
Automatic Robot Calibration for the NAO

Tobias Kastner1, Thomas Röfer2, and Tim Laue1
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Abstract. In this paper, we present an automatic approach for the kine-
matic calibration of the humanoid robot NAO. The kinematic calibra-
tion has a deep impact on the performance of a robot playing soccer,
which is walking and kicking, and therefore it is a crucial step prior to
a match. So far, the existing calibration methods are time-consuming
and error-prone, since they rely on the assistance of humans. The auto-
matic calibration procedure instead consists of a self-acting measurement
phase, in which two checkerboards, that are attached to the robot’s feet,
are visually observed by a camera under several different kinematic con-
figurations, and a final optimization phase, in which the calibration is
formulated as a non-linear least squares problem, that is finally solved
utilizing the Levenberg-Marquardt algorithm.

1 Introduction

Calibration is the process of determining the relevant parameters of a robotic
system by comparing the prediction of the system’s mathematical model with
the measurement of a known feature, which is considered as the standard. If
the difference between the prediction and the measurement exceeds a certain
tolerance, it is inevitable to compensate for this mismatch to allow the robot to
operate as desired. The automatic calibration method presented in this paper
is customized for the humanoid robot NAO [4] from Aldebaran Robotics. The
NAO has 21 degrees of freedom and is equipped with two cameras. The images
are taken at a frequency of 30 Hz by each camera while other sensor data (such
as joint angle measurements) are updated at 100 Hz. The operating system is
an embedded Linux that is powered by the Intel-Atom processor at 1.6 GHz.
Since 2008, the NAO is the official platform of the RoboCup Standard Platform
League (SPL). To play soccer, a NAO has to be able to walk fast and to score
goals. The overall performance of these two essential tasks strongly depends on
prior precise calibration, which, so far, is a manual procedure that requires the
assistance of human users. It is time-consuming and error-prone, since the errors
in the kinematics are estimated by eye and hand. These errors arise from the
imprecise assembly of the robot itself and damage and wearout of the motors



during its operation. Consequently, it is often necessary to recalibrate a NAO
after a match. The goal of the automatic calibration that is presented in this
paper is to reduce the workload of human users, while providing comparable
appropriate calibration parameters.

Markowsky [8] developed a method to calibrate the NAO’s leg kinematics
by using a hill climbing algorithm and a cost function that computes the dis-
tribution of the current and weight loads of the two legs. The assumption was
that the NAO is calibrated if the loads of each leg are similar. Due to poor
sensor readings, this method turned out to be inapplicable. This paper is rather
inspired by the works of Birbach et al. [2], Pradeep et al. [11], and Nickels [10].
These methods are based on the hand-eye calibration, which is explained by
Strobl et al. [13]. The goal of these calibration procedures is to find the poses of
the cameras in the robot’s head as well as the joint offsets that affect the proper
positioning of the robot’s end effectors. The robot’s end effectors are driven to
pre-recorded positions and markers attached to these end effectors are visually
detected by the robot’s cameras. Each position of the marker’s features in pixel
coordinates, as well as the respective joint angle measurements of the kinematics
are gathered and finally used to minimize the deviation between the actual visual
measurements and the predicted ones based on the mathematical model of the
robot, i. e. forward kinematics and extrinsic and intrinsic camera parameters.

In this paper, the NAO is calibrated by moving two checkerboards, which
are attached to the robot’s feet, in front of the lower camera of the NAO’s head.
Similar to the related work presented, the image position of each vertex (point of
contact of two isochromatic tiles) on the checkerboard is measured together with
the current joint angles. To formulate the calibration as a problem of non-linear
least squares, the forward kinematics of the NAO are computed with homoge-
neous coordinate transformation and the projection function of the cameras is
described as a pinhole camera model. Using an a-priori intrinsic camera cali-
bration and the Levenberg-Marquardt algorithm, the 21 parameters involved (12
joint offsets, 3 camera rotation errors and 6 correction parameters for impre-
cisely mounted checkerboards) are estimated by minimizing the sum of squared
residuals of each measured vertex in pixels and the projection of the correspond-
ing vertex from robot-relative coordinates to 2D image points, utilizing the joint
angles measured.

The remainder of this paper is structured as follows: in the next section, the
properties of the checkerboard and foot-assembly as well as the formulation of
the calibration as a problem of non-linear least squares are discussed. Section 3
presents the results achieved, followed by Section 4, which concludes the paper
and gives an outlook on possible future work and improvements to the calibration
procedure presented.



2 Automatic Robot Calibration

First of all, the properties of the checkerboard sandals are discussed, followed by
some implementation details and the definition of the calibration as a non-linear
least squares problem.

2.1 Checkerboard Sandals

The checkerboard pattern with 35 tiles (7 columns and 5 rows) is printed on a
customized aluminum composite panel (see Fig. 1b) with a square size of 2.5 cm.
Each board is mounted with four pins that exactly fit into the recesses located
at the force-sensing resistors (FSR) on the bottom of the NAO’s feet (soles) and
a further fixture with a hook and loop fastener tape. Since the positions of the
FSRs (see Fig. 1a) are known relative to the projection of the ankle joint on
the sole, the positions of all 24 checkerboard vertices can be computed easily,
considering that the center of the checkerboard is situated 17 cm away from
the joint projection mentioned. These positions are used to predict the image
coordinates of each vertex using the mathematical model of the NAO that still
has to be defined.

2.2 Implementation

The calibration is implemented using the C++ framework [12] for modular de-
velopment of robot control programs, published by the SPL team B-Human. In
the context of this paper, a motion control engine, a checkerboard recognizer, an
optimization algorithm, and a calibration control module were developed. Any
more in-depth information on those software components can be found in the
corresponding thesis [5].

As proposed by Wiest [15] and Elatta et al. [3], the calibration is subdivided
into four phases modeling, measurement, identification, and compensation.

Modeling. The conversion from world to image coordinates is modeled with
the pinhole-camera model P :

P (x, y, z) = OC − (y, z)
T fl
x
. (1)

The optical center OC and the focal length fl were determined in a prior intrinsic
camera calibration, as proposed by Zhang [16].

The camera-relative world coordinates x, y, and z are computed using a mea-
sured set of joint angles q, the forward kinematics TOLS(q), the transformation
from the ankle joint to the left sole, and the positions of the checkerboard ver-
tices computed relative to the feet pLSα. The functions Rotx, Roty, and Rotz are
used to rotate a pose (position and rotation) around the respective axis, named
in the suffix. Likewise, the functions Transx, Transy, and Transz translate a
pose along the respective axis. In Fig. 2, the kinematic tree of the NAO is shown.



  7.025 cm

 2.99 cm             2.31 cm

0.8 cm2.965 cm

   2.99 cm

(a)

17 cm

2.5 cm

2.5 cm

FSR

foot joint

(b)

Fig. 1. The positions of the FSRs on the sole (a). The checkerboard sandal with some
dimension information (b).

Each joint angle qi is composed from the actual measured angle θi and the
affecting offset αi:

qi = θi + αi, i ∈
{
LHipY awPitch, LHipRoll, LHipP itch, (2)

LKneePitch, LAnkleP itch, LAnkleRoll,

RHipY awPitch, RHipRoll, RHipP itch,

RKneeP itch, RAnkleP itch, RAnkleRoll
}
.

Each element i stands for a servo motor that is able to measure its current angle
with a precision of 0.1◦ (the same precision applies to commanded angles). The
position of each motor is visualized in Fig. 2.

The robot-relative pose of the lower camera is computed with TOC (homoge-
neous transformation from the robot origin to the camera):

TOC (q, α) = TOC (q) ·Roty(αCamPitch) ·Rotx(αCamRoll) ·Rotz(αCamY aw). (3)

It is assumed that the actual camera pose TOC (q) is affected by three rotational
offsets αCamPitch, αCamRoll, and αCamY aw.
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Fig. 2. The kinematic tree of the NAO. The origin is located between the two hip
motors. The CameraPitch is a fixed assembly angle, taken from the official NAO doc-
umentation. Any other motor angles are modifiable.

With the information on the checkerboard given in section 2.1, the coordi-
nates of all vertices pLS , relative to the soles, can be computed.

pLSα = Rotz(αLRotZ) · Transx(αLTransX) · Transy(αLTransY ) · pLS . (4)

Since the pins on the boards are glued, it is possible that the assembly on the
soles is imprecise. In addition to the joint and camera correction offsets, three
further parameters for each board are considered. It is assumed that the boards
have a rotational offset αLRotZ around the z-axis and a translational error in x
and y direction (αLTransX and αLTransY ).

The final model is defined with proj(pLS , θ, α):

proj(pLS , θ, α) = P (TOC (q, α)
−1 · TOLS(q) · pLSα). (5)

A given sole-relative vertex coordinate is transformed into origin coordinates,
which gets further converted into camera-relative coordinates and is finally pro-
jected onto the NAO’s camera plane, resulting in a prediction, where a vertex
should be located in the image, considering the current joint data and the cali-
bration parameters.



The definitions given above are for the left leg kinematics. The missing pro-
jection function for the right leg is computed analogously, using the right leg’s
joint data and the vertex positions from the right checkerboard. Also, only the
leg’s kinematics are adjusted, since, so far, there are no actions that require
precisely calibrated arms.

Table 1. Listing of all identified parameters. A type of ∆◦ indicates a rotational offset
and a ∆mm a translational offset.

Parameter Type Parameter Type Parameter Type

αCamY aw ∆◦ αCamPitch ∆◦ αCamRoll ∆◦

αLHipY awPitch ∆◦ αLHipRoll ∆◦ αLHipPitch ∆◦

αLKneePitch ∆◦ αLAnklePitch ∆◦ αLAnkleRoll ∆◦

αRHipY awPitch ∆◦ αRHipRoll ∆◦ αRHipPitch ∆◦

αRKneePitch ∆◦ αRAnklePitch ∆◦ αRAnkleRoll ∆◦

αLRotZ ∆◦ αLTransX ∆mm αLTransY ∆mm

αRRotZ ∆◦ αRTransX ∆mm αRTransY ∆mm

Altogether, the vertex-projection model is affected by 21 parameters (see
Tab. 1), that need to be adjusted. The crucial parameters are the three rota-
tional camera corrections and the twelve leg joint offsets. Note that this set of
parameters is the same that is used in the manual calibration procedures.

Measurement. The target measurements are the 2D image coordinates of the
checkerboard vertices. The localization of these vertices is accomplished with a
combination of the vertex detection algorithm of Bennet et al. [1], the chessboard
extraction method of Wang et al. [14], and the sub-pixel refinement implemented
by Birbach et al. [2]. These methods operate on the grey-scale images of the lower
camera with VGA resolution.

To assure that the calibration can be performed secure and unsupervised, the
NAO is lying on its back, while driving to 24 different leg stances (for both legs).
For each configuration, the checkerboard is observed incorporating three different
head postures. The configurations are chosen heuristically, considering that the
checkerboard is fully visible, while having different rotations and distances to the
camera. Note that the checkerboard vertices are only detected after the robot
reached its desired stance, since there is a lag between the arrival of a new camera
image and the sensor readings. The complete self-acting measurement phase is
visualized in Fig. 3.

For each vertex observed, a new measurement m is collected and added to a
set M :

M =
{
m0,m1, . . . ,mn

}
. (6)

A measurement is a triple, consisting of the image position pimg, the correspond-
ing sole-relative 3D coordinate of the vertex pcb, and the measured joint angles
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Fig. 3. Some snapshots taken during a calibration experiment. The upper images show
different joint angle configurations, whereas the lower figures depict the corresponding
points of view of the lower camera.

θ:
m = (pimg, pcb, θ). (7)

Identification. After the completion of the measurement phase, the optimiza-
tion procedure is initialized. First of all, the set of residuals R is built, calculating
the deviation of each measurement’s image coordinate m[pimg] and the corre-
sponding prediction, using the projection model (see Eq. 5) and the measure-
ment’s joint data m[θ], the sole-relative vertex position m[pcb], and the current
parameter set α (see Tab. 1):

R =
{
r
∣∣∣m ∈M ∧ r =

∥∥∥m[pimg]− proj(m[pcb],m[θ], α)
∥∥∥}. (8)

By summing up the squared residuals, the calibration can be formulated as a
problem of non-linear least squares:

arg min
α

∑
r∈R

r2. (9)

To find a parameter set α that minimizes the sum of squared residuals, the algo-
rithm of Levenberg [7] and Marquardt [9] is used, in which the initial parameter
set α is set to zero.

Compensation. To compensate for the incorrect servo motor’s sensor readings,
the optimized joint offsets are added to the requested joint angles and subtracted
from the measured joint values. The rotational camera offsets are considered in
the calculation of the NAO’s camera matrix (see Röfer et al. [12]).



3 Results

This section outlines the results of the automatic robot calibration, beginning
with a simulated calibration and a concluding calibration experiment executed
with a real NAO.

3.1 Simulation

With the help of SimRobot [6], the calibration’s feasibility was tested. A simu-
lated NAO was modeled with random erroneous joint offsets and with imprecise
checkerboard assembly. As Fig. 4a and Fig. 4b imply, all errors were correctly
compensated. Since the errors for each leg chain are different, the residual dis-
tribution for the left and right leg exhibit different appearances (see Fig. 4a).
Apparent from Fig. 4b, the adjusted parameters create a normal distribution
with zero mean and a standard deviation of 0.0486 pixels in x and 0.0403 pixels
in y direction.

3.2 NAO

On a real NAO, three consecutive automatic calibrations were executed3. Be-
forehand, an intrinsic camera calibration was done, resulting in a focal length
of 562.5 pixels and an optical center of (324, 189)

T
pixels. The resulting pa-

rameters, as well as further information, such as the calibration duration, are
shown in Tab. 2. One calibration round took 590 seconds on average and the
Levenberg-Marquardt algorithm converged after 41 iterations on average. The
root mean squared error was reduced to roughly three pixels in x and two and
a half pixels in y direction. It is noticeable, regarding the optimized parameters,
that the left leg’s pitch motor deviations are rather big, with a value of 0.5421◦

at a max. This implies that there are several different configurations that mini-
mize the sum of squared residuals. In contrast, the right leg’s parameters have a
maximal deviation of 0.2413◦. The vast majority of the parameters were similar
after the three calibration runs, in particular the three camera rotation offsets.
The checkerboard assembly correction parameters are adequately small.

It is obvious that the resulting parameters are not a perfect solution to the
minimization problem, since there are many residuals bigger than the threefold
standard deviation (see Fig. 4d). Unlike the depiction of Fig. 5, where (a) is
showing the projection of the checkerboard before and (b) after a calibration,
there are countless kinematic configurations resulting in an imprecise projection.
A standard test for a good calibration of the camera’s pose is the projection of
the modeled lines of an official SPL field back into the image from a known
position on the field and comparing them with the lines that are actually seen.
However, using the optimized parameters, this test showed unsatisfactory results.

3 The gathered data of the three experiments can be found as CSV files on:
https://sibylle.informatik.uni-bremen.de/public/calibration/
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Fig. 4. Residual distribution of a simulated calibration (a) without and (b) with opti-
mized parameters. The lower figures visualize the residual distribution of the first out
of three calibration experiments on a real NAO: distribution (c) without and (d) with
adjusted parameters. Note that the axes have different ranges.

The most probable cause is backlash that has a different impact on a robot lying
on its back than on a standing robot.

Using the parameters of the third calibration run, the NAO was able to play
soccer for the duration of a half (10 minutes), while falling down 6 times. Without
a calibration, the NAO fell down 11 times in the same amount of time. Further
experiments with four other NAOs exhibited a similar result: a calibration never
negatively influenced the performance of a NAO playing soccer. In one case,
a robot, that was initially not able to walk half a meter, was able to play a
complete half (still being very shaky and unstable).
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Fig. 5. The checkerboard projection without calibration (a). The resulting projection
with optimized parameters α (b).

4 Conclusion

In this paper, we presented a method to define an automatic robot calibration as
a problem of non-linear least squares, customized for the humanoid robot NAO.
The NAO was modeled with the help of homogeneous coordinate transformation
and the pinhole camera model. The resulting least squares problem was solved
with the Levenberg-Marquardt algorithm.

The simulated calibrations resulted in perfect estimates for the compensa-
tion of the identified errors and therefore prove the plausibility of the presented
approach. Performing the calibration with real NAOs turned out to be less sat-
isfying. Apart from the fast overall operation time with roughly 10 minutes, the
deviations of some parameters after consecutive calibrations vary strongly, the
projection of field lines was rather imprecise, and there are many joint configura-
tions that resulted in an insufficient re-projection of the checkerboard. However,
the kinematic parameters can be used as a better initial guess for a manual
calibration.

We think that the extension of the projection model with non-geometric
errors, such as joint elasticities, could improve the results. Birbach et al. [2] and
Wiest [15] modeled elasticities with a spring, using the torques that affect each
motor. Since the NAO lacks of torque sensors, only static torques can be used.
It is also conceivable that the lengths of the limbs may vary from the values in
the official NAO documentation. The most difficult unregarded errors are those
that result from backlash, which, according to Gouaillier et al. [4], might have
a range of ±5◦. In addition, the offsets of the two head joints might also impair
the calibration result, because they are not adjusted during the optimization,
since they might have a linear dependency to the camera rotation offsets.

The improvement of this calibration approach will be further investigated by
considering the possible problems mentioned.



Table 2. Resulting parameters of three consecutive calibration runs with a NAO.

1 2 3 Ø

αCamY aw [◦] 0.4764 0.4751 0.4466 0.4660 ± 0.0168

αCamPitch [◦] -4.5627 -4.5430 -4.4956 -4.5338 ± 0.0345

αCamRoll [◦] -1.7991 -1.8891 -1.8180 -1.8354 ± 0.0475

αLHipY awPitch [◦] -2.2938 -2.7094 -2.5055 -2.5029 ± 0.2078

αLHipRoll [◦] 0.9692 0.9620 0.8863 0.9392 ± 0.0459

αLHipPitch [◦] 0.2299 1.3066 0.8783 0.8049 ± 0.5421

αLKneePitch [◦] -1.1442 -1.9709 -1.6455 -1.5869 ± 0.4165

αLAnklePitch [◦] 1.6708 1.5798 1.6349 1.6285 ± 0.0458

αLAnkleRoll [◦] 0.0267 -0.2078 -0.2618 -0.1476 ± 0.1534

αRHipY awPitch [◦] -0.9800 -0.9297 -0.9599 -0.9565 ± 0.0253

αRHipRoll [◦] 0.1893 0.3001 0.1881 0.2258 ± 0.0643

αRHipPitch [◦] 1.4916 1.3355 1.3064 1.3778 ± 0.0996

αRKneePitch [◦] -0.0156 -0.1881 0.1841 -0.0065 ± 0.1863

αRAnklePitch [◦] 0.6081 0.9223 0.6810 0.7371 ± 0.1644

αRAnkleRoll [◦] -0.5310 -1.0132 -0.7909 -0.7784 ± 0.2413

αLRotZ [◦] -0.6010 -0.2357 -0.4890 -0.4419 ± 0.1871

αLTransX [mm] -0.3878 -1.3591 -0.8144 -0.8538 ± 0.4868

αLTransY [mm] 0.5075 0.7773 0.8117 0.6988 ± 0.1666

αRRotZ [◦] 0.8058 0.9085 0.7725 0.8289 ± 0.0709

αRTransX [mm] -2.0173 -1.0657 -1.4765 -1.5198 ± 0.4773

αRTransY [mm] 2.2007 1.7893 1.5274 1.8391 ± 0.3394

Iterations 41 47 35 41

Duration [s] 591 600 579 590

rms x [px] 3.22829 3.17493 3.07256 -

rms y [px] 2.60487 2.53476 2.49331 -
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