region, but we only allow
2 percent of orange points in the third region. The result of this comparisons is a value between
0 and 1 for each region. These values describe the likelihood that the corresponding region could
be part of a real ball and its surrounding area.

Now we know definitely whether a BallSpot can be considered as a ball or not. If it is a ball it
is added to the list of ExtendedBallPercepts. When all BallSpots are analyzed, the one with the
highest validity is stored in the representation BallPercept. Our tests showed that this approach
works very well and distinguishs between balls and other objects (cf. Fig. 4.11). that is used by
the ParticleFilterBallLocator to provide the BallModel. For more information see Sect. 4.2.2.

Figure 4.12: Some typical B-Human/RoboCup vision frames

1Currently the second region is ignored.

47



B-Human 2009 4.2. MODELING

FallDownState

FallDownStateDetector

FilteredSensorData

ObstacleModelProvider

ObstacleModel

OdometryData

ParticleFilterBallLocator

SelfLocator

FrameInfo

BallModel BallLocatorSampleSet

BallPercept

CameraMatrix FieldDimensions

RobotPose CameraInfoWalkingEngineOutput RobotPoseHypotheses SelfLocatorSampleSet

GameInfo RobotInfo OwnTeamInfoLinePercept GoalPercept BehaviorConfiguration

Figure 4.13: Modeling module graph

4.2 Modeling

To compute an estimate of the world state – including the robot’s position, the ball’s position
and velocity, and the presence of obstacles – given the noisy and incomplete data provided by the
perception layer, a set of modeling modules is necessary. The modules and their dependencies
are depicted in Fig. 4.13.

4.2.1 Self-Localization

For self-localization, B-Human uses a particle filter based on the Monte Carlo method [4] as it
is a proven approach to provide accurate results in such an environment [22]. Additionally, it
is able to deal with the kidnapped robot problem that often occurs in RoboCup scenarios. For
a faster reestablishment of a reasonable position estimate after a kidnapping, the Augmented
MCL approach by [7] has been implemented. A comprehensive description of our general state
estimation implementation – applied to a Humanoid League scenario – is given in [13].

The module providing the RobotPose that is a simple pose in 2-D is the SelfLocator. Earlier
versions have already shown a reasonable performance during competitions in the Humanoid
League in 2007 and 2008.

However, the previous implementation’s sensor model has been designed for a Humanoid League
field (as described in [19]) by taking only points on the field – lines as well as the base lines of the
colored goal backgrounds that do not exist in the SPL – instead of more complex perceptions into
account. B-Human’s current vision system (cf. Sect. 4.1.3) provides a variety of perceptions that
have all been integrated into the sensor model: goal posts (ambiguous as well as unambiguous
ones), line segments (of which only the endpoints are matched to the field model), line crossings
(of three different types: L, T, and X ), and the center circle. During each sensor update of the
particle filter, always a fixed number (currently six) of randomly selected perceptions is used,
independently of the total number of perceptions; only goal post percepts are always preferred
over other ones.

For a precise localization near a goal, it is not only necessary to perceive the goal posts –
which are rarely seen to a utilizable extent – but also to avoid confusing the goal net with field
lines. Therefore, the SelfLocator has access to a precomputed look-up table which provides the
maximum valid distance to a field line for a given sample pose. As all false positives (given a
robot position inside the field) resulting from the goal net lie beyond the goal line, this is an
effective way of excluding them from the sensor update.

One other change is the integration of a new approach for computing the robot’s pose from
the sample set. Through the process of sensor resetting [17] (cf. Fig. 4.14b) to overcome kid-
napping problems, the probability distribution of the sample set often becomes multimodal (cf.
Fig. 4.14a). Our approach is capable of robustly and computationally efficiently tracking dif-
ferent sample clusters without any discretization drawbacks as, e. g., in the popular binning
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a) b)

Figure 4.14: a) Multi modal probability distribution: The samples have clustered at two different po-
sitions. The cluster selected for pose computation is drawn in magenta. b) Sensor resetting: A robot
standing at position A observes the non-unique goalpost at position B. The red boxes denote a sample set
that has been fully generated using this single observation. All samples are situated on circles around the
two possible goal posts. The different distances to the posts are a result of the sensor model’s uncertainty.

.

Figure 4.15: Ball samples before (left figure) and after (right figure) bouncing off the robot’s shape. The
orange circle and arrow show the ball model computed from the probability distribution. The circle
around the robot denotes the area in which collision checks are performed, the red rectangle shows the
shape the relevant samples are collided with.

approach. A detailed description is given in [15].

4.2.2 Ball Tracking

Estimating the ball’s velocity as well as filtering its position is also realized via a particle filter
similar to the one used for self-localization. A detailed description is also given in [13]. A
probability distribution of a ball in motion is shown in Fig. 4.15. By using the perception
described in Sect. 4.1.3.5, the module ParticleFilterBallLocator computes the BallModel.

A previous version of this module has already been used by the BreDoBrothers in 2008 and
B-Human’s Humanoid team in 2007 and 2008 [19]. The most significant improvement in 2009
has been the addition of a model for collisions between ball and robot, as depicted in Fig. 4.15.
To be computationally inexpensive, this model is very simplistic and thus reduces the robot’s
feet to one simple rectangle. Its main purpose is to avoid the ball model traversing the robot
during phases in which the robot does not look at the ball. This is especially useful for dribbling
behaviors as well as for dealing with some cases of wrong velocity estimates (caused by erroneous
measurements) of close balls.
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4.2.3 Obstacle Model

Since the vision system is not yet able to robustly detect other robots, the only perception
used for obstacle avoidance is the ultrasonic measurement. The possibility of measuring false
positives as well as the sensor’s rough coverage of the environment in combination with its low
update rate lead to development of the ObstacleModelProvider.

To compute a robust model, all ultrasonic measurements are added to a grid (cf. Fig. 4.16b)
which rasterizes the robot’s local environment. The grid currently used has a resolution of
40 × 40 cells with each cell having a size of 60mm × 60mm. Each cell stores a number no of
positive obstacle measurements. When receiving a new sensor measurement, the counter no
of all cells on the front border of the measurement cone becomes increased. The space within
this range is assumed to be empty, thus no of all cells within the cone becomes decreased. The
projection of the cone to the floor is simplified to a triangle (cf. Fig. 4.16a) instead of a sector
of a circle. This might cause a model of slightly closer obstacles but can – especially given the
sensor noise and the rough rasterization – be neglected in general. To become considered as an
occupied cell and thus part of an obstacle, no needs to reach a configurable threshold (currently
3). Thereby, single false positives cannot affect the model and the robot does not avoid any
nonexistent obstacles. This turned out to be crucial for an efficient playing behavior.

The robot’s motion is incorporated by odometry offsets to previous execution cycles. Rotations
can be handled efficiently since no grid cells need to be moved, only the angular offset used in
the transformations between the robot’s and the grid’s coordinate systems becomes changed.
Translational movements become accumulated until the robot has moved into a different cell.
Then the whole grid needs to be shifted. Over time, obstacle cells might leave the sensors’ scope
and the odometry accumulates a significant error. To avoid keeping any old and inconsistent
information, all cell counters become decreased in regular time intervals (currently 3s) after
their last change.

The module’s output, the ObstacleModel, contains the distances to the closest obstacles in four
different sectors, as depicted in Fig. 4.16a. This quite simple representation has been chosen
after consultation with the behavior implementers to avoid a specification of circumstantial
obstacle avoidance behaviors. Of course, based upon the data contained in the grid, alternative
representations would be easy to compute, e. g. angle and distance to closest obstacle or the
angle to the next free corridor.

4.2.4 Detecting a Fall

To start an appropriate get-up motion after a fall, the orientation of the robot’s body needs
to be computed from the measurements of the accelerometers. This task is realized by the
FallDownStateDetector that provides the FallDownState. By averaging the noisy sensor data, the
module robustly detects whether the robot is in an upright position, lying on its front, its back,
its left, or its right side. The latter two cases appear to be highly unlikely but are not impossible.

4.2.5 Ground Truth

As source for ground truth data, providing RobotPose and BallModel, a global tracking system
is used. For this purpose, a unique marker is fixed on the robot’s head (cf. Fig. 4.17) and
tracked by a camera hanging above the field. For this purpose, the standard vision system of
the RoboCup Small Size League [25] is used. The system provides the position as well as the
rotation (that is fused with the robot’s head rotation) of the robot on the field.
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a) b)

Figure 4.16: Modeling obstacle information: a) The ObstacleModel drawn as cyan polygons relative to
the robot. The red circles show the currently occupied cells, the red triangle the current ultrasonic
measurement. b) The local occupancy grid of the situation shown in a). The cells’ color depends on their
counter no.

a) b)

Figure 4.17: a) A Nao robot equipped with a colored pattern for global tracking. b) Two cameras
mounted above the field with overlapping images.

In its default configuration the standard vision system transmits UDP/IP packets to the mul-
ticast address 224.5.23.2. The robot and the vision system have to be configured to use the
correct network device for this address.

Currently, there is no filtering of the marker pose, which causes instability of the ground truth
robot pose in the area near the center line where both cameras provide the position of the
marker.

The command mr GroundTruthRobotPose SSLVision will enable the SSLVision module to pro-
vide the GroundTruthRobotPose. The estimated RobotPose can still be calculated by the Self-
Locator, both representations can be streamed to a connected SimRobot instance or stored in a
log file.
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Chapter 5

Motion

The Motion process comprises the two essential task Sensing (cf. Sect. 5.1) and Motion Control
(cf. Sect. 5.2). Sensing contains all modules that are responsible for preprocessing sensor data.
Some of the results of Sensing are forwarded to the Cognition process, but they are also used
within the Motion process itself for the generation of walking motions. Therefore, the Sensing
part must be executed before Motion Control. Figure 5.1 shows all modules running in the
Motion process and the representations they provide.

RobotName

MotionConfigurationDataProvider

JointCalibrationSensorCalibration

RobotDimensions MassCalibration

NaoProvider

SensorFilter

HeadMotionEngine

MotionCombinator

SpecialActions

WalkingEngine

InertiaMatrixProvider

RobotModelProvider

MotionRobotHealth

MotionRobotHealthProvider

JointData

JointFilter

SensorData

KeyStates

FrameInfo

GroundContactDetector

MotionSelector

LEDRequestCognitionFrameInfo

HeadJointRequest

HeadMotionRequest FilteredJointData

OdometryData JointRequest MotionInfo

MotionSelection

WalkingEngineOutput

SpecialActionsOutput

WalkingEngineStandOutput

MotionRequest

GroundContactStateRobotModel

FilteredSensorData

InertiaMatrix

Figure 5.1: All modules and representations in the process Motion
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5.1 Sensing

An important task of the motion process is to retrieve the measurements of all sensors of the Nao
and to preprocess them. The Nao has three acceleration sensors (for the x-, y- and z-direction),
two gyroscopes (for the rotation around the x- and y-axes), a sensor for the battery level, eight
force sensing resistors, sensors for the load, temperature, and angle of each joint, and an ultra-
sonic sensor with four different measurement modes. Furthermore, the inertia board of the Nao
calculates a crude approximation of the angle of the robot torso relative to the ground that is
also accessible in the same way as the other sensors. The NaoProvider receives all sensor values,
adds a calibration for each sensor and provides them as SensorData and JointData. The next step
is to make sure that these sensor values do not contain unexpectedly large or small values, which
may require a special treatment in other modules. Therefore, the JointData passes through the
JointFilter module that provides the representation FilteredJointData (cf. Sect. 5.1.1) and the
SensorData passes the SensorFilter module that provides the representation FilteredSensorData
(cf. Sect. 5.1.4). The module SensorFilter also requires the GroundContactState, determined from
the unfiltered SensorData (cf. Sect. 5.1.2), and the RobotModel, created from the representation
JointData that contains the position of the robot limbs (cf. Sect. 5.1.3). Based on the Filtered-
SensorData and the RobotModel, it is possible to calculate the InertiaMatrix that describes the
position of the inertia board within the Nao (cf. Sect. 5.1.5).

5.1.1 Joint Data Filtering

The measured joint angles of the Nao are very accurate, so the main task of the JointFilter
is to ensure that the FilteredJointData does not contain any values indicating missing sensors.
Normally, this does not happen on the real robot (which was different on former platforms used
by B-Human), but it can still occur with altered module configurations or while replaying log
files that do not contain any sensor data.

5.1.2 Ground Contact Recognition

Since it may happen during official soccer matches that a robot is manually placed or it gets
lifted because of a penalty, it is useful for several reasons (e. g. localization, behavior) for the
robot to know whether it is standing or walking on the ground or not. It also comes in handy
when the robot stops moving automatically after it got lifted, since it is much easier to place a
standing robot on the field instead of a moving one. The GroundContactState that is actually a
simple Boolean value indicating whether there is at least one foot on the ground, should not be
confused with the FallDownState that indicates whether the robot is in a horizontal position.

Besides the SensorFilter, the GroundContactDetector is the only module that uses the unfiltered
SensorData, since the result of the GroundContactDetector is required by the SensorFilter. So it
is not possible for the GroundContactDetector to use the FilteredSensorData. Earlier approaches
to recognize whether the robot stands upside on the ground were based on the load on the
servomotors. This worked well with the lowered walk that was used at the GermanOpen 2009,
but since the walk was replaced with a more economic version, the ground contact detection
stopped working and was replaced with a method using the force sensing resistors in Nao’s feet.

The force sensing resistors tend to lose their calibration very quickly, so they have to be re-
calibrated regularly to use them with a static threshold for detecting the ground contact state.
To avoid the need of the repeating re-calibrations, the GroundContactDetector observes the value
range of the uncalibrated sensors for each foot while discarding particular high or low values.
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This results in a range of values that allows to determine the GroundContactState with a per-
centage threshold. The GroundContactState does not change until most of the sensors of each
foot give matching results for multiple frames.

5.1.3 Robot Model Generation

The RobotModel is a simplified representation of the robot. It contains information on the
position of the limbs of the robot relative to its torso. Additionally it contains the position of
the center of mass (CoM ) of the robot.

The position of the limbs is represented as the rotation relative to the torso (RotationMatrix )
and the position of the last hinge before the limb (in total represented as a homogenous trans-
formation matrix). They are determined by consecutively computing the kinematic chain. The
position of the joints is taken from the measured position (instead of the desired position). As
the inverse kinematic, the implementation is customized for the Nao, i. e., the kinematic chain is
not described by a general purpose convention such as Denavit-Hartenberg parameters to save
computation time.

The CoM is computed by equation (5.1) with n = number of limbs, ~ri = position of the center
of mass of the i-th limb relative to the torso, and mi = the mass of the i-th limb.

~rcom =

n∑
i=1

~rimi

n∑
i=1

mi

(5.1)

~ri is computed using the transformation of the hinge and an offset of the CoM of a limb relative
to its hinge. The offset and the mass of a limb is configurable (masses.cfg). The configuration
provided was taken from the documentation of the Nao.

5.1.4 Sensor Data Filtering

The SensorFilter module is responsible for three different tasks. It drops broken inertial sensor
values, it determines a calibration offset for the gyroscope sensor (for x and y), and it calculates
an improved angle of the robot torso relative to the ground using an Unscented Kalman filter
(UKF) [10]. The calculations base on SensorData and the results are provided as FilteredSensor-
Data. Additionally, the module uses the GroundContactState for automatic gyroscope calibration
and requires the RobotModel for estimating the torso’s pitch and roll angle.

Dropping of broken inertial sensor values is necessary, because some sensor measurements re-
ceived cannot be explained by the legal noise of the sensor. This malfunction occurs sporadically
and affects most of the sensor values from the inertia board within a single frame (cf. Fig. 5.2).
The broken frames are detected through comparing the difference of each value and their pre-
decessor to a predefined threshold. If a broken frame is found that way, all sensor values from
the inertial board are ignored. The broken acceleration sensor values are replaced with their
predecessor and the broken gyroscope sensor values are not used for the angle estimation.

The gyroscope sensors are hard to calibrate, since their calibration offset depends of the sensor’s
temperature, which cannot be observed. The temperature changes slowly as long as the robot
runs, so that it is necessary to redetermine the calibration offset constantly. Therefore, it is
hypothesized that the robot has the same orientation at the beginning and ending of walking
phases while all gyroscope values are collected during each phase. If the robot does not walk,
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Figure 5.2: A typical broken inertia sensor data frame. The broken data was detected and replaced with
its predecessor.

the gyroscope values are collected for one second instead. The average of the collected values
is filtered through a simple one-dimensional Kalman filter and used as offset for the gyroscope
sensor. The collection of gyroscope values is restricted to slow walking speeds and the ground
contact state is used to avoid collecting gyroscope values in unstable situations.

The UKF estimates the orientation of the robot torso (cf. Fig. 5.3) that is represented as three-
dimensional rotation matrix. The change of the rotation of the feet relative to the torso in each
frame is used as process update. The sensor update is derived from the calibrated gyroscope
values. Another sensor update is added from a crude absolute measurement realized under the
assumption that the longer leg of the robot rests evenly on the ground as long as the robot stands
almost upright. In cases in which this assumption is apparently incorrect, the acceleration sensor
is used instead.

It is not only possible to get the orientation from the UKF, but also to get a “filtered” version
of the gyroscope values from the change in orientation. These gyroscope values (including a
calculated z-gyroscope value that is actually missing on the Nao) are written into the Filtered-
SensorData that contains corresponding values for all readings in the representation SensorData.

5.1.5 Inertia Matrix

The InertiaMatrix describes the transformation from the projection of the middle of both feet on
the ground up to the position of the inertia board within the robot torso. The transformation
is represented as Pose3D. Additionally, the InertiaMatrix contains the change of the position of
the inertia board including odometry. Hence, the InertiaMatrix is used by the WalkingEngine for
estimating the odometry offset. The CameraMatrix within the Cognition process is based on the
InertiaMatrix.

To calculate the InertiaMatrix the vector of each foot from ground to the torso (fl and fr) is
calculated by rotating the vector from torso to each foot (tl and tr), which can be calculated
using the kinematic chain, according to the estimated rotation (cf. Sect. 5.1.4), represented as
rotation matrix R.
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Figure 5.3: The difference between the estimated pitch angle angleY and the pitch angle rawAngleY
provided by the inertia board.

fl = −R · tl (5.2)
fr = −R · tr (5.3)

The next step is to calculate the span between both feet (from left to right) by using fl and fr:

s = fr − fl (5.4)

Now it is possible to calculate the translation part of the inertia matrix pim by using the longer
leg and the constant offset h that describes the position of the inertia board within the torso.
The rotation part is already known since it is equal to R.

pim = R · h+

{
s/2 + fl if (fl)z > (fr)z
−s/2 + fr otherwise

(5.5)

The change of the position of the inertia position is determined by using the inverted inertia
matrix of the previous frame and concatenating the odometry offset, which was calculated by
using the change of the span between both feet and the change of the ground foot’s rotation,
and the new inertia matrix.

5.2 Motion Control

The B-Human motion control system generates all kinds of motions needed to play soccer with
a robot. They are split into the different type of motions Walking, Standing and SpecialActions.
The walking motion and a corresponding stand are dynamically generated by the WalkingEngine
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(cf. Sect. 5.2.3). All further motions that are created by static joint angle patterns, are provided
by the module SpecialActions (cf. Sect. 5.2.4). Both modules generate joint angles. The Walkin-
gEngine provides the WalkingEngineOutput and the WalkingEngineStandOutput. The module
SpecialActions provides the SpecialActionsOutput. According to the MotionRequest the Motion-
Selector (cf. Sect. 5.2.1) calculates which motions to execute and how to interpolate between
different motions while switching from one to another. This information is provided in the Mo-
tionSelection. If necessary, both modules calculate their joint data and the MotionCombinator
(cf. Sect. 5.2.5) combines these according to the MotionSeletion. The MotionCombinator provides
the JointRequest, OdometryData, and MotionInfo.

5.2.1 Motion Selection

While playing soccer with a robot it is necessary to execute different motions. To have smooth
transitions between these motions, they are interpolated while switching from one to another.

The MotionSelector determines which motion to execute, taking into account not to interrupt a
motion in an unstable situation. To achieve this, the modules WalkingEngine and SpecialActions
that actually generate the motions both provide information about when it is possible to leave
the motion they generate. In addition, some motions have a higher priority than others, e. g.
stand-up motions. These are executed immediately and it is not possible to leave the motion
before it finished.

If the MotionRequest requires switching from one motion to another and when it is possible to
switch the motion, the MotionSelector calculates interpolation ratios for the motion currently
executed and the target motion. Both motions are generated and the resulting joint angles are
combined within the MotionCombinator (cf. Sect. 5.2.5).

5.2.2 Head Motions

Besides the motion of the body (arms and legs), the head motion is handled separately. In
contrast to last year’s code this task is encapsulated within a separate module HeadMotionEngine
for two reasons: on one hand the walking engine manipulates the center of mass, therefore it is
necessary to know the joint angles, and hence the mass distribution of the head before execution
in order to compensate for head movements, on the other hand the module smoothens the head
movement by limiting the speed as well as the maximum angular acceleration of the head.

The module takes the HeadMotionRequest generated within behavior control, and produces the
HeadJointRequest.

5.2.3 Walking and Standing

An essential precondition for biped locomotion is to have a stable system for moving the Zero
Moment Point (ZMP) from one foot to the other. Prior approaches by B-Human achieved this
by using static trajectories for foot positions relative to the robot torso. The movement into
the walking direction was also modeled with the shape and parameters of trajectories. This
approach has the underlying disadvantage that it omits the position of the head, arms and legs,
where some limbs are even completely independent from the walk itself. Since these limbs have
an influence on the ZMP position, they should be taken into account. Especially, since the head
of the Nao weighs about 400g, which is almost 10% of the total body weight.

The center of mass (CoM) of the body plays an important role in the generation of the movement
for the alternating support leg. Hence, it makes sense to concentrate on the CoM position for
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the movement generation. The WalkingEngine does not use trajectories for foot positions relative
to the torso any longer but for foot positions relative to the CoM instead. The foot positions
relative to the CoM and the stance of the other body parts are used for determining foot positions
relative to the torso that move the CoM to the desired point. The foot positions relative to the
torso allow using inverse kinematics (cf. Sect. 5.2.3.4) for the generation of joint angles.

The MotionSelection provides the command to either stand, walk into a defined direction with
defined speed, or walk to a position relative to the robot to the WalkingEngine. In all three cases,
the joint angles for the stand are initially created as WalkingEngineStandOutput. Additionally,
when the robot shall move, step sizes for the foot-shifting of the upcoming half-step are calculated
continuously. The stand and the step sizes allow creating joint angles that are provided as
WalkingEngineOutput. Besides the joint angles, the WalkingEngineOutput contains additional
information (e. g. speed, speed limits, odometry offset, walking phase position, . . . ) about the
current walk.

Before the creation of walking motions starts, a stance (the stand) that will be used as basis
for the foot joint angles at every time of the walking motion is required. This stance is called S
and it is created from a foot position relative to the torso using inverse kinematics. S is mirror-
symmetrically to x-z-plane of the robot’s coordinate system. For the temporal orientation, a
phase (pphase) that runs from 0 to (excluding) 1 and repeats permanently, is used. The phase
can be separated into two half-phases, in every half-phase of which another support leg is used
and the other foot can be lifted up. The size of each half-step is determined at the beginning of
each half-phase.

The shifting of the feet is separated into the “shift”- and “transfer”-phases. Both phases last
one half-phase, run sequentially and are transposed for both feet. Within the “shift”-phase, the
foot is lifted (“lift”-phase) and moved (“move”-phase) to another place on the ground, so that
the foot is completely shifted at the end of the phase. The foot shifting is subtracted from the
foot position within the “transfer”-phase and also subtracted from the other foot position until
this foot is shifted (cf. Fig. 5.8). This alone creates a motion that already looks like a walking
motion. But the desired CoM movement is still missing.

So the foot positions relative to the torso (plRel and prRel) are calculated as follows:

plRel =

{
ol + slLift · tlLift + sl · tlMove − sr · (1− tlMove) · tl if pphase < 0.5
ol + slLift · tlLift + sl · (1− tr) if pphase ≥ 0.5

(5.6)

prRel =

{
or + srLift · trLift + sr · trMove − sl · (1− trMove) · tr if pphase ≥ 0.5
or + srLift · trLift + sr · (1− tl) if pphase < 0.5

(5.7)

ol and or are the foot origin positions. slLift and srLift are the total offsets used for lifting either
the left or the right leg. sl and sr are the current step sizes. tlLift and trLift are parameterized
trajectories that are used for the foot lifting. They are parameterized with the beginning (xl)
and the duration (yl) (cf. Fig. 5.4) of the “lift”-phase. tlMove and trMove are used for adding
the step sizes. They are parameterized with the beginning (xm) and the duration (ym) of the
“move”-phase (cf. Fig. 5.5). tl and tr are shifted cosine shapes used for subtracting the step
sizes (cf. Fig. 5.6). The trajectories are defined as follows:

tlLift =

{
1−cos((2·pphase−xl)/yl·2π)

2 if 2 · pphase > xl ∧ 2 · pphase < xl + yl
0 otherwise

(5.8)

trLift =

{
1−cos((2·pphase−1−xl)/yl·2π)

2 if 2 · pphase − 1 > xl ∧ 2 · pphase − 1 < xl + yl
0 otherwise

(5.9)
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tlMove =


1−cos((2·pphase−xm)/ym·π)

2 if 2 · pphase > xm ∧ 2 · pphase < xm + ym
1 if 2 · pphase ≥ xm + ym ∧ 2 · pphase < 1
0 otherwise

(5.10)

trMove =


1−cos((2·pphase−1−xm)/ym·π)

2 if 2 · pphase − 1 > xm ∧ 2 · pphase − 1 < xm + ym
1 if 2 · pphase − 1 ≥ xm + ym ∧ 2 · pphase − 1 < 1
0 otherwise

(5.11)

tl =

{
1−cos(2·pphase·π)

2 if pphase < 0.5
0 otherwise

(5.12)

tr =

{
1−cos(2·pphase·π)

2 if pphase ≥ 0.5
0 otherwise

(5.13)
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Figure 5.4: The trajectory tlLift that is used for foot lifting. trLift is similar to tlLift except that it is
shifted one half-phase to the right.

The CoM movement has to be performed along the y-axis as well as in walking direction. The
CoM is already moving in walking direction by foot shifting, but this CoM movement does not
allow walking with a speed that meets our needs. Also, a CoM movement along the z-axis
is useful. First of all, the foot positions relative to the CoM are determined by using the foot
positions relative to the CoM of stance S and adding the value of a trajectory to the y-coordinate
of these positions. Since the calculated foot positions are relative to the CoM, the rotation of
the body that can be added with another trajectory should be considered for the calculation of
the foot positions. The CoM movement in x-direction is calculated with the help of the step
sizes of the currently performed half-steps.

If any kind of body and foot rotations and CoM-lifting along the z-axis are ignored, the desired
foot positions relative to the CoM (plCom and prCom) can be calculated as follows:

plCom =

{
−cS + ss · tcom − sl·tlin−sr·(1−tlin)

2 + ol if pphase < 0.5
prCom − prRel + plRel otherwise

(5.14)
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Figure 5.5: The trajectory tlMove that is used for adding step sizes. trMove is similar to tlMove except
that it is shifted one half-phase to the right.
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Figure 5.6: The trajectory tl that is used for subtracting step sizes. tr is similar to tl except that it is
shifted one half-phase to the right.

prCom =

{
−cS + ss · tcom − sr·tlin−sl·(1−tlin)

2 + or if pphase ≥ 0.5
plCom − plRel + prRel otherwise

(5.15)

cS is the offset to the CoM relative to the torso of the stance S. ss is the vector that describes
the amplitude of the CoM movement along the y-axis. tcom is the parameterized trajectory
of the CoM movement. Therefore, a sine (s(p)), square root of sine (r(p)) and a linear (l(p))
component are merged according to the ratios xc (for s(p)), yc (for r(p)) and zc (for l(p)) (cf.
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Fig. 5.7). tcom is defined as:

tcom =
xc · s(pphase) + yc · r(pphase) + zc · l(pphase)

xc + yc + zc
(5.16)

s(p) = sin(2π · p) (5.17)

r(p) =
√
|sin(2π · p)| · sgn(sin(2π · p)) (5.18)

l(p) =


4 · p if p < 0.25
2− 4 · p if p ≥ 0.25 ∧ p < 0.75
4 · p− 4 if p ≥ 0.75

(5.19)

-1
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 0  0.2  0.4  0.6  0.8  1
pphase

tcom
s(pphase)
r(pphase)
l(pphase)

Figure 5.7: The trajectory tcom that is used for the CoM movement along the y-axis. It is a composition
of s(pphase), r(pphase) and l(pphase).

tlin is a simple linear trajectory used for moving the CoM into the walking direction.

tlin =

{
2 · pphase if pphase < 0.5
2 · pphase − 1 if pphase ≥ 0.5

(5.20)

Based on the desired foot positions relative to the CoM another offset is calculated and added to
the already calculated foot positions relative to the torso (plRel and prRel) to achieve the desired
foot positions relative to the CoM with coordinates relative to the torso. For the calculation of
the additional offset, the fact that the desired CoM position does not change that much within
two cycles is exploited, because the offset that was determined in the previous frame is used
first. So, given the current leg, arm and head stance and the offset of the previous frame, some
foot positions relative to the CoM are determined. The difference between these foot positions
and the desired foot positions is added to the old offset to get the new one. The resulting foot
positions relative to the CoM are not precise, but the error is pretty small.

The additional offset (enew) can be calculated using the old offset (eold) as follows:

enew =
plRel − plCom + prRel − prCom

2
− ceold,plRel,prRel

(5.21)
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Figure 5.8: Illustration of the foot shifting within three half-phases from a top-down view. At first, the
robot stands (a)) and then it walks two half-steps to the front (b) and c)). The support leg (left leg at
a)) changes in b) and c). Between a) and b), the step size sr is added to the right foot position. Between
b) and c), sr is subtracted from the right and left foot positions, so that the body moves forwards.
Additionally, the new offset sr + sl is added to the left foot position. The visualized CoM is the desired
CoM position, which differs a lot from the “center of body”. So an additional offset has to be added to
both foot positions, to move the CoM to the desired position.

ceold,plRel,prRel
is the CoM offset relative to the torso given the old offset, the new foot stance,

and the stance of the other limbs.

Finally, plRel−enew andprRel−enew are the positions used for creating the joint angles, because:

plRel − cenew,plRel,prRel
− enew ≈ plCom (5.22)

prRel − cenew,plRel,prRel
− enew ≈ prCom (5.23)

Although former B-Human walking engines [19] could only be invoked by walking speed and
direction, the current WalkingEngine allows to set a walking target by using the “target” entry
within the MotionRequest representation. If a target was set that differs from zero, the Walkin-
gEngine tries to walk as fast as possible to the target specified until it is reached. Therefore,
the odometry of the steps executed are reduced form the walking target and the step sizes are
calculated according to the distance of the target. The target can be changed at any time while
the robot is walking. When the target shall not change any longer and the target that was set
at last shall be reached, “target” within the MotionRequest representation has to be set to zero.
To prematurely stop walking, the target can be replaced with another one or any speed can be
set.

5.2.3.1 Balancing

To react on unexpected events and for stabilizing the walk in general, balancing is required.
Therefore, the WalkingEngine supports different balancing methods. Most of them are simple
p-controllers. The error that is used as input for the controllers is solely determined from the
angles of the torso that were estimated by the SensorFilter module (cf. Sect. 5.1.4), and expected
angles. The delay between the measured and the desired CoM positions is taken into account
by buffering and restoring the desired foot positions and body rotation angles. The different
kinds of balancing are:
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CoM Balancing. The CoM balancer works by adding an offset to the desired foot positions
(plCom and prCom). Therefore, the error between the measured and desired foot positions
has to be determined, so that the controller can add an offset to these positions according
to the determined error. The error is calculated by taking the difference between the
desired foot positions and the same positions rotated according to rotation error.

Rotation Balancing. Besides CoM Balancing, it is also possible to balance with the body
and/or foot rotation. Therefore, angles depending on the rotation error can be added to the
target foot rotations or can be used for calculating the target foot positions and rotations.
This affects the CoM position, so that the offset computation that is used for moving the
foot positions relative to the CoM might compensate the balancing impact. So this kind
of balancing probably makes only sense when it is combined with CoM Balancing.

Phase Balancing. Balancing by modifying the walking phase is another possibility. Therefore,
the measured x-angle, the expected x-angle and the current walking phase position are
used to determine a measured phase position. The measured position allows calculating the
error between the measured and actual phase position. This error can be used for adding
an offset to the current phase position. When the phase position changes in this manner,
the buffered desired foot positions and body rotations have to be adjusted, because the
modified phase position affects the desired foot positions and body rotations of the past.

Step-Size Balancing. Step-size balancing is the last supported kind of balancing. It works
by increasing or decreasing the step size during the execution of half-steps according to
the foot position error that was already used for CoM Balancing. Applied step-size
balancing has the disadvantage that the predicted odometry offset becomes imprecise.
This is a serious drawback, when the robot tries to precisely walk behind the ball in order
to prepare a shot. Therefore, this kind of balancing can be switch off in the MotionRequest
by activating the “pedantic” walking mode.

5.2.3.2 Parameters

The WalkingEngine comes along with a lot of required parameters that are read from the
file walking.cfg. They can also be modified by using the commands get/set for the mod-
ule:WalkingEngine:parameters modifier. This section gives a brief overview of these parameters.
Parameters describing lengths are interpreted in mm, speeds in mm

s and rotations in radians.

stepDuration. The duration of a step (two half-steps) in ms.

stepLift. A height added to each half-step size.

footOrigin. Coordinates relative to the torso for the left and right feet that are used as origin
for standing and walking.

footOriginRotation. Rotations added to each foot.

footCenter. The position of the foot center relative to the ankle point. Changing this value
may affect the calculation of rotation movements. However, leaving these values zero
already works quite well.

footRotation. An additional foot rotation around the x-axis according to the sine of the walk-
ing phase.
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legHardness. The hardness for all leg servomotors (except legLeft5 and legRight5) that
which overwrites the default values declared in jointHardness.cfg.

leg5Hardness. The hardness for legLeft5 and legRight5. Experiments showed that reducing
this value does not lead to disadvantages in any cases. [11]

bodyOriginTilt. The desired rotation of the body around the y-axis.

bodyRotation. A rotation around the y-axis added to the body according to the sine of the
walking phase.

armOriginRotation. The angles for armLeft0 and armRight0 (y) and armLeft1 and
armRight2 (x).

armMoveRotation. Values that are added to the arm rotation according to the performed
steps.

coMShift. The amplitude of the CoM along the y-axis.

coMLift. A height added to the desired CoM position to generate a rising CoM depending on
the lifting of the foot.

coMShiftShape. The parameters xc, yc and zc of the trajectory used for the CoM position
along the y-axis.

coMSpeedOffset. An additional offset as factor of the step size added to the desired CoM
position.

coMAccelerationOffset. Not implemented.

coMTransferRatio. The ratio that defines how far the CoM has moved into the walking
direction in the moment the support leg changes. The value 0.5 causes the smoothest
CoM movement into the walking direction at constant speed.

liftOffset. The height used for foot lifting.

liftPhases. The beginning (xl) and duration (yl) of the “lift”-phase as ratios of the half-phase.

movePhases. The beginning (xm) and duration (yl) of the “move”-phase in ratios of the half-
phase.

maxSpeed. The maximum speed allowed. Speeds exceeding this maximum are cropped down.

maxBackwardSpeed. The maximum speed allowed in x-direction used for backwards speeds.

maxDashSpeed. The maximum speed allowed for speed vectors with only a single component.

maxSpeedChanged. The maximum of acceleration performed in mm
s2

. Deceleration is not
limited.

maxSpeedEllipsoidClipping. The kind of speed clipping used. If this value is true, the
requested speed is cropped through the three-dimensional ellipse defined by the maximum
speeds, preserving the ratio of speed components. If it is false, a rectangle is used instead.

measuredCoMGain. This parameter allows modeling the difference between the desired and
the actual body rotation around the x-axis while walking. The measured rotation is scaled
with this value before it is used for determining the rotation error.
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measuredCoMDelay. The delay between setting and measuring servomotor angles. It is about
80 ms on the Nao.

balanceStep. A factor for the step-size controller.

balanceNextStep. A factor for adopting the step size offset, added through the step-size
controller, to the size of the next half-step.

balanceCoM. The p-factors for the CoM controller.

balancePhaseAcceleration. The p-factor for positive phase controlling.

balancePhaseDeceleration. The p-factor for negative phase controlling.

balanceBodyRotation. The p-factors for the body rotation controller.

balanceFootRotation. The p-factors for the foot rotation controller.

balanceArm. The p-factors for some funny looking controlling with the arm stance.

balanceMaxInstability. The maximum instability allowed. If this value is exceeded, the
WalkingEngine stops walking and enforces a stand.

balanceMaxInstabilityStandTime. The duration in ms declaring, how long the Walkin-
gEngine stops walking when the balanceMaxInstability was exceeded.

balanceAirFoot. Declares whether the foot rotation balancing is applied on the lifted foot.

balancePhaseOld. Another p-factor for a phase controller that uses another (older) method
for calculating the error. The other phase controller is inactive if this value is nonzero.

odometryScale. Some factors for scaling the calculated odometry offset.

odometryUseInertiaMatrix. Declares whether the odometry offset is calculated by using
the InertiaMatrix or by using the desired step size. The former method should be more
accurate.

5.2.3.3 Parameter Optimization

Since it may require a lot of effort to find good parameters, the application of optimiza-
tion algorithms for this purpose is very popular. Therefore, the B-Human WalkingEngine
module supports basic parameter optimization using a simple Particle Swarm Optimization
(PSO) algorithm [3]. The WalkingEngine::initOptimization() method within the Walkin-
gEngine source code initializes the parameter vector including minimum and maximum val-
ues. The WalkingEngine::updateOptimization() method applies suggested parameter values
that are produced by the PSO algorithm. The optimization can be started by using the mod-
ule:WalkingEngine:optimize debug response. When this debug response is active, the Walkin-
gEngine adopts a set of new parameters (using the updateOptimization method) each time a
new walking session is invoked. After 5 seconds, the WalkingEngine stops walking and evaluates
the walking parameters last used according to the instability that was measured using the sum
of the rotation errors within the previous seconds. When the walk stops, the robot can be
repositioned on the field. Because of the ground contact detection, the robot will not restart
walking until it stands on the ground again. Besides the optimize debug response, another
debug response called module:WalkingEngine:continuousOptimize exists, which causes a similar
behavior, but instead of stopping walking, the walking parameters are changed on the fly.
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To optimize parameters for a simple forward walk, activate the debug response and set the
MotionRequest to the desired speed. For instance:

dr module:WalkingEngine:optimize
set representation:MotionRequest { motion = walk; specialActionRequest = {

specialAction = playDead; mirror = false; }; walkRequest = { speed = {
rotation = 0; translation = { x = 200; y = 0; }; }; target = { rotation = 0;
translation = { x = 0; y = 0; }; }; pedantic = false; }; }

The best evaluated parameter vector of the optimization can be requested by using the following
command:

get module:WalkingEngine:bestParameters

But doing an effective optimization may require some modifications of the WalkingEngine to
choose some parameters and their value range and to customize the duration of each run.

The parameter optimization was used to find optimal parameters for the alternating support
legs that are mainly effected by bodyRotation and coMShift. So these two parameters were
optimized while the robot was walking on the spot. The results, which were different for each
robot, were averaged and rounded to keep a single set of parameters. This resulting parameter
set (the values in walking.cfg) was used at RoboCup 2009.

5.2.3.4 Inverse Kinematic

Solving the inverse kinematics problem analytically for the Nao is not straightforward because
of two special circumstances:

• The axes of the hip yaw joints are rotated by 45 degrees.

• These joints are also mechanically connected among both legs, i. e., they are driven by a
single servo motor.

The target of the feet is given as homogenous transformation matrices, i. e., matrices containing
the rotation and the translation of the foot in the coordinate system of the torso. To explain
our solution we use the following convention: A transformation matrix that transforms a point
pA given in coordinates of coordinate system A to the same point pB in coordinate system B is
named A2B, so that pB = A2B · pA. Hence the transformation matrix that describes the foot
position relative to the torso is Foot2Torso that is given as input. The coordinate frames used
can are depicted in Fig. 5.2.3.4.

The position is given relative to the torso, i. e., more specifically relative to the center point
between the intersection points of the axes of the hip joints. So first of all the position relative
to the hip is needed1. This is a simple translation along the y-axis2

Foot2Hip = Transy

(
ldist

2

)
· Foot2Torso (5.24)

1The computation is described for one leg. Of course, it can be applied to the other leg as well.
2The elementary homogenous transformation matrices for rotation and translation are noted as

Rot<axis>(angle) resp. Trans<axis>(translation).
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Torso Hip HipOrthogonal

Thigh Foot

Figure 5.9: Visualization of coordinate frames used in the inverse kinematic. Red = x-axis, green =
y-axis, blue = z-axis.

with ldist = distance between legs. Now the first problem is solved by describing the position
in a coordinate system rotated by 45 degrees, so that the axes of the hip joints can be seen
as orthogonal. This is achieved by a rotation around the x-axis of the hip by 45 degrees or π

4
radians.

Foot2HipOrthogonal = Rotx(
π

4
) · Foot2Hip (5.25)

Because of the nature of the kinematic chain, this transformation is inverted. Then the trans-
lational part of the transformation is solely determined by the last three joints and hence they
can be computed directly.

HipOrthogonal2Foot = Foot2HipOrthogonal−1 (5.26)

The limbs of the leg and the knee form a triangle, in which an edge equals the length of the
translation vector of HipOrthogonal2Foot (ltrans). Because all three edges of this triangle are
known (the other two edges, the lengths of the limbs, are fix properties of the Nao) the angles of
the triangle can be computed using the law of cosines (5.27). Knowing that the angle enclosed
by the limbs corresponds to the knee joint, that joint angle is computed by equation (5.28).

c2 = a2 + b2 − 2 · a · b · cos γ (5.27)
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γ = arccos
lupperLeg

2 + llowerLeg
2 − ltrans2

2 · lupperLeg · llowerLeg
(5.28)

Because γ represents an interior angle and the knee joint is being streched in the zero-position,
the resulting angle is computed by

δknee = π − γ (5.29)

Additionally the angle opposite to the upper leg has to be computed, because it corresponds to
the foot pitch joint:

δfootP itch1 = arccos
llowerLeg

2 + ltrans
2 − lupperLeg

2

2 · llowerLeg · ltrans
(5.30)

Now the foot pitch and roll joints combined with the triangle form a kind of pan-tilt-unit. Their
joints can be computed from the translation vector using atan2.3

δfootP itch2 = atan2(x,
√
y2 + z2) (5.31)

δfootRoll = atan2(y, z) (5.32)

where x, y, z are the components of the translation of Foot2HipOrthogonal. As the foot pitch
angle is composed by two parts it is computed as the sum of its parts.

δfootP itch = δfootP itch1 + δfootP itch2 (5.33)

After the last three joints of the kinematic chain (viewed from the torso) are determined, the
remaining three joints that form the hip can be computed. The joint angles can be extracted
from the rotation matrix of the hip that can be computed by multiplications of transformation
matrices. For this purpose another coordinate frame Thigh is introduced that is located at the
end of the upper leg, viewed from the foot. The rotation matrix for extracting the joint angles
is contained in HipOrthogonal2Thigh that can be computed by

HipOrthogonal2Thigh = Thigh2Foot−1 ·HipOrthogonal2Foot (5.34)

where Thigh2Foot can be computed by following the kinematic chain from foot to thigh.

Thigh2Foot = Rotx(δfootRoll)·Roty(δfootP itch)·Transz(llowerLeg)·Roty(δknee)·Transz(lupperLeg)
(5.35)

To understand the computation of those joint angles, the rotation matrix produced by the known
order of hip joints (yaw (z), roll (x), pitch (y)) is constructed (the matrix is noted abbreviated,
e. g. cx means cos δx).

RotHip = Rotz(δz) ·Rotx(δx) ·Roty(δy) =

 cycz − sxsysz −cxsz czsy + cysxsz
czsxsy + cysz cxcz −cyczsx + sysz
−cxsy sx cxcy

 (5.36)

3atan2(y, x) is defined as in the C standard library, returning the angle between the x-axis and the point (x, y).
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The angle δx can obviously be computed by arcsin r21.4 The extraction of δy and δz is more
complicated, they must be computed using two entries of the matrix, which can be easily seen
by some transformation:

−r01

r11
=

cos δx · sin δz
cos δx · cos δz

=
sin δz
cos δz

= tan δz (5.37)

Now δz and, using the same approach, δy can be computed by

δz = δhipY aw = atan2(−r01, r11) (5.38)

δy = δhipP itch = atan2(−r20, r22) (5.39)

At last the rotation by 45 degrees (cf. eq. 5.25) has to be compensated in joint space.

δhipRoll = δx −
π

4
(5.40)

Now all joints are computed. This computation is done for both legs, assuming that there is an
independent hip yaw joint for each leg.

The computation described above can lead to different resulting values for the hip yaw joints.
From these two joint values a single resulting value is determined, in which the interface allows
to set the ratio. This is necessary, because if the values differ, only one leg can realize the
desired target, and normally the support leg is supposed to reach the target position exactly.
With this fixed hip joint angle the leg joints are computed again. To face the six parameters
with the same number of degrees of freedom, a virtual foot yaw joint is introduced, which holds
the positioning error provoked by the fixed hip joint angle. The decision to introduce a foot yaw
joint was mainly taken because an error in this (virtual) joint has a low impact on the stability
of the robot, whereas other joints (e. g. foot pitch or roll) have a huge impact on stability. The
computation is almost the same as described above, with the difference that, caused by the
fixed hip joint angle and the additional virtual foot joint, the computation is done the other
way around, because the imagined pan-tilt-unit is now fixed at the hip and the universal joint
is represented by the foot.

This approach can be realized without any numerical solution, which has the advantage of a
constant and low computation time and a mathematically exact solution instead of an approxi-
mation.

Based on this inverse kinematic solver the module InverseKinematicEngine was built. It is con-
trolled via simulator console (get inverseKinematic) and just sets the joint angles according
to the given position. Among other things it is useful for creating special actions (cf. sect. 5.2.4),
because the feet can be set to build a perfect plane, and to see the impact of specific relative
foot positions on the robot, e. g., when developing walking motions.

5.2.4 Special Actions

Special actions are hardcoded motions that are provided by the module SpecialActions. By
executing a special action, different target joint values are sent consecutively, allowing the robot
to perform actions such as kicking or standing up. Those motions are defined in .mof files that

4The first index, zero based, denotes the row, the second index denotes the column of the rotation matrix.
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are located in the folder Src/Modules/MotionControl/mof. A .mof file starts with the unique
name of the special action, followed by the label start. The following lines represent sets of joint
angles, separated by a whitespace. The order of the joints is as follows: head (pan, tilt), left arm
(shoulder pitch/roll, elbow yaw/roll), right arm (shoulder pitch/roll, elbow yaw/roll), left leg
(hip yaw-pitch/roll/pitch, knee pitch, ankle pitch/roll), and right leg (hip yaw-pitch5/roll/pitch,
knee pitch, ankle pitch/roll). A ‘*’ does not change the angle of the joint (keeping, e. g., the
joint angles set by the head motion control), a ‘–’ deactivates the joint. Each line ends with two
more values. The first decides whether the target angles will be set immediately (the value is 0),
forcing the robot to move its joints as fast as possible, or whether the angles will be reached by
interpolating between the current and target angles (the value is 1). The time this interpolation
takes is read from the last value in the line. It is given in milliseconds. If the values are not
interpolated, the robot will set and hold the values for that amount of time instead.

It is also possible to change the hardness of the joints during the execution of a special action,
which can be useful, e. g., to achieve a stronger kick while not using the maximum hardness
as default. This is done by a line starting with the keyword hardness, followed by a value
between 0 and 100 for each joint (in the same sequence as for specifying actual joint angles). In
the file Config/hardness.cfg default values are specified. If only the hardness of certain joints
should be changed, the others can be set to ‘*’. This will cause those joints to use the default
hardness. After all joint hardness values, the time has to be specified that it will take to reach
the new hardness values. This interpolation time runs in parallel to the timing resulting from
the commands that define target joint angles. Therefore, the hardness values defined will not
be reached if another hardness command is reached before the interpolation time has elapsed.

Transitions are conditional statements. If the currently selected special action is equal to the
first parameter, the special action given in the second parameter will be executed next, starting
at the position of the label specified as last parameter. Note that the currently selected special
action may differ from the currently executed one, because the execution costs time. Transitions
allow defining constraints such as to switch from A to B, C has to be executed first. There is a
wildcard condition allMotions that is true for all currently selected special actions. There also
is a special action called extern that allows leaving the module SpecialActions, e. g., to continue
with walking. extern.mof is also the entry point to the special action module. Therefore, all
special actions have to have an entry in that file to be executable. A special action is executed
line by line, until a transition is found the condition of which is fulfilled. Hence, the last line of
each .mof file contains an unconditional transition to extern.
An example of a special action:

motion_id = stand

label start

"HP HT AL0 AL1 AL2 AL3 AR0 AR1 AR2 AR3 LL0 LL1 LL2 LL3 LL4 LL5 LR0 LR1 LR2 LR3 LR4 LR5 Int Dur

* * 0 -50 -2 -40 0 -50 -2 -40 -6 -1 -43 92 -48 0 -6 -1 -43 92 -48 -1 1 100

transition allMotions extern start

To receive proper odometry data for special actions, they have to be manually set in the file
Config/odometry.cfg. It can be specified whether the robot moves at all during the execution of
the special action, and if yes, how it has moved after completing the special action, or whether
it moves continuously in a certain direction while executing the special action. It can also
be specified whether the motion is stable, i. e., whether the camera position can be calculated
correctly during the execution of the special action. Several modules in the process Cognition
will ignore new data while an unstable motion is executed to protect the world model from being
impaired by unrealistic measurements.

5Ignored
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5.2.5 Motion Combination

The MotionCombinator requires the interpolation ratios of each motion in execution that are
provided by the module MotionSelector (cf. Sect. 5.2.1). Using these ratios, the joint angles
generated by the WalkingEngine and the SpecialActions module are merged together. The ratios
are interpolated linearly. The interpolation time between different motions depends on the
requested target motion.

The MotionCombinator merges the joint angles together to the final target joint angles. If there
is no need to interpolate between different motions, the MotionCombinator simply copies the
target joint angles from the active motion source into the final joint request. Additionally it fills
the representations MotionInfo and OdometryData that contain data such as the current position
in the walk cycle, whether the motion is stable, and the odometry position.

71



Chapter 6

Behavior Control
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Figure 6.1: Behavior Control module graph
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The part of the B-Human system that makes the decisions is called Behavior Control. The
behavior was modeled using the Extensible Agent Behavior Specification Language (XABSL)
[18]. The module provides the representations MotionRequest, HeadMotionRequest, LEDRequest
and SoundRequest (cf. Fig. 6.1).

This chapter gives a short overview of XABSL and how it is used in a simple way. Afterwards,
it is shown how to set up a new behavior. Both issues will be clarified by an example. Finally,
the behavior used by B-Human at the RoboCup 2009 is explained in detail.

6.1 XABSL

XABSL is a programming language that is designed to model an agent behavior. To work with
it, it is important to know its general structure. In XABSL following base elements are used:
options, states, decisions, input symbols, and output symbols.
A behavior consists of options that are arranged in an option graph. There is a single option to
start the whole behavior from which all other options are called; this is the root of the option
graph. Each option describes a specific part of the behavior such as a skill or a head motion of
the robot, or it combines such basic features. For this description each option consists of several
states. Each option starts with its initial state. Inside a state, an action can be executed and
optionally a decision can be made. An action can consist either of the modification of output
symbols (for example head motion requests or walk requests), or a call of another option. A
decision comprises conditions and transitions the latter of which are changes of the current state
within the same option.

This structure is clarified with an example:

option example_option
{
initial state first_state
{
decision
{
if(boolean_expression)
goto second_state;

else if(boolean_expression)
goto third_state;

else
stay;

}
action
{
output_symbol = input_symbol * 3

}
}

state second_state
{
action
{
secondOption();

}
}

state third_state
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{
decision
{
if(boolean_expression)
goto first_state;

else
stay;

}
action
{
output_symbol = input_symbol < 0 ? 10 : 50;

}
}

}

A special element within an option is the common decision. It consists of conditions which
are checked all the time, independently of the current state, and it is always positioned at the
beginning of an option. Decisions within states are only “else-branches” of the common decision,
because they are only evaluated if no common decision is satisfied.

option example_common_decision
{
common decision
{
if(boolean_expression)
goto first_state;

else if(boolean_expression)
goto second_state;

}
initial state first_state
{
decision
{
else if(boolean_expression)
goto second_state;

else
stay;

}
action
{
output_symbol = input_symbol * 3

}
}

state second_state
{
decision
{
else if(boolean_expression)
goto first_state;

else
stay;

}
action
{
output_symbol = input_symbol < 0 ? 10 : 50;
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}
}

}

Options can have parameters. The parameters have to be defined in a sub-option. Then these
symbols can be passed from a superior option to the sub-option. Within the sub-option they
can be used similar to input symbols by using an @ in front of the parameter name:

option example_superior_option
{
initial state first_state
{
action
{
example_suboption(first_parameter = first_input_symbol, second_parameter = 140);

}
}

}

option example_suboption
{

float @first_parameter [-3000..3000] "mm";
float @second_parameter [-2000..2000] "mm";

initial state first_state
{
action
{
output_symbol = @first_parameter - @second_parameter;

}
}

}

It is possible to define a target state within an option. When the option arrives at this target
state the superior option has the possibility to query this status and to react on it. It is queried
by the special symbol action done:

option example_superior_option
{
initial state first_state
{
decision
{

if(action_done)
goto second_state;

}
action
{

example_suboption();
}

}
state second_state
{
action
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{
output_symbol = input_symbol’’;

}
}

}

option example_suboption
{

initial state first_state
{
decision
{
if(boolean_expression)
goto second_state;

else
stay;

}
action
{

output_symbol = @first_parameter - @second_parameter;
}

}

target state second_state
{
action
{
}

}
}

Input and output symbols are needed to create actions and decisions within a state. Input
symbols are used for the decisions and output symbols are used for the actions. Actions may
only consist of symbols and simple arithmetic operations. Other expressions cannot be used in
XABSL. All symbols are implemented in the actual robot code and range from math symbols
to specific robot symbols.

6.2 Setting up a new Behavior

To set up a new behavior it is necessary to create a new folder in Src/Modules/BehaviorControl.
This folder will contain the new behavior. To structure the behavior it is advisable to create
some subfolder, such as folders for Options and Symbols (this is not mandatory). The option
folder can be divided into subfolders such as skills, head motions, or roles. Inside the folder
Symbols, all symbols shall be placed. To create symbols, a header file, a source file, and a
Xabsl file are necessary. The files shall be used for groups of symbols such as head symbols, ball
symbols, and so on. In this way it is easier to locate symbols later.

After creating all symbols needed it is necessary to create a file called agents.xabsl in the
behavior folder, where all options needed are listed. This file is also important to get the
behavior started later. Next to the agents.xabsl the following files have to be available in the
newly created behavior folder: <name>BehaviorControl.cpp, <name>BehaviorControl.h, and
<name>BehaviorControlBase.h. To understand how these files work, look at the comments
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in the corresponding files available in the BH2009BehaviorControl folder. It is important to
include all symbols needed within the <name>BehaviorControl.cpp. After these files were
created correctly, the <name>BehaviorControl.h has to be added to the CognitionModules.h
that can be found in Src/Modules.

After this preparation, it is possible to write new options by creating the corresponding .xabsl
files in the Options folder (or subfolders). An option consists of a name and all states needed
that call each other or another option. Each new option has to be added to the file agents.xabsl,
otherwise it cannot be used. When all options are implemented, one or more agents have
to be created at the end of agents.xabsl that consists of a name and the option the agent
shall start with. In the file Locations/<location>/behavior.cfg it will be selected, which agent
will be started. At last it is necessary to modify the file Cognition.cpp that can be found in
Src/Processes/CMD. In the method handleMessage the own behavior has to be added with a
logical OR operator.

6.3 Behavior Used at Robocup 2009

In the following the behavior used at Robocup 2009 will be described, the option graph of which
is shown in Fig. 6.2. It can be split into several parts which are explained hierarchically.

The root option of the whole behavior is the option pre-initial that is used to suppress the
immediate stand up after starting the software. When the chest button is pressed the first time
after starting the software, the robot stands up (this mechanism is suppressed for a simulated
robot). Afterwards the option start soccer becomes active that is the actual root option of the
behavior. It executes the options head control, body control, display control, button interface,
penalty control and role selector in parallel.

The button interface is used to switch between the different game states by using the chest
button and foot bumpers of the robot. The role selector sets the dynamically corresponding to
the current game situation. According to the game state and the dynamic role, the body control
is used to invoke the corresponding options (e. g. the initial, ready, or set state and the different
roles such as striker, supporter, defender, and keeper). The head control executes a specific head
control mode. The option penalty control is responsible for the correct behavior relating to the
penalty mode.

There is one more option display control that is used to get an overview of the running behavior.

All options including the several roles are described in detail in the following sections.

6.3.1 Button Interface

This option includes several decisions, one for each possible change of the game state (initial,
playing, penalized) (cf. Fig. 6.3). These game states can be changed through the chest button.

Besides the game state changes, the button interface includes decisions for changing the team
color and the kickoff team. These can be changed by pressing the left or the right foot button,
respectively. All changes are signalized acoustically.

Next to the button interface, the game state can also be controlled by the official GameController
that overwrites all settings made via the button interface. The button interface is implemented
according to the rules of 2009.
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initial penalized playing

Figure 6.3: Button Interface

6.3.2 Body Control

The body control is used to invoke options that let the robot act. The execution of these options
is dependent on the game states and the current role.

There are following reachable states:

state initial. In this state the robot looks straight ahead without any further action.

state ready. In the ready state the robots walk to their legal kickoff positions. At the beginning
of this state the robots stand and look around to improve the localization. Afterwards the
robots begin to walk to their positions. Each robot has another target position depending
on its role. Moreover, the target positions differ for the attacking and defending team.

Because the robots can be placed by the robot handlers anywhere on the field, the target
positions depend on the current positions of the individual robots and on the positions of
their teammates. Specifically, the striker has the higher priority in reaching its position
quickly, which means that its decision only depends on its own position on the field whereas
the supporter chooses its target position depending on the striker’s target, when the other
team has kickoff. In case of kickoff, the supporter also chooses its target according to its
own position, because the striker walks to the center of the field. The purpose is to prevent
collisions generally and to distribute the robots preferably homogenously, i. e. it would be
a disadvantage if all robots stood on the same side.

Besides this, obstacle avoidance and the fastest possible positioning are still important.
The obstacle avoidance will be described in detail in Sect. 6.3.5.1. Fast positioning is
achieved by a kind of path planning, in this case by simply handling large distances
in another way than small distances to the target point. This is realized by turning
around first and walking straight forward if the target point is far away and walking
omni-directionally, when coming closer to the target.

state set. While the set state is active the robot stands on its position and looks around (more
details can be found in Sect. 6.3.3).

state playing. When the game state changes to playing, the robots begin to play soccer. There-
fore the behavior executed is dependent on the robots’ roles, e. g., the supporter executes
another behavior than the striker.

state finished. The half-time or the game is over and the robot simply stops and looks straight
ahead.

state penalized. When a robot is penalized, it looks down without any further action until it
is unpenalized again.
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6.3.3 Head Control

The head control option controls the requests for the angles of the head joints, and there-
fore the direction in which the robot looks. In our behavior it is an independent option that
runs in parallel to the body control option. In general, it takes requests from body control,
and executes predefined motion patterns. The requests are passed from body control via the
head.control mode symbol. As long as the symbol does not change, the selected head control
option is executed continuously. The problem with designing and choosing head controls is that
the visual information provided by our vision system is required from many different software
modules. GoalPerceptor, BallPerceptor, and LinePerceptor provide input for the modeling mod-
ules (Sect. 4.2) that provide localization and the ball position. However, providing images from
all relevant areas on the field is often mutually exclusive, i. e., when the ball is located directly
in front of the robot’s feet, it cannot simultaneously look at the goal. In addition to only being
able to gather some information at a time, speed constraints come into play, too. The solution
to move the head around very fast to look at important areas more often proves impractical,
since not only the images become blurred above a certain motion speed, but also because due
to the weight of the head a high motion speed has a negative influence on the robot’s walk,
too. With these known limitations, we had to design many head control options for a variety of
needs. Commonly used head controls are described below.

look at ball and goal and around. This option is used when there is no need for a special-
ized one. It looks at all important parts of the field to localize and play soccer. In a cycle,
it looks at the ball three times, once at one goal, and to its left and right in the remaining
time. If the ball is not where it is supposed to be at its calculated position, a scan of the
area in front of the robot is performed, to reduce the need to switch the current behavior
to search for ball (Sect. 6.3.5.1).

look at ball. Just looks at the estimated ball position. This is used when the robot is near the
ball and aligns to the opponent goal and needs to find the perfect position for a kick. To
reach such a position, we want to collect information about the ball position over a longer
period of time, which this head control provides.

look scan area in front. Scans the area in front of the robot and looks for the ball. This is
used to quickly look whether the ball is somewhere in front of the robot, after the ball was
not where it was supposed to be, and when the robot returns to the field after a penalty.

look up and down. Moves the head up and down in a continuous motion while panning to
the left or right by 35 degrees. This option is used when the robot turns around to search
for the ball. The left or right pan is equal to the turning direction, so that the robot
actually looks ahead in the direction it turns to. This gives it enough time to stop turning
and to walk around the ball without turning back if necessary.

6.3.4 Role Selector

The role selector is used to change the roles of the robots on the field dynamically. The available
roles are striker, supporter, defender, and keeper (and undefined in the case that a robot is
penalized). In general, the role selection is dependent on the number of field players, their current
roles, and the current game situation. Additionally, the role selection is generally different for
the ready state and the playing state (for the initial state and the set state, the role selection of
the playing state is taken, which does not matter, because the robots are only standing anyway).
As the role selection is mainly important for the playing state, it is described first.
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Naturally, a robot that is penalized must be excluded from the role selection, and hence it gets
the special role undefined independently of its environment. For the remaining robots the role
selection mainly depends on the number of the robots that are currently on the field, which can
be any number between zero and three. This variation can occur because of broken or penalized
robots.

If no robot is on the field, no role selection needs to be done.

For the case that only one robot is on the field, this robot always gets the striker’s role, indepen-
dently of the native role and the game situation, because the striker is the only offensive role,
whereas all other roles are defensive and particularly inactive until the ball enters their defense
area.1

If two robots are on the field, generally a more defensive tactic is chosen. One player takes
a defensive role (defender or keeper) whereas the other player becomes striker. The decision
about the defensive role depends on whether the robot with player number 1 (per definition the
keeper) is on the field. If this robot is available, this robot becomes keeper, and the other robot
becomes striker. Otherwise the roles defender and striker are assigned based on their position
on the field. The player that is closer to the own goal gets the defender’s role and the other
robot is striker.

The last possible case is that all three robots are on the field, which get the roles striker,
supporter, and keeper. Whether this is an offensive or defensive tactic depends on the currently
executed behavior of the supporter (cf. Sect. 6.3.5.2). Naturally the robot with player number
1 is keeper, whereas the supporter’s and striker’s role are assigned to the other robots. The
decision about which robot becomes striker respectively supporter depends on their distance
to the ball, i. e. the closer robot becomes striker. To suppress an oscillation of those two roles
when both robots have almost the same distance to the ball, a hysteresis is introduced, i. e.,
the roles only change if the ball distances differ more than a specific tolerance. If the difference
of the ball distances of both robots is within this tolerance, the roles do not change. If, for
any reason, both robots are strikers and the mentioned difference is within the tolerance (e. g.
synchronization problems, etc.), then the native roles of the robots determine the dynamic role.
This is done to prevent a collision of two strikers trying to walk towards the ball. Additionally,
there is a case where both field players are striker, namely if the previous striker has not seen
the ball for a long time but assumes the ball close to itself. To prevent a game stuck because no
teammate is allowed to walk towards the ball, the supporter also becomes striker in this case.

Besides the role selection for the playing state there is a special handling for the ready state.
This role selection is only based on the native roles and the number of players on the field. The
player with player number 1 is always the keeper, even if it is the only player on the field, because
the keeper has a defined kickoff position. If only one field player2 is available (no matter whether
there also is a keeper or not), this player is striker. If there are two field players, the assignment
of roles depends on whether a keeper is on the field or not. If the keeper is on the field, the field
players are striker and supporter, otherwise the field players are striker and defender. In both
cases the striker’s role is determined by the native role, the other robot gets the remaining role.

6.3.5 Different Roles

In the following sections the behavior of the different roles is described in detail.

1According to this description the supporter is neither offensive nor defensive, and can only exist along with
the striker and the keeper.

2In this case field player is meant to be any player except the keeper (the player with number 1).
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6.3.5.1 Striker

The main task of the striker is to go to the ball and to kick it into the opponent goal. To achieve
this simple-sounding target several situations need to be taken into account. All situations will
be discussed in the following separate sections.

search for ball is executed when the ball has not been seen for a certain time. Right before
its execution, the head control has done a full scan of the area in front of the robot, to rule
out the possibility that the ball is there. Therefore the option starts directly with turning
the robot around to search for the ball. It turns in the direction where the ball was seen
last, and the head control looks ahead in the turning direction with a 35 degrees pan,
while looking up and down continuously. After a whole turn the robot enters a patrolling
mode. In this state, it walks between some positions and searches for the ball from there,
as a clear view on the ball may be obstructed by other robots, but it may be visible from
other positions (cf. Fig. 6.4). Certain roles do not patrol though, i. e., the keeper just turns
around and does not leave its goal unguarded, while the defender scans the area in front
of it for some time and then turns around. As some roles may not see the ball for longer
periods of time, e. g., the keeper because the ball is hard to detect in the opponent half of
the field, they rely on the position communicated by teammates and keep their position
instead of searching the ball.

Figure 6.4: Patrol paths for striker and supporter roles. Robots at the end of the lines depict stop
positions.

kickoff. Another special situation is the kickoff. When the own team has kickoff, it is not
allowed to score a goal until the ball has left the center circle. This means that a normal
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“go-to-ball-and-kick” must not be executed, instead another behavior needs to be used.
The kickoff behavior differs for different number of robots on the field. When only one or
two robots are on the field, the striker executes a short diagonal kick to get the ball out of
the center circle. In this case the foot used for the kick is only dependent on the position
of the ball. The diagonal kick is executed in this situation, because there is no supporting
player on the field who could receive a pass (only keeper or defender, or no other robot is
on the field).

In the other case, when all three robots are on the field, a sideways kick is executed by
the striker. The direction of the kick is dependent on the supporter’s position so that the
striker always passes towards the supporter. In the case that the ball does not leave the
center circle for any reason the striker walks towards the ball and kicks it again either
diagonally or sideways until it leaves the center circle.

go to middle. The striker’s behavior contains a special handling for the case that the ball is
near the own penalty area or when the keeper walks towards the ball. In this case, the
striker walks to the middle line of the field. The striker turns towards the field which
means that the robot is turned to the left side when it stands on the right and vice versa.
This special behavior has two reasons: On the one hand, collisions of the striker with its
teammates are avoided. On the other hand the striker has a better starting position for
the expected following situation (the keeper should kick the ball away from the own goal
into the opponent half).

dribble. Normally, the robot does not dribble during the game, because aligning to a kick and
kicking is more effective and fast enough in most cases. The only situation when the striker
dribbles is, when the ball is lying on the opponent goal line. In this case the robot aligns
behind the ball and dribbles it into the goal by walking against the ball.

pass before goal. When the robot and the ball are near the opponent goal but the angle
between the goalposts is too small to hit the goal with sufficiently high probability, the
robot does not kick directly towards the goal. Instead, it performs a slow kick to the side
towards the center of the field. For the case that a supporter is on the field, it receives
this pass. Otherwise, the striker walks to the ball to kick directly, under the assumption
that the angle between the goalposts is large enough then.

kick to side. Besides the situations mentioned above, in which a slow sideways kick is used,
there is one more situation, when this kick is performed, namely when the striker reaches
the ball and has no possibility to kick forward towards the opponent goal because an
obstacle such as another robot is detected right in front of it. In this case the robot has
different possibilities to react. If three robots are on field the striker executes a sideways
kick towards the supporter.

If only one or two robots are on the field, the position of the striker determines the further
action. When the robot is near the side border of the field it executes a slow sideways kick
towards the center of the field. This kick is slower than the sideways kick used for passing
because there is no team player receiving a pass. The striker has to walk after the ball,
which should not take too much time (otherwise the ball could be lost to the opponent).
When the striker resides near the center of the field it executes a diagonal kick towards the
free direction. When the obstacle is shown more on the right the striker kicks diagonally
to the left and vice versa.

go around. It is possible that the striker encounters an obstacle on its way to the ball. In this
case it needs to go around the obstacle without touching it. The obstacles are measured
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by an ultrasonic sensor (for details see Sect. 4.2.3). When the distance to an obstacle is
very small, the striker walks sideways until it is possible to pass it. The direction in which
the striker avoids depends on the measurements of the obstacle and the target position
(normally the position of the ball).

First of all a preference for the walking direction is determined only based on the mea-
surements on the left and on the right side without distinguishing the different sectors on
one side. For this preferred side, it is checked whether the obstacle is detected outside.
If so, the robot must walk to the opposite side not to touch the obstacle. Otherwise if
the obstacle is detected more centrally, the target position determines the side to walk to.
This means, that there is a possibility that the robot walks to the side where the obstacle
is detected assuming that there is enough free space left. The decision on the direction for
avoidance is only done once to prevent an oscillation.

The avoidance of the striker is regulated. The more the obstacle is detected in the center,
the more the robot walks sideways. The more the obstacle gets to the side, the more the
robot walks forward. Hence the striker can walk closely diagonally around an obstacle.

go to ball. When no special situation is active (such as kickoff, obstacle avoidance, or behavior
near the goal) and the ball is not directly in front of the feet of the striker, it walks towards
the ball, which is done in different ways for different situations. If the ball and goal are in
front of the robot it walks behind the ball to be able to perform a kick forward towards
the goal. To reach the ball in a preferably short time it first turns and then walks straight
towards the ball when the distance to it is quite high. When the distance becomes smaller
the robot begins walking omni-directionally towards a position behind the ball oriented
towards the goal with the ball directly in front of its feet (similar to the positioning in
state ready).

The other possibility is that the striker’s position is between ball and goal or on a level
with the ball, so that it normally needed to walk around the ball completely. In this case
the robot walks next to the ball instead of behind the ball. The side the robot walks to
is dependent on the angle to the ball and the goal. The “path-planning” is similar to the
situation to get behind the ball, except that the target position is oriented towards the
ball and in a right angle to the opponent goal.

kick sidewards. The sideways kick is used, when the striker stands in a right angle towards
the opponent goal and directly in front of the ball (cf. go to ball). In this case, it shall
execute a strong sideways kick. It is possible that the robot needs to walk closer to the
ball to improve its position. When the ball is directly in front of the robot it looks at the
ball for a short time to make sure that the ball is lying in front of it, and then it kicks
towards the opponent goal.

kick. After the robot walked behind the ball, it needs to execute a forward kick. It might be
necessary to improve the position, because either the ball does not lie centered in front of
one foot or the robot is not precisely oriented towards the opponent goal, which is done
within this option.

Because it is not always possible to get the ball lying precisely centered in front of one
foot, two different kicks are used. One kick is used when the ball lies correctly in front of
one foot, whereas the other kick is used when the ball lies more outside of the center of
the foot (this kick is weaker compared to the other one).

84



6.3. BEHAVIOR USED AT ROBOCUP 2009 B-Human 2009

6.3.5.2 Supporter

The supporter’s role is used only when there are three robots on the field. Its task is to support
its team members. There are two different modes for the supporter, an active and a passive
one. The supporter is active when the ball is on the opponent side of the field. In that case the
striker is supported, otherwise the keeper.

The following two situations relate to both, the active and the passive supporter.

kickoff behavior. During the own kickoff the supporter waits outside the center circle for the
striker’s pass. The side depends on where the supporter was placed before the kickoff.
When the kickoff is over, i. e. the ball has left the center circle, the usual behavior of the
supporter starts.

wait for keeper. When the keeper starts walking towards the ball to kick it out, the supporter
walks to a point between the center line and the penalty area to get out of the way. After
the keeper has kicked out the ball, the supporter switches to the active or passive behavior
again.

Active supporter

The active supporter is constantly trying to reach a position that enables the robot to
score a goal, if the striker itself has no chance and has to pass the ball.

go to good position. Most of the time the supporter tries to go to a position relative to the
striker. That position is behind the striker with an offset to the side the striker is not at.
The intention is that if the striker decides to pass the ball in the supporter’s direction,
there is a good chance to score a goal.

To avoid an oscillation, the supporter stays on the same side when the striker is close to
the middle. Fig. 6.5 illustrates the position of the active supporter next to the striker.

wait. To avoid a collision, the supporter compares its own position to the one of the striker.
If the distance falls below a certain threshold, the robot stops. If the distance gets even
smaller, i. e. the striker is walking towards the supporter, the supporter walks in the
opposite direction.

go to good position in front of opponent goal. When the ball is close to one of the oppo-
nent corners of the field, the supporter stops following the striker. Instead the robot walks
to a point in front of the opponent goal and waits for a pass from the striker. Fig. 6.6
illustrates the position of the active supporter in front of the opponent goal.

Passive Supporter

The passive supporter is responsible for supporting the keeper defending the goal.
There are two different situations the passive supporter can be in. Either the keeper is inside
the goal or it was placed at the center line and is on its way back to the goal.

align to team mate. If the keeper is inside its goal the supporter aligns to it, depending on
the keeper’s position. If the keeper is on the right side of the goal, the supporter tries to
cover the left side, otherwise the right side of the goal. Fig. 6.7 illustrates the position of
the passive supporter next to the keeper.
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Figure 6.5: Positioning of the active supporter next to the striker

Figure 6.6: Positioning of the active supporter in front of the opponent goal
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Figure 6.7: Positioning of the passive supporter next to the keeper

align to ball. If the keeper is not inside its goal, the supporter positions itself between the ball
and its own goal. The position should prevent from shots that go straight towards the
goal. When the keeper has returned to the goal, the supporter starts aligning to its team
mate again.

6.3.5.3 Defender

The defender’s role is only used when the keeper is out of the field. This role is necessary to
have a field player near the own goal to be able to defend it when only two robots are on the
field. In general the defender has a fixed x-position on the field, which means that the robot only
walks right and left on an imaginary line (cf. Fig. 6.8). The position on that line is dependent
on the position of the ball because the robot shall always be located between ball and goal to
cover as much as possible of the goal when a kick of the opponent team is executed. However,
the positioning of the defender is not its only task. The positioning only takes place if the ball
is not near or behind the defender and consequently not near the own goal. If the ball was not
seen for a long time, the robot searches for the ball (cf. search for ball). Moreover the robot’s
task is to walk to the ball if it is lying near or behind the imaginary line mentioned. The aim of
walking to the ball is to kick it away from the own half of the field towards the opponent goal.

On the way to the ball it is possible that the defender encounters an obstacle such as another
robot. In this case, the defender needs to walk around the obstacle. For this task the same
obstacle avoidance as for the striker is used (cf. Sect. 6.3.5.1). The “go-to-ball-and-kick”-behavior
is also borrowed from the striker, as it has been proven to be very quick and reliable. This also
includes a quite precise alignment towards the goal that is necessary because it would be a
disadvantage to simply kick the ball away, as the ball would probably leave the field and would
be put back again closer to the own goal.
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If an obstacle is detected right in front of the defender when it wants to kick, it executes a
similar behavior as the striker does in this situation when no supporter is available, i. e. it will
execute a diagonal kick or a kick to the side instead of kicking straight forward. This is useful
in this situation, because otherwise the ball could bounce from the obstacle and roll behind the
defender towards the own goal.

Figure 6.8: Imaginary lines for position of defender and keeper

6.3.5.4 Keeper

The keeper is the only field player that is allowed to walk into the own penalty area and whose
main task is to defend the own goal. Hence the keeper mainly stays inside the own penalty
area. There are only two situations in which the robot leaves the own goal. Either the keeper
is taken out of the field or it walks towards the ball to kick it away. When the robot was taken
from the field and put back on the middle line, the keeper walks directly towards its own goal.
Naturally, the time to reach the own goal should take as less time as possible. To achieve this,
the robot walks straight forward to the own goal as long as the distance is large, and starts
walking omni-directionally when it comes closer to the target to reach the desired orientation.
This speed-up compensates the disadvantage that the robot is probably directed away from the
ball. In this case the keeper avoids obstacles in the same way as the striker and defender.

The second situation when the robot leaves the own goal is when the ball is close to the own goal
and has stopped moving. In this case the robot walks towards the ball in order to kick it away.
The kind of walking to the ball is the same as for the striker and defender, with the difference
that the keeper does not align with the same accuracy in order to kick the ball away from the
own goal as soon as possible. The keeper does not avoid obstacles in this case. It only tries to
walk towards the ball without paying attention to obstacles. The advantage is that the keeper
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does not clear the way towards the goal for the opponent, additionally even if it touches another
robot and is penalized, it will be put back on the field without the obligatory 30-seconds-penalty.

In any other situation the robot will not leave its position within the own penalty area, and it
executes different actions according to different situations. Normally the keeper aligns on an
imaginary horizontal line inside the penalty area to position between the ball and the center
of the goal to cover a preferably large part of it (cf. Fig. 6.8). This behavior is similar to
the defender (cf. Sect. 6.3.5.3), but in contrast the keeper sits down when it has reached a
good position (cf. Fig. 6.9). This is useful to cover much more of the own goal compared to a
standing robot. That sitting position is executed until the ball position changes significantly so
that the keeper needs to change its position. The stand-up or sit-down motion is not executed
immediately after recognizing a ball position outside the “tolerance region”: when the ball
position changes the robot checks the new position of the ball again after a short time period
and then decides whether it stands up or stays sitting down and vice versa. This is necessary
to avoid an unwanted stand-up-sit-down cycle, because of a short period of uncertainty in the
ball position or self-localization.

There is another special handling for the case that the robot recognizes the ball moving fast
towards it: if the robot is already sitting, it stays in this position, even if it assumes that the
ball will pass. B-Human did not implement a diving motion, because of the possible damage
to the robot. Since the ball is not always rolling straight, covering a large part of the goal is a
better strategy than standing up, even if it seems that the ball will pass by.

Another special situation for the keeper is when it has not seen the ball for a long period of time.
In this case, the reaction of the keeper is dependent on the team mates. When the own field
players assume the ball near the own goal, or they have not seen it either for a longer period
of time, the keeper starts searching for the ball (cf. Sect. 6.3.5.1). In all other cases, the keeper
walks to the center of the goal on the imaginary line and sits down assuming that the ball is not
close to the own goal.

Figure 6.9: Sitting position of the keeper
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6.3.6 Penalty Control

Penalty control is responsible to stop the robot’s movement while penalized. It is the last option
to be called within start soccer. Therefore, it can overwrite the movement requests made by
the body and head control options. It is implemented as a separate option (and not separately
in body control and head control) to have a single place easily accessible to change penalty
behavior. Basically, when the robot is not penalized, this option does nothing. When the robot
is penalized, it sets the motion request to stand and lets the robot look down. In the first
two seconds after the robot is unpenalized, it keeps control over the robot’s movement and lets
it walk straight forward to get back onto the field. More importantly, the robot looks at a
predefined angle of 45 degrees to its left. This is done to help localize the robot, as the particles
in the self-locator are evenly distributed at the two possible reentry points on the field, and if
the goal color on one side can be determined, the robot knows exactly on which side of the field
the robot was put back into the game. After that, the robot’s head is moved from left to right
to quickly check whether the ball can be seen in front of it.

6.3.7 Display Control

The LEDs of the robot are used to show information about the internal state of the robot, which
is useful when it comes to debugging the code.

6.3.7.1 Right eye

Color Role Additional information
Blue Keeper blinks if the ball comes up to the keeper
White Defender
Green Supporter blinks if the supporter is active
Red Striker

6.3.7.2 Left eye

Color Information
White Ball was seen
Green Goal was seen
Red Ball and goal were seen

6.3.7.3 Torso (chest button)

Color State
Off Initial, Finished
Blue Ready
Green Playing
Yellow Set
Red Penalized

6.3.7.4 Feet

• The right foot shows the team color. If the team is currently the red team the color of the
LED is red, otherwise blue.
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• The left foot shows whether the team has kickoff or not. If the team has kickoff the color
of the LED is white, otherwise it is switched off.

6.3.7.5 Ears

• The right ear shows the battery level of the robot. For each 10% of battery loss, an LED
is switched off. Additionally the LEDs that are still on start blinking when the distance
to a detected obstacle is less than 30 cm.

• The left ear shows the number of players connected by the wireless. If no LED is on,
no player, if half of the LEDs are on one player, and if all LEDs are on two players are
connected to the current robot.
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Chapter 7

Challenges

For the RoboCup 2009 Technical Challenge, B-Human has developed approaches for all three
sub-challenges. Although we did not score in the Any Ball Challenge as well as in the Passing
Challenge, both implementations are almost complete and accomplished the tasks many times
during tests on different fields and using different start configurations.

7.1 Any Ball Challenge

The aim of the Any Ball Challenge is to manipulate five unknown balls different from the orange
standard ball. For this challenge, we had to adapt the modules we are already using to recognize
a ball and to develop a new module that enables the robot to keep track of more than one ball
on the field.

A major problem of the challenge is that the color and the texture of the ball are not known in
advance. Thus, we adapted the RegionAnalyzer and the BallPerceptor not to work on white and
orange anymore but on the color class NONE that includes all colors except for green, blue,
and yellow. Thereby, we do not need to specify any real color class to lines or balls. This is the
smallest color table we can work with (cf. Fig. 7.1).

Another problem was the management of five different balls on the field without losing track of
them. In this challenge, there is only one moving robot on the field, therefore we can assume that
a ball does not move until we kick or dribble it. For this reason, we decided to track the balls’
positions only by their absolute position on the field without using a more complex modeling
as the one used in the ParticleFilterBallLocator. Whenever the AnyBallPerceptor detects one or
more balls in the image, these balls are added to a list of all known balls. If there already is a
ball close to the absolute position for the seen ball in the list of all known balls, the new ball
is not added but the existing ball information is updated instead. This list of detected balls is
managed by the AnyBallSelector. The AnyBallSelector also selects the ball that is reported to the
behavior as the next ball to shoot. This selection is done by calculating the distance between
the robot and each ball and selecting the nearest one.

Our tests showed that our self-localization is precise and stable enough to rely on it, so the only
major problem in identifying balls by their absolute position on the field and maintaining a list
of seen balls were false positives and shot balls. To overcome these problems, the AnyBallSelector
deletes balls after a certain period of time of not being seen and deletes a ball immediately if
the behavior reports that this ball was shot. Thus, the AnyBallSelector is forced to select a new
ball for the behavior after the previous one was shot.
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Figure 7.1: Example for the AnyBallPerceptor: possible balls (marked by orange crosses) and accepted
balls (marked by orange circles) are shown in the left image. The right image results from a full color
segmentation based on a rudimentary color table.

Since the rules specify that the balls are distributed within an area of 3 m × 2 m around the
center line, the robot’s initial behavior is to follow that line. In case of recognizing a ball, the
robot walks towards it and kicks it in the direction of the goal that is nearest to it. After each
kick, the robot will return to the center line and continue to follow it (including a turn at the
end of line), unless it sees another ball.

7.2 Passing Challenge

The intention of the passing challenge is to encourage teams to develop passing and catching
skills. Besides that, a robot who participates in this challenge has to follow some rules. First
of all, the robots are not allowed entering the middle area of the field that is marked by two
invisible lines. These lines are parallel to the middle line and tangential to the center circle.
The second rule is that none of the participating robots is allowed leaving the field during the
challenge. As the two robots are set to different penalty areas for the start, these rules implicate
that the robots have to stay in their half of the field. The last rule is about achieving points:
The team obtains a point if one of the robots passes the ball over the middle area and the other
robot touches it. When the third pass was played, the challenge is finished successfully.

With that in mind, the behavior for the passing challenge has been divided into two roles: the
passive robot that waits for the ball to roll along and the active robot that goes to the ball and
passes it to the other robot. Both robots are passive players at the beginning, because when a
ball has never been seen before or has not been seen for a very long time, none of the robots
should go to a ball position that is probably wrong.

As each robot starts as a passive player that has never seen the ball each robot starts with
turning and searching for it. If there is a ball on the field, one of the robots should discover it
shortly after the beginning. The recognition of the ball causes the robot to change its behavior
depending on its own position and the position of the ball. The position of the ball is known to
the player when the ball was seen by itself or by the other robot (that can communicate it). If
one the robots decides that the ball is not within its own half of the field, its role stays passive.
This causes the robot to approach a probably good receiving point and to turn itself towards the
direction from which the ball is expected. The behavior of the robot switches back to turning
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Figure 7.2: The passing challenge behavior option graph

and searching for the ball if the ball was not seen for more than six seconds.

The searching for the ball is an adapted version of the one used by the soccer behavior. It causes
the robot to scan the area in front of it faster as it does in the original version and to rotate to
find the ball if it was not seen for a while. As the desire is to find the ball fast, the direction of
the rotation is derived from the last known position of the ball.

In the case that one robot discovers the ball within its own half of the field, its role switches
to become the active player. In this role, the robot has to approach the ball and to pass it to
the other robot. As this challenge only takes three minutes, the robot should arrive at the ball
already in the desired passing angle to waste no time for adjustments. For this purpose, we
implemented a go-to-ball behavior that gets the desired passing angle and the position of the
ball as input and approaches the ball in a bow if the direct way leads to a wrong passing angle.
When the robot reaches the target position, the ball is passed into the other half of the field.

The current passing action is the key of this challenge because the ball needs to arrive almost
exactly at the position where the other robot is located. If the pass is too long, the ball possibly
leaves the field, which is one of the conditions to fail the challenge. If the pass is too short and
the ball stays in the middle area – that no robot is allowed to enter – the challenge is also over.
This implies that the passing action depends on the ball position as well as of the position of
the active player. For that reason, an early version of a dynamical motion engine that allows a
parameterization of the kicking force, was used.

In the case of a successful pass, which means no fail conditions were satisfied, the role of the
active player switches back to the passive role, when the robot discovers the ball in the other
half of the field or if the ball was not seen by the robot for more than ten seconds. The successful
pass causes the other robot, the receiver, to switch its role to active because the ball has to be
in its own half of the field. As the robot approaches the ball and passes the ball back to the
other half of the field a point is scored. This cycle lasts until the challenge ends.

The skeletal structure of this behavior is based on the default soccer behavior to obtain the
official button control, the LED assignment and the reaction to the GameController.

7.3 Localization with Obstacle Avoidance Challenge

For this challenge, no new modules have been implemented since both necessary core capabilities
have already been developed for the soccer competition (cf. Sect. 4.2.1 and Sect. 4.2.3). Except
for a single parameter change making the obstacle model more sensitive to definitely avoid
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a) b)

Figure 7.3: Localization with Obstacle Avoidance Challenge: a) State machine describing the option
for walking and obstacle avoidance. b) B-Human accomplishing the challenge at RoboCup 2009, the
numbered crosses denote the target positions in visiting order.

overlooking any robot, no changes of these components have been necessary.

The overall behavior for this challenge has been specified as follows: initially, the robot turns
on the spot and scans its environment for ten seconds. After this period of time, it is very likely
to have a reasonable pose estimate for almost every possible start configuration. Given the
robot’s position and the three points to navigate to, the shortest metric path (not including any
necessary rotations) is computed. This path remains fixed during the whole challenge to avoid
any behavior instabilities resulting from temporary localization inaccuracies. For walking from
point to point and avoiding obstacles, an option different to the one used in the soccer behavior
had to be implemented, as described in the following paragraph and depicted in Fig. 7.3a. Being
near a target position, the robot slows down and tries to reach the point as precisely as possible;
this phase of improvement is limited to seven seconds to avoid wasting too much time.

To keep all obstacles within the range of the ultrasonic sensors and to move with reasonable
speed, the robot does only walk forward (with slight rotational corrections) and – in case of
huge rotational deviations – turns on the spot. In case of an obstacle at medium distance (less
than 500 mm), the robot tries to avoid it by walking diagonally. If the obstacle is too close to
the robot (less than 350 mm), only sideways motion is allowed anymore. After having passed
the obstacle (i. e. being more than 600 mm away), some additional forward steps are done to
leave it behind. This approach is more time-consuming than the according soccer option but
significantly reduces the risk of any collisions that are allowed in soccer but strongly penalized
in this challenge. The test runs in several different configurations of the challenge setup – most
of them have been much more spacious than the one used at RoboCup 2009 (cf. Fig. 7.3b) –
also showed that time would not be a major problem. Since the approach is reactive and does
not involve any planning, it is of course not capable of leaving any local minima.
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Chapter 8

SimRobot

8.1 Introduction

The B-Human software package uses the physical robotics simulator SimRobot [16, 14] as front
end for software development1. The simulator is not only used for working with simulated
robots, but it also functions as graphical user interface for replaying log files and connecting to
actual robots via LAN or WLAN.

8.2 Scene View

The scene view (cf. Fig. 8.1 right) appears if the scene is opened from the scene graph. The
view can be rotated around two axes, and it supports several mouse operations:

• Left-clicking an object allows dragging it to another position. Robots and the ball can be
moved in that way.

• Left-clicking while pressing the Shift key allows rotating objects around their body centers.

• Select an active robot by double-clicking it. Robots are active if they are defined in the
compound robots in the scene description file (cf. Sect. 8.4).

Robot console commands are sent to the selected robot only (see also the command robot).

8.3 Information Views

In the simulator, information views are used to display debugging output such as debug drawings.
Such output is generated by the robot control program, and it is sent to the simulator via
message queues. The views are interactively created using the console window, or they are
defined in a script file. Since SimRobot is able to simulate more than a single robot, the views
are instantiated separately for each robot. There are nine kinds of views related to information
received from robots: image views, color space views, field views, the Xabsl view, the sensor data
view, the joint data view, plot views, the timing view, and module views. Field, image, and plot

1SimRobot currently becomes revised in preparation for a stand-alone release in 2010. Therefore, the func-
tionality of sensors and actuators that are not used by the models contained in the B-Human software release
cannot be guaranteed.
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Figure 8.1: SimRobot with the tree view on the left and two scene views on the right. The console
window is shown at the bottom.

views display debug drawings or plots received from the robot, whereas the other views visualize
certain color channels, the current color table, specific information about the current state of
the robot’s behavior, its sensor readings, the timing of the modules it executes, or the module
configuration itself. All information views can be selected from the scene graph (cf. Fig. 8.1
left).

8.3.1 Image Views

An image view (cf. left of Fig. 8.2) displays information in the system of coordinates of the
camera image. It is defined by giving it a name and a background image using the console
command vi and by adding debug drawings to the view using the command vid (cf. Sect. 8.5.3).

For instance, the view raw is defined as:

vi image raw
vid raw representation:LinePercept:Image
vid raw representation:BallPercept:Image
vid raw representation:GoalPercept:Image

If color table editing is activated, image views will react to the following mouse commands (cf.
commands ct on and ct off in Sect. 8.5.3):

Left mouse button. The color of the pixel or region selected is added to the currently selected
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Figure 8.2: Image view and field view with several debug drawings

color class. Depending on the current configuration, the neighboring pixels may also be
taken into account and a larger cube may be changed in the color table (cf. commands ct
imageRadius and ct colorSpaceRadius in Sect. 8.5.3). However if a region is selected, the
imageRadius is ignored.

Left mouse button + Shift. If only a single pixel is selected, the color class of that pixel is
chosen as the current color class. It is a shortcut for ct <color> (cf. Sect. 8.5.3). If a
region is selected, all colors of pixels in that region that are not already assigned to a color
class are assigned to the selected color class. Thus all colors in a certain region can be
assigned to a color class without destroying any previous assignments.

Left mouse button + Ctrl. Undoes the previous action. Currently, up to ten steps can be
undone. All commands that modify the color table can be undone, including, e. g., ct clear
and ct load (cf. Sect. 8.5.3).

Left mouse button + Shift + Ctrl. The color of the pixel selected is deleted from its color
class. Depending on the current configuration, the neighboring pixels may also be taken
into account and a larger cube is changed in the color table (cf. commands ct imageRadius
and ct colorSpaceRadius in Sect. 8.5.3). However if a region is selected, the imageRadius
is ignored.

8.3.2 Color Space Views

Color space views visualize image information in 3-D (cf. Fig. 8.3). They can be rotated by
clicking into them with the left mouse button and dragging the mouse afterwards. There are
three kinds of color space views:

Color Table. This view displays the current color table in YCbCr space. Each entry that is
assigned to a certain color class is displayed in a prototypical color. The view is useful
while editing color tables (cf. Fig. 8.3 down right).

Image Color Space. This view displays the distribution of all pixels of an image in a certain
color space (HSI, RGB, TSL, or YCbCr). It can be displayed by selecting the entry all
for a certain color space in the scene graph (cf. Fig. 8.3 top right).
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Figure 8.3: Color channel views, image color space view, and color table view

Image Color Channel. This view displays an image while using a certain color channel as
height information (cf. Fig. 8.3 left).

While the color table view is automatically instantiated for each robot, the other two views have
to be added manually for the camera image or any debug image. For instance, to add a set of
views for the camera image under the name raw, the following command has to be executed:

v3 image raw

8.3.3 Field Views

A field view (cf. right of Fig. 8.2) displays information in the system of coordinates of the soccer
field. It is defined similar to image views. For instance, the view worldState is defined as:

vf worldState
vfd worldState fieldPolygons
vfd worldState fieldLines
vfd worldState module:SelfLocator:samples
vfd worldState representation:RobotPose

# ground truth view layers
vfd worldState representation:GroundTruthRobotPose
# from now, relative to ground truth robot pose
vfd worldState origin:GroundTruthRobotPose
vfd worldState representation:GroundTruthBallModel

# views relative to robot
# from now, relative to estimated robot pose
vfd worldState origin:RobotPose
vfd worldState representation:BallModel
vfd worldState representation:BallPercept:Field
vfd worldState representation:LinePercept:Field
vfd worldState representation:GoalPercept:Field
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Figure 8.4: Xabsl view, sensor data view and joint data view

vfd worldState representation:ObstacleModel
vfd worldState module:ObstacleModelProvider:us
vfd worldState representation:MotionRequest

# back to global coordinates
vfd worldState origin:Reset

Please note that some drawings are relative to the robot rather than relative to the field. There-
fore, special drawings exist (starting with origin: by convention) that change the system of
coordinates for all drawings added afterwards, until the system of coordinates is changed again.

8.3.4 Xabsl View

The Xabsl view is part of the set of views of each robot. It displays information about the robot
behavior currently executed (cf. left view in Fig. reff:simXabslSensorJointData). In addition,
two debug requests have to be sent (cf. Sect. 8.5.3):

# request the behavior symbols once
dr automatedRequests:xabsl:debugSymbols once

# request continuous updates on the current state of the behavior
dr automatedRequests:xabsl:debugMessages

The view can also display the current values of input symbols and output symbols. The symbols
to display are selected using the console commands xis and xos (cf. Sect. 8.5.3).

8.3.5 Sensor Data View

The sensor data view displays all the sensor data taken by the robot, e. g. accelerations, gyro
measurements, pressure readings, and sonar readings (cf. right view in Fig. 8.4). To display this
information, the following debug requests must be sent:
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Figure 8.5: The plot view and the timing view

dr representation:SensorData
dr representation:FilteredSensorData

8.3.6 Joint Data View

Similar to sensor data view the joint data view displays all the joint data taken by the robot,
e. g. requested and measured joint angles, temperature and load (cf. middle view in Fig. 8.4).
To display this information, the following debug requests must be sent:

dr representation:JointRequest
dr representation:JointData

8.3.7 Plot Views

Plot views allow plotting data sent from the robot control program through the macro PLOT
(cf. Fig. 8.5 left). They keep a history of the values sent of a defined size. Several plots can be
displayed in the same plot view in different colors. A plot view is defined by giving it a name
using the console command vp and by adding plots to the view using the command vpd (cf.
Sect. 8.5.3).

For instance, the view on the left side of Figure 8.5 was defined as:

vp accY 200 -1 1
vpd accY module:SensorFilter:accY blue

8.3.8 Timing View

The timing view displays statistics about the speed of certain modules (cf. Fig. 8.5 right). It
shows the minimum, maximum, and average runtime of the execution of a module in milliseconds.
In addition, the average frequency with which the module was executed (in Hz), as well as the
minimum and maximum time difference between two consecutive executions of the module
(in milliseconds) is displayed. All statistics sum up the last 100 invocations of the module.
The timing view only displays information on modules the debug request for sending profiling
information of which was sent, i. e., to display information about the speed of the module
that generates the representation Foo, the console command dr stopwatch:Foo must have been
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Figure 8.6: The module view showing part of the modules in the process Motion

executed. Please note that time measurements are limited to full milliseconds, so the maximum
and minimum execution durations will always be given in this precision. However, the average
can be more precise.

8.3.9 Module Views

Since all the information about the current module configuration can be requested from the
robot control program, it is possible to automatically generate a visual representation. The
graphs such as the one that is shown in Figure 8.6 are generated by the program dot from
the Graphviz package [5] in the background. Modules are displayed as yellow rectangles and
representations are shown as blue ellipses. Representations that are received from another
process are displayed in orange and have a dashed border. If they are missing completely due
to a wrong module configuration, both label and border are displayed in red. The modules
of each process can either be displayed as a whole or separated into the categories that where
specified as the second parameter of the macro MAKE MODULE when they were defined. There is
a module view for the process Cognition and its categories Infrastructure, Perception, Modeling
and BehaviorControl, and one for the process Motion and its categories Infrastructure, Sensing
and MotionControl.

8.4 Scene Description Files

The language of scene description files is RoSiML [6]. In the main .ros files, such as BH2009.ros,
three compounds can be edited:

<Compound name=”robots”>. This compound contains all active robots, i. e. robots for
which processes will be created. So, all robots in this compound will move on their own.
However, each of them will require a lot of computation time.

<Compound name=”extras”>. Below the compound robots, there is the compound extras.
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It contains passive robots, i. e. robots that just stand around, but that are not controlled
by a program. Passive robots can be activated by moving their definition to the compound
robots.

<Compound name=”balls”>. Below that, there is the compound balls. It contains the
balls, i. e. normally a single ball, but it can also contain more of them if necessary, e. g.,
for a technical challenge that involves more than one ball.

A lot of scene description files can be found in Config/Scenes. Please note that there are two
types of scene description files: the ones required to simulate one or more robots (about 3 KB
in size, but they include larger files), and the ones that are sufficient to connect to a real robot
or to replay a log file (about 1 KB in size).

8.5 Console Commands

Console commands can either be directly typed into the console window or they can be executed
from a script file. There are three different kinds of commands. The first kind will typically be
used in a script file that is executed when the simulation is started. The second kind are global
commands that change the state of the whole simulation. The third type is robot commands
that affect currently selected robots only (see command robot to find out how to select robots).

8.5.1 Initialization Commands

sc <name> <a.b.c.d>. Starts a wireless connection to a real robot. The first parameter
defines the name that will be used for the robot. The second parameter specifies the ip
address of the robot. The command will add a new robot to the list of available robots
using name, and it adds a set of views to the scene graph. When the simulation is reset
or the simulator is exited, the connection will be terminated.

sl <name> <file>. Replays a log file. The command will instantiate a complete set of pro-
cesses and views. The processes will be fed with the contents of the log file. The first
parameter of the command defines the name of the virtual robot. The name can be used
in the robot command (see below), and all views of this particular virtual robot will be
identified by this name in the tree view. The second parameter specifies the name and
path of the log file. If no path is given, Config/Logs is used as a default. Otherwise, the
full path is used. .log is the default extension of log files. It will be automatically added
if no extension is given.

When replaying a log file, the replay can be controlled by the command log (see below).
It is even possible to load a different log file during the replay.

su <name> <number>. Starts a UDP team connection to a remote robot with a certain
player number. Such a connection is used to filter all data from the team communication
regarding a certain robot. For instance it is possible to create a field view for the robot
displaying the world model it is sending to its teammates. The first parameter of the
command defines the name of the robot. It can be used in the robot command (see
below), and all views of this particular robot will be identified by this name in the scene
graph. The second parameter defines the number of the robot to listen to. It is required
that the command tc (see below) is executed before this one.
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tc <port> <subnet>. Listens to the team communication on the given UDP port and broad-
casts messages to a certain subnet. This command is the prerequisite for executing the su
command.

8.5.2 Global Commands

call <file>. Executes a script file. A script file contains commands as specified here, one com-
mand per line. The default location for scripts is the directory from which the simulation
scene was started, their default extension is .con.

cls. Clears the console window.

dt off | on. Switches simulation dragging to real-time on or off. Normally, the simulation tries
not to run faster than real-time. Thereby, it also reduces the general computational load
of the computer. However, in some situations it is desirable to execute the simulation as
fast as possible. By default, this option is activated.

echo <text>. Print text into the console window. The command is useful in script files to
print commands that can later be activated manually by pressing the Enter key in the
printed line.

help [<pattern>], ? [<pattern>]. Displays a help text. If a pattern is specified, only those
lines are printed that contain the pattern.

ro stopwatch ( off | <letter> ) | ( sensorData | robotHealth | motionRequest |
linePercept ) ( off | on ). Set a release option sent by team communication. The release
options allow sending commands to a robot running the actual game code. They are used
to toggle switches that decide which additional information is broadcasted by the robot
in the team communication. stopwatch activates time measurements of all stopwatches
in the process Cognition the name of which begin with the letter specified as additional
parameter. If sensorData is active, the robot broadcasts the representation of the same
name, containing the charge level of the battery and the temperature of all joints. How-
ever, this package is rather huge. robotHealth activates sending the RobotHealth package
that contains compact information about the battery, process execution frame rates, and
the highest temperature of all joints. motionRequest sends the motion request currently
executed by the robot. linePercept transmits the LinePercept. Again, this representation
is rather large. Both can be visualized in the field view.

robot ? | all | <name> {<name>}. Selects a robot or a group of robots. The console com-
mands described in the next section are only sent to selected robots. By default, only
the robot that was created or connected last is selected. Using the robot command, this
selection can be changed. Type robot ? to display a list of the names of available robots.
A single simulated robot can also be selected by double-clicking it in the scene view. To
select all robots, type robot all.

st off | on. Switches the simulation of time on or off. Without the simulation of time, all calls
to SystemCall::getCurrentSystemTime() will return the real time of the PC. However
if the simulator runs slower than real-time, the simulated robots will receive less sensor
readings than the real ones. If the simulation of time is switched on, each step of the
simulator will advance the time by 20 ms. Thus, the simulator simulates real-time, but it
is running slower. By default this option is switched off.

# <text>. Comment. Useful in script files.
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8.5.3 Robot Commands

bc <red%> <green%> <blue%>. Defines the background color for 3-D views. The color
is specified in percentages of red, green, and blue intensities.

ci off | on. Switches the calculation of images on or off. The simulation of the robot’s camera
image costs a lot of time, especially if several robots are simulated. In some development
situations, it is better to switch off all low level processing of the robots and to work with
ground truth world states, i. e., world states that are directly delivered by the simulator.
In such cases there is no need to waste processing power by calculating camera images.
Therefore, it can be switched off. However, by default this option is switched on. Note
that this command only has an effect on simulated robots.

ct off | on | undo | <color> | load <file> | save <file> | send [<ms> | off ] | send-
AndWrite | clear [<color>] | shrink [<color>] | grow [<color>] | imageRadius
<number> | colorSpaceRadius <number> | smart [off]. This command controls
editing the current color table. The parameters have the following meaning:

on | off. Activates or deactivates mouse handling in image views. If activated, clicking
into an image view modifies the color table (cf. Sect. 8.3.1). Otherwise, mouse clicks
are ignored.

undo. Undoes the previous change to the color table. Up to ten steps can be undone. All
commands that modify the color table can be undone, including, e. g., ct clear and
ct load.

<color>. Selects the given color as current color class.

( load | save ) <file>. Loads or saves the color table. The default directory is the cur-
rent location. The default extension is .c64.

( clear | shrink | grow ) [<color>]. Clears, grows, or shrinks a certain color class or
all color classes.

send [<ms> | off ] | sendAndWrite. Either sends the current color table to the robot,
or defines the interval in milliseconds after which the color table is sent to the robot
automatically (if it has changed). off deactivates the automatic sending of the color
table. sendAndWrite sends the color table to the robot, which then will write it
permanently on its flash drive.

imageRadius <number>. Defines the size of the region surrounding a pixel that is
clicked on that will be entered into the color table. 0 results in a 1× 1 region, 1 in a
3× 3 region, etc. The default is 0.

colorSpaceRadius <number>. Defines the size of the cube that is set to the current
color class in the color table for each pixel inserted. 0 results in a 1 × 1 × 1 cube, 1
in a 3× 3× 3 cube, etc. The default is 2.

smart [off]. Activates a smart color selection mechanism or deactivates it. This only
affects the behavior when selecting a region of the image by mouse. If the mechanism
is activated, the simulator adds only colors to the color table within a range around
the average color of the selected region. The range can be changed by using the ct
colorSpaceRadius command. The mechanism is on by default.

dr ? [<pattern>] | off | <key> ( off | on | once ). Sends a debug request. B-Human uses
debug requests to switch debug responses on or off at runtime. Type dr ? to get a list
of all available debug requests. The resulting list can be shortened by specifying a search
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pattern after the question mark. Debug responses can be activated permanently or only
once. They are deactivated by default. Several other commands also send debug requests,
e. g., to activate the transmission of debug drawings.

get ? [<pattern>] | <key> [?]. Shows debug data or shows its specification. This command
allows displaying any information that is provided in the robot code via the MODIFY macro.
If one of the strings that are used as first parameter of the MODIFY macro is used as
parameter of this command (the modify key), the related data will be requested from the
robot code and displayed. The output of the command is a valid set command (see below)
that can be changed to modify data on the robot. A question mark directly after the
command (with an optional filter pattern) will list all the modify keys that are available.
A question mark after a modify key will display the type of the associated data structure
rather than the data itself.

jc hide | show | ( motion | [ press | release ] <button> ) <command> ). Sets a joy-
stick command. If the first parameter is a number, it is interpreted as the number of
a joystick button. Legal numbers are between 1 and 32. Any text after this first param-
eter is part of the second parameter. The <command> parameter can contain any legal
script command which will be executed in every frame while the corresponding button is
pressed. Button numbers may be prefixed with press or release to restrict the execution
to the corresponding event. The commands associated with the 26 first buttons can also
be executed by pressing Ctrl+Shift+A. . . Ctrl+Shift+Z on the keyboard. If the first pa-
rameter is motion, the remaining text defines a command that is executed whenever the
readings of the analog joystick change. Within this command, $1. . . $6 can be used as
placeholders for up to six joystick axes. The scaling of the values of these axes is defined
by the command js (see below). If the first parameter is show, any command executed will
also be printed in the console window. hide will switch this feature off again, and hide is
also the default.

js <axis> <speed> <threshold>. Set axis maximum speed and ignore threshold for com-
mand jc motion. axis is the number of the joystick axis to configure (1. . . 6). speed
defines the maximum value for that axis, i. e., the resulting range of values will be
[−speed . . . speed]. The threshold defines a joystick measuring range around zero, in
which the joystick will still be recognized as centered, i. e., the output value will be 0.
The threshold can be set between 0 and 1.

log ? | start | stop | pause | forward | backward | repeat | goto <number> | clear |
( keep | remove ) <message> {<message>} | ( load | save | saveImages [raw])
<file> | cycle | once. The command supports both recording and replaying log files.
The latter is only possible if the current set of robot processes was created using the
initialization command sl (cf. Sect. 8.5.1). The different parameters have the following
meaning:

?. Prints statistics on the messages contained in the current log file.

start | stop. If replaying a log file, starts and stops the replay. Otherwise, the commands
will start and stop the recording.

pause | forward | backward | repeat | goto <number>. The commands are only
accepted while replaying a log file. pause stops the replay without rewinding to
the beginning, forward and backward advance a single step in the respective direc-
tion, and repeat just resends the current message. goto allows jumping to a certain
position in the log file.
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clear | ( keep | remove ) <message>. clear removes all messages from the log file,
while keep and remove only delete a selected subset based on the set of message ids
specified.

( load | save | saveImages [raw]) <file>. These commands load and save the log file
stored in memory. If the filename contains no path, Config/Logs is used as default.
Otherwise, the full path is used. .log is the default extension of log files. It will
be automatically added if no extension is given. The option saveImages saves only
the images from the log file stored in memory to the disk. The default directory is
Config/Images. They will be stored as BMP files containing either RGB or YCbCr
images. The latter is the case if the option raw is specified.

cycle | once. The two commands decide whether the log file is only replayed once or
continuously repeated.

mof. Recompiles all special actions and if successful, the result is sent to the robot.

mr ? [<pattern>] | modules [<pattern>] | save | <representation> ( ? [<pattern>] |
<module> | default | off ). Sends a module request. This command allows selecting the
module that provides a certain representation. If a representation should not be provided
anymore, it can be switched off. Deactivating the provision of a representation is usually
only possible if no other module requires that representation. Otherwise, an error message
is printed and the robot is still using its previous module configuration. Sometimes, it is
desirable to be able to deactivate the provision of a representation without the requirement
to deactivate the provision of all other representations that depend on it. In that case,
the provider of the representation can be set to default. Thus no module updates the
representation and it simply keeps its previous state.

A question mark after the command lists all representations. A question mark after a
representation lists all modules that provide this representation. The parameter modules
lists all modules with their requirements and provisions. All three listings can be filtered
by an optional pattern. save saves the current module configuration to the file modules.cfg
which it was originally loaded from. Note that this usually has not the desired effect,
because the module configuration has already been changed by the start script to be
compatible with the simulator. Therefore, it will not work anymore on a real robot. The
only configuration in which the command makes sense is when communicating with a
remote robot.

msg off | on | log <file>. Switches the output of text messages on or off, or redirects them
to a text file. All processes can send text messages via their message queues to the
console window. As this can disturb entering text into the console window, printing can
be switched off. However, by default text messages are printed. In addition, text messages
can be stored in a log file, even if their output is switched off. The file name has to
be specified after msg log. If the file already exists, it will be replaced. If no path is
given, Config/Logs is used as default. Otherwise, the full path is used. .txt is the default
extension of text log files. It will be automatically added if no extension is given.

mv <x> <y> <z> [<rotx> <roty> <rotz>]. Moves the selected simulated robot to the
given metric position. x, y, and z have to be specified in mm, the rotations have to be
specified in degrees. Note that the origin of the Nao is about 330 mm above the ground,
so z should be 330.

poll. Polls for all available debug requests and debug drawings. Debug requests and debug
drawings are dynamically defined in the robot control program. Before console commands
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that use them can be executed, the simulator must first determine which identifiers exist
in the code that currently runs. Although the acquiring of this information is usually
done automatically, e. g., after the module configuration was changed, there are some
situations in which a manual execution of the command poll is required. For instance if
debug responses or debug drawings are defined inside another debug response, executing
poll is necessary to recognize the new identifiers after the outer debug response has been
activated.

qfr queue | replace | reject | collect <seconds> | save <seconds>. Sends a queue fill
request. This request defines the mode how the message queue from the debug process to
the PC is handled.

replace is the default mode. If the mode is set to replace, only the newest message of
each type is preserved in the queue (with a few exceptions). On the one hand, the
queue cannot overflow, on the other hand, messages are lost, e. g. it is not possible to
receive 30 images per second from the robot.

queue will insert all messages received by the debug process from other processes into
the queue, and send it as soon as possible to the PC. If more messages are received
than can be sent to the PC, the queue will overflow and some messages will be lost.

reject will not enter any messages into the queue to the PC. Therefore, the PC will not
receive any messages.

collect <seconds>. This mode collects messages for the specified number of seconds.
After that period of time, the collected messages will be sent to the PC. Since the
TCP stack requires a certain amount of execution time, it may impede the real-time
behavior of the robot control program. Using this command, no TCP packages are
sent during the recording period, guaranteeing real-time behavior. However, since the
message queue of the process Debug has a limited size, it cannot store an arbitrary
number of messages. Hence the bigger the messages, the shorter they can be collected.
After the collected messages were sent, no further messages will be sent to the PC
until another queue fill request is sent.

save <seconds>. This mode collects messages for the specified number of seconds, and
it will afterwards store them on the memory stick as a log file under /media/user-
data/Config/logfile.log. No messages will be sent to the PC until another queue fill
request is sent.

set ? [<pattern>] | <key> ( ? | unchanged | <data> ). Changes debug data or shows its
specification. This command allows changing any information that is provided in the robot
code via the MODIFY macro. If one of the strings that are used as first parameter of the
MODIFY macro is used as parameter of this command (the modify key), the related data in
the robot code will be replaced by the data structure specified as second parameter. Since
the parser for these data structures is rather simple, it is best to first create a valid set
command using the get command (see above). Afterwards that command can be changed
before it is executed. If the second parameter is the key word unchanged, the related
MODIFY statement in the code does not overwrite the data anymore, i. e., it is deactivated
again. A question mark directly after the command (with an optional filter pattern) will
list all the modify keys that are available. A question mark after a modify key will display
the type of the associated data structure rather than the data itself.

v3 ? [<pattern>] | <image> [jpeg] [<name>]. Adds a set of 3-D color space views for a
certain image (cf. Sect. 8.3.2). The image can either be the camera image (simply specify
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image) or a debug image. It will be JPEG compressed if the option jpeg is specified. The
last parameter is the name that will be given to the set of views. If the name is not given,
it will be the same as the name of the image. A question mark followed by an optional
filter pattern will list all available images.

vf <name>. Adds a field view (cf. Sect. 8.3.3). A field view is the means for displaying debug
drawings in field coordinates. The parameter defines the name of the view.

vfd ? [<pattern>] | <name> ( ? [<pattern>] | <drawing> ( on | off ) ).
(De)activates a debug drawing in a field view. The first parameter is the name of
a field view that has been created using the command vf (see above). The second
parameter is the name of a drawing that is defined in the robot control program. Such a
drawing is activated when the third parameter is on or is missing. It is deactivated when
the third parameter is off. The drawings will be drawn in the sequence they are added,
from back to front. Adding a drawing a second time will move it to the front. A question
mark directly after the command will list all field views that are available. A question
after a valid field view will list all available field drawings. Both question marks have an
optional filter pattern that reduces the number of answers.

vi ? [<pattern>] | <image> [jpeg] [segmented] [<name>]. Adds an image view (cf.
Sect. 8.3.1). An image view is the means for displaying debug drawings in image co-
ordinates. The image can either be the camera image (simply specify image), a debug
image, or no image at all (none). It will be JPEG-compressed if the option jpeg is spec-
ified. If segmented is given, the image will be segmented using the current color table.
The last parameter is the name that will be given to the set of views. If the name is not
given, it will be the same as the name of the image plus the word Segmented if it should
be segmented. A question mark followed by an optional filter pattern will list all available
images.

vid ? [<pattern>] | <name> ( ? [<pattern>] | <drawing> ( on | off ) ).
(De)activates a debug drawing in an image view. The first parameter is the name
of an image view that has been created using the command vi (see above). The second
parameter is the name of a drawing that is defined in the robot control program. Such a
drawing is activated when the third parameter is on or is missing. It is deactivated when
the third parameter is off. The drawings will be drawn in the sequence they are added,
from back to front. Adding a drawing a second time will move it to the front. A question
mark directly after the command will list all image views that are available. A question
after a valid image view will list all available image drawings. Both question marks have
an optional filter pattern that reduces the number of answers.

vp <name> <numOfValues> <minValue> <maxValue> [<yUnit> <xUnit>
<xScale>]. Adds a plot view (cf. Sect. 8.3.7). A plot view is the means for plotting data
that was defined by the macro PLOT in the robot control program. The first parameter
defines the name of the view. The second parameter is the number of entries in the plot,
i. e. the size of the x axis. The plot view stores the last numOfValues data points sent for
each plot and displays them. minValue and maxValue define the range of the y axis. The
optional parameters serve the capability to improve the appearance of the plots by adding
labels to both axes and by scaling the time-axis. The label drawing can be activated by
using the context menu of the plot view.

vpd ? [<pattern>] | <name> ( ? [<pattern>] | <drawing> ( ? [<pattern>] | <color>
| off ) ). Plots data in a certain color in a plot view. The first parameter is the name of a
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plot view that has been created using the command vp (see above). The second parameter
is the name of plot data that is defined in the robot control program. The third parameter
defines the color for the plot. The plot is deactivated when the third parameter is off. The
plots will be drawn in the sequence they were added, from back to front. Adding a plot
a second time will move it to the front. A question mark directly after the command will
list all plot views that are available. A question after a valid plot view will list all available
plot data. Both question marks have an optional filter pattern that reduces the number
of answers.

xbb ? [<pattern>] | unchanged | <behavior> {<num>}. Selects a Xabsl basic behavior.
The command suppresses the basic behavior currently selected by the Xabsl engine and
replaces it with the behavior specified by this command. Type xbb ? to list all available
Xabsl basic behaviors. The resulting list can be shortened by specifying a search pattern
after the question mark. Basic behaviors can be parameterized by a list of decimal num-
bers. Use xbb unchanged to switch back to the basic behavior currently selected by the
Xabsl engine. The command xbb only works if the Xabsl symbols have been requested
from the robot (cf. Sect. 8.3.4). Note that basic behaviors are not used anymore in the
B-Human code.

xis ? [<pattern>] | <inputSymbol> ( on | off ). Switches the visualization of a Xabsl in-
put symbol in the Xabsl view on or off. Type xis ? to list all available Xabsl input symbols.
The resulting list can be shortened by specifying a search pattern after the question mark.
The command xis only works if the Xabsl symbols have been requested from the robot
(cf. Sect. 8.3.4).

xo ? [<pattern>] | unchanged | <option> {<num>}. Selects a Xabsl option. The com-
mand suppresses the option currently selected by the Xabsl engine and replaces it with
the option specified by this command. Options can be parameterized by a list of decimal
numbers. Type xo ? to list all available Xabsl options. The resulting list can be shortened
by specifying a search pattern after the question mark. Use xo unchanged to switch back
to the option currently selected by the Xabsl engine. The command xo only works if the
Xabsl symbols have been requested from the robot (cf. Sect. 8.3.4).

xos ? [<pattern>] | <outputSymbol> ( on | off | ? [<pattern>] | unchanged |
<value> ). Shows or sets a Xabsl output symbol. The command can either switch the
visualization of a Xabsl output symbol in the Xabsl view on or off, or it can suppress the
state of an output symbol currently set by the Xabsl engine and replace it with the value
specified by this command. Type xos ? to list all available Xabsl output symbols. To get
the available states for a certain output symbol, type xos <outputSymbol> ?. In both
cases, the resulting list can be shortened by specifying a search pattern after the question
mark. Use xos <outputSymbol> unchanged to switch back to the state currently set by
the Xabsl engine. The command xos only works if the Xabsl symbols have been requested
from the robot (cf. Sect. 8.3.4).

xsb. Sends the compiled version of the current Xabsl behavior to the robot.

8.6 Examples

This section presents some examples of script files to automate various tasks:
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8.6.1 Recording a Log File

To record a log file, the robot shall send images, joint data, sensor data, key states, odometry
data, the camera matrix, and the image coordinate system. The script connects to a robot and
configures it to do so. In addition, it prints several useful commands into the console window,
so they can be executed by simply setting the caret in the corresponding line and pressing the
Enter key. As these lines will be printed before the messages coming from the robot, one has
to scroll to the beginning of the console window to use them. Note that the file name behind
the line log save is missing. Therefore, a name has to be provided to successfully execute this
command.

# connect to a robot
sc Remote 10.1.0.101

# request everything that should be recorded
dr representation:JPEGImage
dr representation:JointData
dr representation:SensorData
dr representation:KeyStates
dr representation:OdometryData
dr representation:CameraMatrix
dr representation:ImageCoordinateSystem

# print some useful commands
echo qfr queue
echo log start
echo log stop
echo log save
echo log clear

8.6.2 Replaying a Log File

The example script replays a log file. It instantiates a robot named LOG that is fed by the data
stored in the log file Config/Logs/logFile.log. It also defines some keyboard shortcuts to allow
navigating in the log file.

# replay a log file.
# you have to adjust the name of the log file.
sl LOG logfile

# select modules for log file replay
mr Image CognitionLogDataProvider
mr CameraInfo CognitionLogDataProvider
mr FrameInfo CognitionLogDataProvider
mr JointData MotionLogDataProvider
mr SensorData MotionLogDataProvider
mr KeyStates MotionLogDataProvider
mr FrameInfo MotionLogDataProvider
mr OdometryData MotionLogDataProvider
mr CameraMatrix CognitionLogDataProvider
mr ImageCoordinateSystem CognitionLogDataProvider

# simulation time on, otherwise log data may be skipped
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st on
msg off

# all views are defined in another script
call Views

# navigate in log file using shortcuts
jc 1 log pause # Shift+Crtl+A
jc 17 log goto 1 # Shift+Crtl+Q
jc 19 log start # Shift+Crtl+S
jc 23 log repeat # Shift+Crtl+W
jc 24 log forward # Shift+Crtl+X
jc 25 log backward # Shift+Crtl+Y

8.6.3 Remote Control

This script demonstrates joystick remote control of the robot. The set commands have to be
entered in a single line.

# connect to a robot
sc Remote 10.1.0.101

# all views are defined in another script
call ViewsJpeg

# request joint data and sensor data
dr representation:SensorData
dr representation:JointData

# request behavior messages
dr automatedRequests:xabsl:debugSymbols once
dr automatedRequests:xabsl:debugMessages

jc press 1 set representation:MotionRequest { motion = specialAction;
specialActionRequest = { specialAction = kickLeftNao; mirror = false; };
walkRequest = { speed = { rotation = 0; translation = { x = 0; y = 0; }; };
target = { rotation = 0; translation = { x = 0; y = 0; }; }; pedantic =
false; }; kickRequest = { kickType = none; mirror = false; dynamical =
false; dynPoints[0] = { }; odometryOffset[0] = { }; }; }

jc press 2 set representation:MotionRequest { motion = stand;
specialActionRequest = { specialAction = kickLeftNao; mirror = false; };
walkRequest = { speed = { rotation = 0; translation = { x = 0; y = 0; }; };
target = { rotation = 0; translation = { x = 0; y = 0; }; }; pedantic =
false; }; kickRequest = { kickType = none; mirror = false; dynamical =
false; dynPoints[0] = { }; odometryOffset[0] = { }; }; }

js 2 160 0.01 # x axis
js 4 0.5 0.01 # rotation axis
js 1 80 0.01 # y axis

jc motion set representation:MotionRequest { motion = walk; specialActionRequest
= { specialAction = playDead; mirror = false; }; walkRequest = { speed = {
rotation = $4; translation = { x = $2; y = $1; }; }; target = { rotation = 0;
translation = { x = 0; y = 0; }; }; pedantic = false; }; kickRequest = {
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kickType = none; mirror = false; dynamical = false; dynPoints[0] = { };
odometryOffset[0] = { }; }; }
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protobuf. Used for the SSL Vision network packet-format
(http://code.google.com/p/protobuf).
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