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Abstract. The aim of a soccer game is to score more goals than the
opponent does. The chances of doing so increase when all the own players
are continuously present on the field. In the RoboCup Standard Platform
League (SPL), the only reasons for players not to participate in a game
are that they either have been penalized or they have not been ready for
the match in the first place. This paper presents some of the methods
the 2013 SPL world champion team B-Human uses to ensure a stable
and continuous game performance. These include overcoming the weak
obstacle avoidance of our 2012 system, reacting to a rule change by an
improved detection of the field boundary, better support for analyzing
games by logging images in real time, and quality management through
procedures the human team members follow when participating in a
competition.

1 Introduction

B-Human participates in the RoboCup Standard Platform League. It is a joint
team of the Universität Bremen and the German Research Center for Artificial
Intelligence (DFKI) and consists of numerous undergraduate students as well
as three researchers. Since 2009, we won every world championship in the SPL
except for 2012, where we became the runner-up. The main goal for 2013 was to
win back the championship title. To do that, we had to analyze why we failed
in 2012. Some of the reasons were external: the vibrating field construction and
the bad wireless network introduced a high degree of noise into the games. They
simply all looked bad, which made it hard to detect problems that were still
present in our system. Thanks to the setup in Eindhoven, these problems were
not present in 2013, at least not after UDP packet buffering was switched off in
the wireless access points.

One of the major weaknesses we had in 2012 was the detection of other
robots or obstacles in general [1] , which did not become apparent before the
semifinal. The visual robot perception relied on the detection of the colored
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waistbands. Since they were rather small, it was limited to short ranges. In
addition, our opponents in the semifinal and final played with arms behind the
robot’s back, which made the bands hard to detect when approaching such a
robot from behind. The sonar-based obstacle detection struggled with the new
(“silver”) ultrasound sensors of the NAO V4 robots that we had received one
week prior to the competition. It did not work well with the previously used
method for acquiring the sonar measurements. As a result of both weaknesses,
our robots committed an unusually high number of “player pushing” offenses.
They sometimes also did not switch to their tackling behavior, which resulted
in a number of “ball holding” penalties. As a result, our robots were often taken
off the field in the last two games. Sometimes, only the goalkeeper was left. This
was a huge advantage for our opponents.

For 2013, one of the main goals was to keep our robots on the field, i. e. to
avoid receiving penalties. This goal was achieved while still scoring by far the
most goals of all teams. According to the log files of the GameController [2], our
team only had an average of 3.75 penalties per game. This was the lowest value
in the whole competition. The average value of all teams was 11.06.

This paper focuses on a few examples of approaches, how this was achieved.
To avoid “player pushing” and “ball holding” penalties, the detection of obstacles
was significantly improved, using both ultrasound and vision. This is described
in Sect. 2. In response to a rule change that allowed goals on neighboring fields
to be visible, an improved detection of the field boundary was implemented,
which is presented in Sect. 3. In the actual competition, it was more useful to
avoid “leaving the field” penalties, because no neighboring goals were visible,
but orange logos were placed next to the field that could have been mistaken
for the ball in some situations. If a robot still misbehaves, it is often hard to
determine what the actual reason for an error was. A new logging technique
that includes both camera images of the NAO and runs in real time, simplifies
debugging a lot because it gives the programmer the context needed to under-
stand what happened. This method is described in Sect. 4. Some penalties such
as “fallen robot” and “request for pickup” can be avoided by careful selection
and preparation of the robots that play and by a general quality management.
The organizational procedures that we use to ensure the best performance of
our robots are outlined in Sect. 5.

2 Obstacle Detection

Obstacle detection is required for navigation on the field, but also for tackling.
The NAO can perceive obstacles in various ways: visually [3–5], through ultra-
sound [6], with its foot bumpers, and with its arms [1]. We use all of these
methods. However, the ultrasound detection method employed in 2012 did not
work very well [1] and the previous approach of detecting robots visually relied
on the colored waistbands, which only worked at short range and could not be
applied anymore in 2013, because the waistbands were replaced by jerseys. For
2013, the ultrasound-based obstacle detection was reimplemented and the pre-
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Fig. 1: Ultrasound obstacle detection. a) Overlapping measuring cones. b) Ob-
stacle grid that shows that sometimes even three robots can be distinguished.
Clustered cells are shown in red, resulting obstacle positions are depicted as
crosses.

vious visual robot detection was replaced by a visual obstacle detection. Since
the new jerseys were not available before the competition, none of our methods
is able to determine the team color of the objects perceived; they are simply
treated as anonymous obstacles.

2.1 Ultrasound-based

The NAO is equipped with two ultrasound transmitters (one on each side) and
two receivers (again one on both sides), which results in four possible combina-
tions of transmitter and receiver used for a measurement. We model the areas
covered by these different measurement types as cones with an opening angle
of 90◦ and an origin at the position between the transmitter and the receiver
used (cf. Fig. 1a). Since NAO’s torso is upright in all situations in which we
rely on ultrasound measurements, the whole modeling process is done in 2-D.
We also limit the distances measured to 1.2 m, because experiments indicated
that larger measurements sometimes result from the floor. The environment of
the robot is modeled as an approximately 2.7 m × 2.7 m grid of 80 × 80 cells.
The robot is always centered in the grid, i. e. the contents of the grid are shifted
when the robot moves. Instead of rotating the grid, the rotation of the robot
relative to the grid is maintained. The measuring cones are not only very wide,
they also largely overlap. To exploit the information that, e. g., one sensor sees
a certain obstacle, but another sensor with a partially overlapping measuring
area does not, the cells in the grid are ring buffers. These ring buffers store the
last 16 measurements that concerned each particular cell, i. e. whether a cell was



measured as free or as occupied. With this approach, the state of a cell always
reflects recent measurements. Experiments have shown that the best results are
achieved when cells are considered as part of an obstacle if at least 10 of the last
16 measurements have measured them as occupied. All cells above the threshold
are clustered. For each cluster, an estimated obstacle position is calculated as
the average position of all cells weighted by the number of times each cell was
measured as occupied.

Since the ultrasound sensors have a minimum distance that they can mea-
sure, we distinguish between two kinds of measurements: close measurements
and normal measurements. Close measurements are entered into the grid by
strengthening all obstacles in the measuring cone that are closer than the mea-
sured distance, i. e. cells that are already above the obstacle threshold are con-
sidered to have been measured again as occupied. For normal measurements, the
area up to the measured distance is entered into the grid as free. For both kinds
of measurements, an arc with a thickness of 100 mm is marked as occupied in the
distance measured. If the sensor received additional echoes, the area up to the
next measurement is again assumed to be free. This sometimes allows narrowing
down the position of an obstacle on one side, even if a second, closer obstacle is
detected on the other side as well – or even on the same side (cf. Fig. 1b). Since
the regular sensor updates only change cells that are currently in the measuring
area of a sensor, an empty measurement is added to all cells of the grid every
two seconds. Thereby, the robot forgets old obstacles. However, they stay long
enough in the grid to allow the robot to surround them even when it cannot
measure them anymore, because the sensors point away from them.

2.2 Vision-based

The visual obstacle detection is based on the idea that obstacles are big non-
green areas in the image. It is split into an initial detection stage and a refinement
stage. The initial detection generates a list of spots in image coordinates that
might be anywhere inside a possible obstacle. Afterwards, the refinement step
filters these spots, using several sanity checks. In addition, it stitches obstacles
together that span both camera images.

Initial detection. The initial detection is based on the assumption that each
non-green area that is bigger than a field line has to be an obstacle. The whole
image is searched for such regions. To be able to search the image in a reason-
able time, not every pixel is checked. Instead, a grid is utilized (cf. Fig. 2a).
The vertical distance between two grid points is precisely two times the width
of a field line, assuming that the field line is located at the lower grid point.
The horizontal distance between two grid points is fixed. To further reduce the
runtime, pixels above the field boundary (cf. Sect. 3) are not checked.

For each grid point it is determined whether the point lies inside a non-green
region or not. This is achieved by checking whether more than k% (currently
k = 93) of the neighborhood around each point is not green. The neighborhood
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Fig. 2: For each blue spot in (a), it is checked whether it contains an obstacle
or not. The highlighted pixels in (b) show the neighborhoods around each grid
point. (c) shows the detected possible obstacle spots.

is a cross-shaped region that consists of the 2n neighboring pixels in vertical and
horizontal direction (cf. Fig. 2b). n is the field line width at the given grid point.
The cross shape has been chosen due to its relative rotation invariance and ease
of implementation.

Since the horizontal distance between two grid points is fixed, but the width
of a neighborhood depends on the distance of the grid point, the neighborhoods
of two adjacent grid points overlap. To avoid checking pixels for their green-
ness multiple times in the overlapping areas, a one-dimensional sum image is
calculated for each grid row beforehand. The greenness of a certain region can
then be calculated by subtracting the corresponding start and end pixels in the
sum image. All grid points that lie inside non-green regions are considered to be
possible obstacles.

Filtering. The possible obstacle spots show the general location of obstacle
regions in the image. However, they usually do not show the foot point of an
obstacle and neither do they show its size. In addition, they may contain false
positives, in particular at field line junctions. Therefore, additional filtering is
required. The filtering process consists of several steps:

Height check. The first step of the filtering process is to determine the height and
the foot point of the obstacle at each possible spot. This is done by scanning the
image vertically in both directions starting at each possible obstacle spot until
either the horizon, i. e. the plane parallel to the field on the height of the camera,
or a continuous patch of green is found. This way, the height can be determined
well as long as the camera is more or less parallel to the ground. Since the NAO
does not need to tilt its head and the body is kept upright while walking, this
is usually the case.

If the height is less than a robot’s width at the foot point, the obstacle spot
will be discarded. This effectively removes most of the false positives. However,
due to the fact that the environment around a RoboCup field is usually not green,
false positives close to the field border cannot be removed using only a height
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Fig. 3: Removal of false obstacle spots at the hands of other robots. The colored
crosses in (a) are different obstacle spot clusters. The blue and the yellow clusters
are false positives and should be removed. (b) shows the calculated ban regions
and (c) shows the result.

criterion. Still, since robots are not allowed to leave the field, false positives at
the field border do not matter.

Hand removal. Depending on their posture, the hands of other robots may be
detected as obstacle spots. Technically, those spots are not false positives since
they are part of another robot. However, the foot point of such obstacles is not
on the field plane. Thus it is impossible to calculate the distance to the obstacle.
These obstacles are removed using the assumption that the lowest (in image
coordinates) obstacle spot belongs to the foot of a robot. Starting from the
lowest spot, an area that should contain the robot’s hands is calculated for each
spot. All spots inside that area are removed. Figure 3 illustrates this process.

Obstacle Stitching. When obstacles are close, they span both the lower and upper
camera image. The foot point of such obstacles is in the lower image; however,
the lower image does usually not show enough of the obstacle to pass the height
check. In this case, the visible height is calculated and the intersection of obstacle
and image border is converted to relative field coordinates and buffered.

When the next image from the upper camera is processed, the buffered points
are moved (still in relative field coordinates) according to the odometry and
projected back into the upper camera image. Here, the height check that was
started in the lower image is continued (cf. Fig. 4a, b).

Clustering. Finally, the remaining obstacle spots are clustered and the center of
mass is calculated for each cluster.
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Fig. 4: (a, b) Obstacle stitching. Red lines show the measured height while blue
lines indicate the minimal expected height. The image from the lower camera
(b) does not contain enough of the obstacle to pass the height check; therefore,
the height check is continued in the upper camera image (a). (c) Images of both
cameras taken with the real time logger. The image quality is greatly reduced,
but everything is still visible. The images are overlaid with perceptions that were
also logged. See a video of the log file at http://www.youtube.com/watch?v=
rv3KpBRSTVw.

3 Detecting the Field Boundary

The 2013 rules state that if fields are further away from each other than 3 m,
a barrier between them can be omitted. This means that robots can see goals
on other fields that look exactly like the goals on their own field. In addition,
these goals can even be closer than a goal on their field. Therefore, it is very
important to know where the own field ends and to ignore everything that is
visible outside. Our old approach to determine the field boundary was to scan
the image downwards to find the first green of sufficient size. This could now be
easily on another field. Thus, a new approach was required. It searches vertical
scanlines, starting from the bottom of the image going upwards. Simply using
the first non-green pixel for the boundary is not an option, since pixels on field
lines and all other objects on the field would comply with such a criterion. In



Fig. 5: Boundary spots (blue) and the estimated field boundary (orange) in a
simulated environment with multiple fields.

addition, separating two or more fields would not be possible and noise could
lead to false positives.

Our approach builds a score for each scanline while the pixels are scanned.
For each green pixel a reward is added to the score. For each non-green pixel
a penalty is subtracted from it. The pixel where the score is the highest is
then selected as boundary spot for the corresponding scanline. The rewards and
penalties are modified depending on the distance of the pixel from the robot
when projected to the field. Field lines tend to have more green pixels above
them in the image. As a result, they are easily skipped, but the gaps between
the fields tend to be small in comparison to the next field when they are seen
from a greater distance. So for non-green pixels with a distance greater then
3.5 meters, a higher penalty is used. This also helps with noise at the border of
the own field. Figure 5 shows that most of the spots are placed on the actual
boundary using this method.

Since other robots on the image also produce false positives below the actual
boundary, the general idea is to calculate the upper convex hull from all spots.
However, such a convex hull is prone to outliers in upward direction. Therefore,
an approach similar to the one described by Thomas Reinhardt [7, section 3.5.4]
is used. Several hulls are calculated successively from the spots by removing the
point of the hull with the highest vertical distances to its direct neighbors. These
hulls are then evaluated by comparing them to the spots. The best hull is the one
with the most spots in near proximity. This one is selected as the field boundary.
An example can be seen in Fig. 5.

4 Real-time Logging with Images

Logging in real time during matches is, in general, nothing new to B-Human.
However, until 2013, it was impossible to log images during actual games. With-



out images, log files are only of limited use for debugging, because the frame
of reference for the programmer is missing. He or she can never be 100% cer-
tain about the situation or even whether looking at the correct situation at all.
The debugging of any perception-related mistake is close to impossible without
images.

4.1 Logging Architecture

The main bottleneck when logging is the disk, i. e. a micro SD card in case of the
NAO. Accessing the disk takes a very long time compared to everything else. The
old logging implementation simply avoided this bottleneck by never writing to
the disk during a game. Everything was buffered in memory until the game was
over. However, when logging images, this approach is no longer feasible, because
the robots would run out of memory very quickly. Therefore, we introduced a
new non-real time process that continuously takes the oldest frames from the
buffer and writes them to the disk. Due to the non-real time priority, data is
only written when there is some spare time left. This way, the writing does not
influence the real time property of the more important processes. In combination
with a large buffer (600MB) and heavy image downscaling (cf. Sect. 4.2), this
approach allows real time logging of images.

In addition, to further reduce the disk accesses, the data is compressed using
Google’s library Snappy [8] before it is written to the disk. Compressing the
data and writing it to disk afterwards takes less time than to directly store the
uncompressed data.

4.2 Image Compression

Compressing the images is done in two steps in order to get images that are as
small as possible in minimal time.

At first, the images are scaled down by averaging blocks of 8×8 pixels. Since
this is a very time consuming process, SSE instructions are used. In addition,
it is very important not to process block after block since this impedes caching,
resulting in great performance losses. Instead, we process line after line of the
image buffering the results for eight lines until the average can be computed.

The second step reduces the number of representable colors and removes some
unused space from the pixels. The cameras produce images in the YCbCr 4:2:2
format. This means that there are two luma channels for two chroma channels
(the data has the form {Y1, Cb, Y2, Cr}). We only use one of the luma channels
stored in each pixel since it would cost additional processing time to recreate the
full resolution image. Thus one byte can be removed per pixel for the compressed
image. Another byte can be gained by reducing the amount of bits each channel is
allowed to use. In our case we use 6 bits for the luma and 5 bits for each chroma
channel. Together, this results in another reduction of space by the factor of
2. This step might seem costly but it only takes 0.1 ms since it is done on a
downscaled image.



The resulting compressed images are 128 times smaller than the original ones.
Although a lot of detail is lost in the images, it is still possible to see and assess
the situations the robot was in (see Fig. 4c).

5 Team Organization

The strict and careful organization of the tasks of the human team members
is of significant importance for every match. This is definitely not a scientific
issue but an inevitable necessity if one wants to make sure that all sophisticated
algorithms and tactics are actually carried out effectively by the robots. There
exist a number of mistakes that can be made and that ruin the performance of
single robots or even the whole team and thereby render all scientific research
useless. Common examples are using the wrong color calibration (making all
robots blind or perceive false positives), mis-configured wireless settings (dis-
abling communication among teammates), playing with buggy, untested code
(perhaps causing crashes or deadlocks), and playing with damaged or insuffi-
ciently calibrated robots (letting the robot fall very often). In a perfect game, all
five robots are well-configured, not damaged, and demonstrate their capabilities
on the field for the whole time. Each robot that is not on the pitch – whether
it is damaged, has not been prepared in time, or being penalized due to a rule
violation such as Pushing (cf. Sect. 2) – weakens the overall team performance.

Therefore, our team has established a number of workflows that contribute
to the goal of playing in this desired way. These procedures are the same in all
matches, independent of the opponent team (no difference between The Invisibles
and HTWK Leipzig) or the importance of the match (no difference between first
round robin game and final). We consider this as very important as it trains all
teammates and keeps concentration high.

5.1 Before a Game

To robustly walk at high speed and to perceive objects with high precision,
continuously checking and calibrating all our robots is necessary. During a com-
petition, multiple persons each spend many hours a day to make sure that we
always have enough robots that can reliably play soccer. For this purpose, in-
dividual configurations are maintained, containing the maximum possible walk
speeds and gait heights.

On the software side, we almost never start to play an official match in which
we use software that has never played a match before. This could have been a
test match, whether against another team or against an empty field, or the same
code as in the official match before. This is necessary to avoid any negatively
surprising and unintended side-effects of code changes.

Almost exactly 30 minutes before a match starts, we always perform a test
kickoff of the whole team. All robots walk to their kickoff positions, the test
game is started, and the robots play until they score a goal. By performing this
test, we ensure that software and configuration files have been deployed correctly



and all robots are fully operational. In case of any problem, there is still enough
time to solve it without the need to hurry. If everything works fine, all robots
are turned off and remain at the field.

All robots are again turned on several minutes before the start of the game (or
the half). Until the actual beginning, they remain connected to a computer that
runs a monitoring tool. This enables us to react on unlikely but not impossible
last minute problems such as a non-booting robot.

5.2 During a Game

During a game, the possible actions of the human team members are very limited:
robots that have been picked-up can be fixed or replaced, a time-out or the half-
time break can be used to change the configuration of the whole team.

In any way, these actions have to be carried out carefully and based on sound
facts. As we are a huge team and many tasks are carried out by different persons,
chaos needs to be avoided (situations such as somebody spontaneously shout-
ing “Time-Out!” or disagreement about picking-up a certain robot). Therefore,
we always have the same dedicated person that talks to the referee and one
additional dedicated person that finally decides about all actions.

If the opponent team allows us to monitor our robots’ communication, we
always do. Our network packages include the so-called robot health that contains
information about things such as battery power, joint temperatures, CPU tem-
perature, or the frame rates of our two main processes. This allows us to identify
potential problems before the robot starts to underperform and to discuss and
schedule a replacement. During every game, a protocol is hand-written, includ-
ing important facts for a later discussion but also statistics about which robot
has fallen how many times. This allows us to watch out for potential hardware
problems during the game and perhaps request a pick-up.

For every game, at least one already booted replacement robot is available at
the field. This robot is always connected to a computer so that setting the player
number and starting the B-Human software can be done immediately, making
the robot ready to play in less than 30 seconds.

5.3 After a Game

After each game – test match or real one – the whole team discusses the match
that was just played. The discussion is guided by the protocol that was written
during the game. Tasks are assigned to individual team members. For analyzing
certain mistakes, the log files (cf. Sect. 4) of the robots that misbehaved are
watched to better understand the reason of an error.

6 Conclusions

At RoboCup 2013, B-Human’s robots scored an average of 0.48 goals per minute
of actual game time [2]. One reason for this success was that our robots were



on the field most of the time. For instance, the new obstacle detection meth-
ods resulted in measurable improvements: While we do not know the number of
“player pushing” penalties we received in 2012 (it certainly was high), we only
received eight this year, in eight games. All other quarter-finalists committed
more pushing offenses. Overall, B-Human was the team that received the least
penalties per game, which surely helped our success. In our opinion, our work-
flows significantly contributed to the comparatively small number of inactive
robots, fallen robots, and requests for pick-up. As a consequence of our team’s
reliability, we have been able to play most of the tournament with a full set of
well-working robots that showed a convincing performance.

During fall 2013, a large part of the software that we used during RoboCup
2013 will be released along with a detailed description of all components, includ-
ing those described in Sections 2–4.
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C., de Haas, T.J., Härtl, A., Humann, A., Honsel, D., Kastner, P., Kastner, T.,
Könemann, C., Markowsky, B., Riemann, O.J.L., Wenk, F.: B-Human team re-
port and code release 2011 (2011) Only available online: http://www.b-human.de/
downloads/bhuman11_coderelease.pdf.

6. Aquino, A., Akatsuka, C., Mushonga, T., Zhang, Y., He, Y., Lee, D.D.: The Uni-
versity of Pennsylvania RoboCup 2011 SPL Nao soccer team. In Röfer, T., Meyer,
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