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Michel Bartsch2, Arne Böckmann2, Florian Maaß2, Thomas Münder2,

Marcel Steinbeck2, Simon Taddiken2, Alexis Tsogias2, Felix Wenk2

1 Deutsches Forschungszentrum für Künstliche Intelligenz,
Cyber-Physical Systems, Enrique-Schmidt-Str. 5, 28359 Bremen, Germany

2 Universität Bremen, Fachbereich 3 – Mathematik und Informatik,
Postfach 330 440, 28334 Bremen, Germany

1 Introduction

B-Human is a joint RoboCup team of the Universität Bremen and the German
Research Center for Artificial Intelligence (DFKI). The team consists of numer-
ous students as well as three researchers. The latter have already been active in
a number of RoboCup teams such as the GermanTeam and the Bremen Byters
(both Four-Legged League), B-Human and the BreDoBrothers (Humanoid Kid-
Size League), and B-Smart (Small-Size League).

We entered the Standard Platform League in 2008 as part of the BreDo-
Brothers, a joint team of the Universität Bremen and the Technische Univer-
sität Dortmund, providing the software framework, state estimation modules,
and the get up and kick motions for the NAO. For RoboCup 2009, we discon-
tinued our Humanoid Kid-Size League activities and shifted all resources to the
SPL, starting as a single location team after the split-up of the BreDoBrothers.
Since then, the team B-Human has won every official game it played except for
the final of RoboCup 2012. We won all five RoboCup German Open competitions
since 2009. In 2009, 2010, and 2011, we also won the RoboCup. This year, we
hope to be able to replicate previous successes by winning the RoboCup again
in Eindhoven.

This team description paper is organized as follows: Section 1.1 presents
all current team members, followed by short descriptions of our publications
since the last RoboCup in Sect. 1.2. New developments after RoboCup 2012
to make the vision system more tolerant to changing lighting conditions are
the topic of Sect. 2. Our new self-localization approach is described in Sect. 3.
Section 4 presents our re-implementation of ultrasound-based obstacle detection.
B-Human’s new signature move, i. e. taking an arm out of the way when neces-
sary, is described in Sect. 5. Changes in our software infrastructure are outlined



Fig. 1: The team B-Human at the RoboCup German Open 2013 award ceremony.

in Sect. 6. We are also working on the league’s new GameController (cf. Sect.
7). The paper concludes in Sect. 8.

1.1 Team Members

B-Human currently consists of the following people who are shown in Fig. 1:

Students. Alexis Tsogias, Andreas Stolpmann, Arne Böckmann, Florian Maaß,
Malte Jonas Batram, Marcel Steinbeck, Martin Böschen, Martin Kroker,
Michel Bartsch, Robin Wieschendorf (not on the picture) Simon Taddiken,
Thomas Münder.

Staff. Judith Müller, Thomas Röfer (team leader), Tim Laue.

1.2 Publications since RoboCup 2012

As in previous years, we released our code after RoboCup 2012 – but this
time only accompanied by an update report [1] – to the public on our web-
site http://www.b-human.de/en/publications/. Up to date, we know of 15
teams that based their RoboCup systems on one of our code releases (AUTMan
Nao Team, Austrian Kangaroos, BURST, Edinferno, NimbRo SPL, NTU Robot
PAL, SPQR) or used at least parts of it (Austin Villa, Cerberus, MRL SPL, Nao
Devils, Northern Bites, RoboCanes, RoboEireann, UChile). In fact, it seems as
if the majority of teams participating in RoboCup 2013 uses B-Human’s walking
engine.



At the RoboCup Symposium we will present a method to generate and ex-
ecute kick motions [2]. The method comprises calculating the trajectory of the
kick foot online and moving the rest of the robot’s body such that it is dynami-
cally balanced. The latter is achieved by moving the Zero-Moment Point of the
NAO, which is determined using inverse dynamics.

We will also present a new object recognition system, in which the ball, the
goals, and the field lines are found based on color similarities with a detection rate
that is comparable to color-table-based object recognition under static lighting
conditions, but that is substantially better under changing illumination [3]. It
still runs in real time (< 6 ms per image) even on a NAO V3.2.

At this year’s RoboCup Symposium’s open source track, a topic will be pre-
sented that has not been covered in detail by previous publications or code
releases: The software architecture underlying the B-Human system [4]. The
publication points out design choices and strengths of our current architecture,
in particular in comparison to the currently popular Robot Operating System
(ROS) [5].

For many years, our institute also had a team that participated in the
RoboCup Small Size League: B-Smart. Former members of this team contributed
to that league’s standard vision system SSL-Vision [6]. In the paper by Zickler
et al. [7], the history and recent applications and developments of this system
– such as the application as a source for ground truth data in the Standard
Platform League [8] – are described.

An ongoing project outside the current RoboCup domain, but still in the
context of sport robotics, is the development of the entertainment robot Piggy
[9] that is able to play a simple ball game with humans. This robot is stationary
and does not play in a team but has some capabilities that are beyond the
current RoboCup state of the art: On the one hand, its vision system is almost
independent of (changing) lighting conditions and colors and thus capable of
perceiving and tracking balls even outdoors. On the other hand, Piggy is able
to perform dynamic and safe human-robot interaction.

2 Vision

2.1 Color Classification

Due to more varying lighting conditions at the German Open 2013, we imple-
mented a more robust and easier to setup color classification. The main idea
is based on using the HSV (hue, saturation, value) colorspace, because in that
space, mainly the V channel will vary significantly if the lighting conditions
change. Therefore, color classes are defined as ranges of the channels H and S,
while there are only only implicit minimum thresholds for the V channel. Since
the conversion from the YCbCr colorspace, in which the images are delivered
by NAO’s cameras, to the HSV model is rather expensive, additional thresholds
for the channels Cb and Cr limit the number of pixels that have actually to be
converted to the HSV colorspace. All colors are defined separately, which allows



Fig. 2: An image (overlaid by the perceptions) and its color-classification

for defining ambiguous color classifications that are only resolved by the context
in which they are used. For instance, in Fig. 2, a part of the ball is classified
both as orange and white.

One of the main problems with this approach is the classification of the
color white. Based on the description above a simple maximum threshold for
the channel S should be sufficient to classify a pixel as white. However, due to
the noise level of the camera, white pixels – in particular at the border between
green and white – are slightly more saturated, making it very hard to define a
threshold. Therefore we decided to use an alternative approach to classify white.
For our vision system to work properly, white only needs to be distinguished
from green and orange. Therefore we first check whether a pixel is not green in
the HSV colorspace. If it is, the pixel is transformed into the RGB color space
and validated against minimum blue and red thresholds.

2.2 Goal Detection

For getting a more persistent detection of goals, the corresponding perceptor was
reimplemented. A scan-based approach now detects yellow regions intersecting
with the horizon based on the new color classification. These potential goal posts
are then evaluated for their match to optimal goal post models (cf. Fig. 3). This
process checks agains a maximum distance and a minimal height evaluation as
well for being on the own field by using the calculated field border (cf. Sect. 2.4).
If these criteria do not excluding the posts, a constant width, the ratio between
width and height, and the expected width and height for the measured distance
are checked for further validation. In addition, the relation between different
potential posts has influence on their ratings. In the end, the two best-rated
potential posts above a minimum rating threshold are accepted as actual goal
post percepts.



Fig. 3: Validation of potential goal posts

2.3 Obstacle Detection

This year’s rule changes introduced a bigger field and an additional robot. The
bigger field allows for more and different tactics such as passing or man-to-
man marking. However to successfully deploy such tactics the robots need a
good model of the surrounding environment. Therefore we have developed a
new visual obstacle detection method for this year’s RoboCup.

First a SSE-based implementation of a Sobel filter is used to generate an
edge image of the Y channel. Afterwards the algorithm of Otsu [10] is used to
calculate the optimal threshold between edges and non-edges in this image. Each
edge pixel above the threshold belongs either to a field line, an obstacle, or the
background. On the SPL field, each field line is completely surrounded by the
green carpet. Since edges only occur at the sides of field lines we can assume that
edges that do not separate a green from a non green area are obstacles or belong
to the background. Since robots cannot leave the field, the background can be
treated as an obstacle as well. Therefore every edge pixel above the threshold
that does not separate a green from a non-green region is classified as belonging
to a potential obstacle, i. e. an obstacle spot.

For each of these obstacle spots, a height is calculated by searching the image
upwards and downwards for the beginning of a green region. If the height is
above a certain threshold, an obstacle spot is accepted. In a post-processing step,
obstacle spots that might result from arms of other robots are excluded, because
the distance computation assumes that obstacles touch the ground, which is not
the case for arms.

The remaining obstacle spots are clustered according to the distance between
them and entered into a radial model of the environment. The model is similar
to the one described by Hoffmann et al. [11].

2.4 Field Boundary Detection

The new rules state that fields may be located close to one another with no
barrier between them. This required the implementation of a new field boundary



detector, since the old one scanned the image from top to bottom. This resulted
in wrong boundaries located on other fields. The new approach uses both cameras
and scans upwards beginning in the image from the lower camera, continuing in
the image from the upper camera. This way it is possible to detect the boundary
of the own filed more accurately. The field border is shown in both lower images
of Fig. 5.

3 Self-Localization

A robust and precise self-localization has always been an important requirement
for successfully participating in the Standard Platform League. B-Human has
always based its self-localization solutions on probabilistic approaches [12] as
this paradigm has been proven to provide robust and precise results in a variety
of robot state estimation tasks.

Since many years, B-Human’s self-localization is realized by a particle filter
implementation [13, 14] as this approach enables a smooth resetting of robot
pose hypotheses. However, in recent years, different additional components have
been added to complement the particle filter: For achieving a higher precision,
an Unscented Kalman Filter [15] locally refined the particle filter’s estimate,
a validation module compared recent landmark observations to the estimated
robot pose, and, finally, a side disambiguator enabled the self-localization to
deal with two yellow goals [16].

Despite the very good performance in previous years, we are currently aiming
for a new, closed solution that integrates all components in a methodically sound
way and avoids redundancies, e. g. regarding data association and measurement
updates. Hence, the current solution – that has already been used successfully
during the RoboCup German Open 2013 – has been designed as a particle filter
with each particle carrying an Unscented Kalman Filter. While the UKF in-
stances perform the actual state estimation (including data association and the
consequent hypothesis validation), the particle filter carries out the hypothe-
ses management and the sensor resetting. Currently, only side disambiguation
(based on game states and a team-wide ball model) still remains a separate com-
ponent. However, current work in progress is to include this side assignment in
the main state estimation process by adding it to each particle’s state.

4 Ultrasound Obstacle Detection

Since we were not very satisfied with the ultrasound-based obstacle detection
system implemented for RoboCup 2012 [1], we reimplemented it for this year.
The NAO is equipped with two ultrasound transmitters (one on each side) and
two receivers (again one on both sides), which results in four possible combina-
tions of transmitter and receiver used for a measurement. We model the areas
covered by these different measurement types as cones with an opening angle
of 90◦ and an origin at the position between the transmitter and the receiver
used (cf. Fig. 4a). Since NAO’s torso is upright in all situations in which we



(a) (b)

Fig. 4: Ultrasound obstacle detection. a) Overlapping measuring cones. b) Ob-
stacle grid that shows that sometimes even three robots can be distinguished.
Clustered cells are shown in red, resulting obstacle positions are depicted as
crosses.

rely on ultrasound measurements, the whole modeling process is done in 2-D.
We also limit the distances measured to 1.2 m, because experiments indicated
that larger measurements sometimes result from the floor. The environment of
the robot is modeled as a 2.4 m × 2.4 m grid of cells with a size of 30 mm ×
30 mm each. The robot is always centered in the grid, i. e. the contents of the
grid are shifted when the robot moves. Instead of rotating the grid, the rotation
of the robot relative to the grid is maintained. The measuring cones are not only
very wide, they also largely overlap. To exploit the information that, e. g., one
sensor sees a certain obstacle, but another sensor with a partially overlapping
measuring area does not, the cells in the grid are ring buffers that store the
last 16 measurements that concerned each particular cell, i. e. whether a cell was
measured as free or as occupied. With this approach, the state of of a cell always
reflects recent measurements. Experiments have shown that the best results are
achieved when cells are considered as part of an obstacle if at least 10 of the last
16 measurements have measured them as occupied. All cells above the threshold
are clustered. For each cluster, an estimated obstacle position is calculated as
the average position of all cells weighted by the number of times each cell was
measured as occupied.

Since the ultrasound sensors have a minimum distance that they can mea-
sure, we distinguish between two kinds of measurements: close measurements
and normal measurements. Close measurements are entered into the grid by
strengthening all obstacles in the measuring cone that are closer than the mea-
sured distance, i. e. cells that are already above the obstacle threshold are con-
sidered to have been measured again as occupied. For normal measurements, the



area up to the measured distance is entered into the grid as free. For both kinds
of measurements, an arc with a thickness of 100 mm is marked as occupied in the
distance measured. If the sensor received additional echoes, the area up to the
next measurement is again assumed to be free. This sometimes allows narrowing
down the position of an obstacle on one side, even if a second, closer obstacle is
detected on the other side as well – or even on the same side (cf. Fig. 4b). Since
the regular sensor updates only change cells that are currently in the measuring
area of a sensor, an empty measurement is added to all cells of the grid every
two seconds. Thereby, the robot forgets old obstacles. However, they stay long
enough in the grid to allow the robot to surround them even when it cannot
measure them anymore, because the sensors point away from them.

5 Arm Motions

In [1] we introduced arm contact detection to recognize when a robot’s arm col-
lides with an obstacle. In this year’s system we integrated dynamic arm motions
on top of that feature. If a robot detects an obstacle with an arm, it may de-
cide to move that arm out of the way to be able to pass the obstacle without
much interference. In addition, arm motions can be triggered by the behavior
control, allowing the robot to move its arm aside even before actually touching
an obstacle.

An arm motion is defined by a set of states, which consist of target angles
for the elbow joint and the shoulder joint of each arm. Upon executing an arm
motion, the motion engine interpolates intermediate angles between two states
to provide a smooth motion. When reaching the last state, the arm remains there
until the engine gets a new request or a certain time runs out. While the arm
motion engine is active, its output overrides the default arm motions, which are
normally generated during walking.

A development version of this feature has already been used during RoboCup
2012 and it was improved for the German Open 2013. It since proved to be very
valuable in many game situations, because the arms of our robots are out of the
way if they need to be, but they still function as obstacles to the opponent team
in defensive situations.

6 Infrastructural Changes

This year we have spent a lot of time on improving our infrastructure. Among
the more noteworthy features are a custom kernel, a new behavior description
language, nearly complete C++11 support due to the use of LLVM clang as
compiler and cross compiler, a streamlined installation procedure, logging of
camera images at full frame rate during the game, and some extensions to the
module framework.



Fig. 5: Images taken by the upper camera of a NAO (original resolution on the
left, corresponding thumbnails on the right).

6.1 Operating System

We have reconfigured the official Aldebaran kernel to include several new drivers
and we enabled hyper-threading.

The Wi-Fi driver has been replaced by the rt5370sta driver to improve the
link quality. In order to enable hyper-threading, the LAN driver had to be re-
placed by the Realtek r8169 driver, because the original driver crashed. In addi-
tion, we improved the official camera driver. It now supports the manual setting
of white balance, hue, and fade-to-black.

The modified kernel can be downloaded from our GitHub repository.1

6.2 Logging

Evaluating the actions of robots during the games is an important but difficult
task. For this purpose logging has been used and improved over the past years.
We could log the percepts during games, or save logs including full resolution
images with a robot connected to a PC. However, both methods have great dis-
advantages. The former offers high frame rates due to a very low computational

1 https://github.com/bhuman



load and can be used on all robots during games, but it lacks the possibility of
comparing the percepts with the actual images. This makes the evaluation diffi-
cult. In the second method, it is not possible to store the logs on the robots, due
to full resolution images, which makes a connection to an external PC necessary.
Sending the images to a computer takes a lot of time, so that the frame rates
drop significantly, and it would not be allowed during actual games.

These problems have now been solved by computing thumbnails of the images
and storing them in the log files. The thumbnails are computed by shrinking the
images, so that each resulting pixel is the average of an 8 × 8 block in the
original image. The resulting images have a resolution of 80 × 60 (upper image)
and 40×30 (lower image) pixels. Although the resolution is highly reduced, it is
still possible so recognize important parts on the field, as one can see in Fig.5.

6.3 C-Based Behavior

Last year, we already replaced the Extensible Agent Behavior Specification Lan-
guage (XABSL) [17] by an extension of C++ [1]. As XABSL, it followed the
paradigm of hierarchical state machines. It avoided most of overhead of coupling
two different programming languages together, but it still required a pre-compiler
to translate the behavior language into plain C++. This year, we replaced the
pre-compiler by a set of C++ macros that still support a very similar syntax,
but do not need a separate compiler run anymore. In contrast to the previous
approach, the new language supports options with formal parameters in regu-
lar C++ notation, for which even default values can be specified. This results
in easy to read behavior descriptions. Since the behaviors are actually modeled
in C++, IDEs fully support the language. In addition, a new view allows to
visualize the option graph directly in our simulator SimRobot.

7 GameController

At last year’s RoboCup, we presented a new GameController for the Standard
Platform League (cf. Fig. 6), which has become the new official game controller.
It was successfully used at the RoboCup German Open as well as the RoboCup
U.S. Open. For this year, we are adding support for the Humanoid League. We
will also develop a NAOqi module that can be used to handle the communication
with the GameController on the NAO, and it will implement the official button
and LED interface. We also decided to reimplement the GameStateVisualizer,
which is used to display the score to the audience, to keep the software integrated
in a single code base.

8 Conclusions

B-Human has developed several major features since RoboCup 2012. The new
robust vision approach reduces the need to calibrate colors before each game.



Fig. 6: Screenshot of the new GameController during a game

The new self-locator integrates functionality previously distributed over separate
modules in a single, streamlined implementation. The obstacle detection using
both vision and ultrasound eases realizing advanced behaviors such as passing or
man-to-man marking, as well as actively controlling the arms to avoid obstacles.
Our custom kernel greatly improves the network connectivity, delivers camera
images as they were supposed to be, and improves the overall system performance
by nearly 30%. The new logging capabilities considerably increased the overall
debugging experience leading to higher code quality. Besides our code releases,
the new GameController is another contribution of B-Human to the development
of the Standard Platform League.
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