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1 Introduction

B-Human is a joint RoboCup team of the University of Bremen and the German
Research Center for Artificial Intelligence (DFKI), consisting of students and
researchers from both institutions. Some of the team members have already
been active in a number of RoboCup teams such as the GermanTeam and the
Bremen Byters (both Four-Legged League), B-Human and the BreDoBrothers
(Humanoid Kid-Size League), and B-Smart (Small-Size League).

We entered the Standard Platform League in 2008 as part of the BreDo-
Brothers, a joint team of the Universität Bremen and the Technische Universität
Dortmund, providing the software framework, state estimation modules, and the
get up and kick motions for the NAO. For RoboCup 2009, we discontinued our
Humanoid Kid-Size League activities and shifted all resources to the SPL, start-
ing as a single location team after the split-up of the BreDoBrothers. Since then,
the team B-Human has won every official game it played except for the final of
RoboCup 2012. We won all six RoboCup German Open competitions since 2009.
In 2009, 2010, 2011 and 2013, we also won the RoboCup.

This team description paper is organized as follows: After this paragraph,
we present all current team members, followed by short descriptions of our pub-
lications since RoboCup 2013. After that, our newest developments since the
end of RoboCup 2013 are described in the areas of vision (cf. Sect. 2), modeling
(cf. Sect. 3), behavior (cf. Sect. 4), and motion (cf. Sect. 5). Our solutions for
the technical challenges are outlined in Sect. 6. Since several teams are using our
codebase, we describe some infrastructural changes we did since our last code
release as well as in the GameController in Sect. 7.



Fig. 1: All actual members of team B-Human 2014.

Team Members. B-Human currently consists of the following people who are
shown in Fig. 1:

Team Leaders / Staff: Judith Müller, Tim Laue, Thomas Röfer.
Students: Michel Bartsch, Jonas Beenenga, Arne Böckmann, Dana Jenett,

Vanessa Klose, Sebastian Koralewski, Florian Maaß, Elena Maier, Paul Meißner,
Caren Siemer, Andreas Stolpmann, Alexis Tsogias, Jan-Bernd Vosteen, Robin
Wieschendorf

Associated Researchers: Udo Frese, Dennis Schüthe, Felix Wenk

1.1 Publications since RoboCup 2013

As in previous years, we released our code after the RoboCup 2013 together
with a detailed description [12] on our website (http://www.b-human.de/en/
publications) and this time also on GitHub (https://github.com/bhuman/
BHuman2013). Up to date, we know of 21 teams that based their RoboCup sys-
tems on one of our code releases (AUTMan Nao Team, Austrian Kangaroos,
BURST, Camellia Dragons, Crude Scientists, Edinferno, JoiTech-SPL, NimbRo
SPL, NTU Robot PAL, SPQR, Z-Knipsers) or used at least parts of it (Cerberus,
MRL SPL, Nao Devils, Northern Bites, NUbots, RoboCanes, RoboEireann,
TJArk, UChile, UT Austin Villa). In fact, it seems as if half of the teams par-
ticipating in the main SPL soccer competition in RoboCup 2014 use B-Human’s
walking engine.

At the RoboCup Symposium 2014, we will present an automatic calibration
for the NAO [7]. The method is based on the robot calibration [2] method of
Birbach et al. [1] and involves an autonomous data collection phase, in which
the robot moves a checkerboard that is mounted to the foot, in front of its
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Fig. 2: On the left, it is scanned for a robot below the boundary of the field. On
the right, jerseys are found on robots: red, unknown, blue.

lower camera. The calibration is formulated as a problem of non-linear least
squares by minimizing the distances between the visually detected checkerboard
vertices and their predicted image positions, using the NAOs forward kinematics
and the pinhole-camera model. The problem is solved utilizing the algorithm of
Levenberg [8] and Marquardt [9].

After RoboCup 2013, we published the invited champion paper [11] that
describes some key aspects of our last year’s success. These included a refined
obstacle detection (via sonar as well as via image processing), a detection of
the field’s border, and a logging system that is able to save thumbnail images
in real-time during normal games. In addition, the paper features descriptions
of some human team members’ workflows that are necessary to avoid annoying
failures during competitions.

2 Vision

Automatic Camera Calibration. Calibrating the cameras is necessary since
no two robots are alike, thus even small variations of the camera orientation can
result in significant errors in the estimation of the positions of objects recognized
by the vision system. We have been working on some methods to automate the
calibration process. Since the manual calibration is a very time-consuming and
tedious task, we developed a semi-automatic calibration module in the past.
With this module the user has to mark arbitrary points on field lines, which
are then used by a Gauss-Newton optimizer to estimate the extrinsic camera
parameters. This year we additionally automated the process of collecting the
points. They are obtained by the vision module that detects the white lines on
the field.

Robot Detection. Our new robot detection module recognizes standing and
fallen robots up to seven meters away in less than two milliseconds of computa-
tion time. This is an improvement compared to the module we used last year,



Fig. 3: Scanning area and blocks for goal side detection.

which had a lower range and a longer computation time. In addition, the new
module scans for jerseys on the robots to get their team color.

Initially, the approach searches for robot parts within the field boundary,
which is marked as orange line in the picture (cf. Fig. 2 left). From there on it
scans down in vertical lines with growing space between the pixels looking at. The
space and its growing rate are calculated from the distance of the corresponding
points on the field. Every pixel scanned this way is marked yellow in the picture.
If there are a couple of non-green pixels scanned in a vertical line, then the lowest
of these pixels gets marked with a small orange cross. These are possible spots
at the feet and hands of a robot, and they can be merged to a bounding box.
After calculating the surrounding box, the method searches for a jersey within
it and sets the color of the box to red or blue if successful (cf. Fig. 2 right).

Goal Side Detection. A big challenge in the Standard Platform League is the
symmetric setup of the field, i. e., it is not trivial to know in which direction to
play. We are currently investigating the possibility to use the background behind
the two goals to distinguish between the two sides. To avoid seeing features that
might continuously change, we use an area a bit further above the goals. We
divide the area scanned into blocks (cf. Fig. 3) to compensate the displacement
which is incurred when a robot scans the background of goals from different
positions on field. For every block we calculate a histogram over every channel
of the YCrCB color space and compare it with the reference data. By using these
blocks, we are able to check whether there is a displacement or not. Because the
view angle depends heavily on the robot’s position on the field, we have to
save some reference pictures from different positions on the field. Currently, we
are working on a method to integrate more than one picture of each goal into
the reference. The reference that matches the currently seen goal best indicates
which field side we are currently observing.



3 Modeling

ObstacleModel. In early 2014, a bachelor thesis started with the aim to merge
the obstacles recognized by ultra sound, computer vision, foot contact, and arm
contact in a single representation instead of having multiple representations for
each type of input data. For instance, so far, there is a representation Obstacle-
Wheel [12] that is only based on the obstacles detected by the computer vision
system. Moreover, the behavior mostly uses that representation, but relies on
other input in some special situations.

The joint obstacle model creates an Extended Kalman Filter for each ob-
stacle. All obstacles are held in a list. The position of an obstacle is relative to
the position of the robot. Visually recognized obstacles (e. g. goal posts, robots)
are transformed from the image coordinate system to field coordinates. Contacts
with arms and feet are interpreted as an obstacle somewhere near the shoulder
or foot in field coordinates. There is already an obstacle model based on ultra-
sound measurements that provides estimated positions on the field [12]. In the
prediction step of the Extended Kalman Filter, the odometry offset since the last
update is applied to all obstacle positions. The estimated velocity of an obstacle
is also added to the position. The update step tries to find the best match for
a given measurement and updates that Kalman sample. If there is no suitable
sample to match, a new sample is created. In this step, we ensure that goal
posts have a velocity of 0 mm/s in x and y directions. Due to noise in images
and motion, not every measurement might create an obstacle if no best match
was found. To prevent false positive obstacles in the model, there is a minimum
number of measurements in a fixed duration required to generate an obstacle.

If an obstacle was not seen for a second, its “seen” counter is decreased. If a
threshold is reached, the obstacle is deleted.

Free Part of Opponent Goal. Our field players try to kick in the direction
of the opponent goal whenever it is possible. To determine, whether the path
to the goal is free, and in which direction a kick would not be blocked by other
robots, we determine the largest free part of the opponent goal. The previous
implementation resulted from a time, when obstacle detection was not very reli-
able. Therefore, it was based on detecting the largest visible part of opponent’s
goal line. Since the obstacle detection was vastly improved recently (cf.. Sect.
2), and the goal line is hard to see on the now larger field, a new approach was
implemented.

The new version uses the obstacle model presented above. The goal is divided
into sections, which later indicate the free parts. All obstacles the robot perceives
are projected in the direction of the goal, revealing which of them are actually
blocking parts of the goal. Then the blocked parts are marked as “not free”,
all other parts of the goal, which are not blocked or hidden by an obstacle, are
marked as “free” . After that the coherent “free” blocks are compared and the
biggest “free” part is selected for the kick.



Fig. 4: On the left, a single obstacle is avoided. On the right, a new way right
around the group is planned.

4 Behavior

Short Range Path Planning. Our behavior uses two different methods to
create walk commands. The first one is an RRT planner [12] that plans tra-
jectories across the field and thereby surrounds obstacles. The second one is a
reactive component, that only avoids the closest obstacle and is used in the final
phase of the approach to a target position.

A new method is currently in development to replace the second one. The
path planning at close quarters should consider more factors in the planning pro-
cess. The major difference is that the process looks at every robot and obstacle
the robot perceives, instead of only the closest one. This allows the robot to plan
its path around a whole group of obstacles. In order to achieve this, we group all
obstacles (including robots, the ball, goalposts etc.) with the condition that an
obstacle in a group stands close enough to another obstacle in this group. Then
we search for the closest obstacle (and the corresponding cluster of obstacles)
which stands in the direct way to the target. After we know the group to avoid,
we simply calculate the convex hull of this group, the current position of the
robot and the target position (cf. Fig. 4). The result is a path around a group
and we can decide which way (left or right) we want to go around it.

Drop-in Player Competition. We mainly use the same behavior in the Drop-
in Player Competition games as we do in the regular soccer competition. How-
ever, some of the information that is usually exchanged between B-Human play-
ers is not part of the standardized section of the SPL standard message, and
therefore it is not available in Drop-in Player games. We cope with that fact
by constructing the information we need and handle it separately. A B-Human
player would, for instance, send its current role. For a Drop-in Player game, this
is constructed locally from the intention and the position, which are given in the
SPL standard message.
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Fig. 5: On the left, the foot is rotated relative to the torso of the robot. On the
right, the foot is rotated so that it is parallel to the ground.

As some information given by other players might be imprecise, wrong, or
even missing, the reliabilities of all teammates are estimated during a game. This
is done by continuously analyzing the consistency, completeness, and plausibil-
ity of the received data. In addition, it is checked, whether communicated ball
perceptions are compatible to our own perceptions.

Depending on the information given by other players and the reliability of
each of them, we decide whether we try to play the ball or take a supporting
role for a different player.

5 Motion

Walking. Compared with 2013 [3], the walking was improved slightly with
the aim of a smoother walk. The robot corrects the orientation of the lifted
foot during the walk phase to make it parallel to the ground (cf. Fig. 5). The
orientation of the torso is used to find out whether there is a deviation from the
planed walk. The rotation around the Y axis gives the angle α that is used to
correct the foot’s pitch angle in small amounts.

Ball Stopping. In the Standard Platform League it is incontestable that many
robots are able to perform very strong and accurate long distance goal kicks. As
a result, it seems insufficient to only let the goalie actively stop the ball if there
are usually also four other players on the field. Hence, we developed multiple
methods that allow field players to stop the ball in different situations.

A crucial part for a ball stopping motion is, besides actually stoping the ball,
to only perform it in the right moment. Otherwise, it would be a waste of time,
which could be better used for a counterattack. For that reason we decided to
never execute the motion based on insufficient data but only if the robot is really
sure that the ball is very fast, the ball’s movement direction is intersecting the



Fig. 6: On the left, a dynamically stopped ball from an initial standing position.
On the right, the keyframe-based ball stopping motion from an initially fast
walking robot.

area reachable by the stop motion, and it is very likely that a goal would be
scored. Furthermore, the motion should be performed as quick as possible in
order to execute it in time and to be ready for a counterattack. Consequently,
every field player should be able to stop the ball even if it is walking very quickly.
Since a robot usually needs some time to slow down from a very fast walk we
developed two stop ball motions in order to react the best if starting from a
standing or walking situation.

We think that the fastest and most accurate method to stop the ball is to set
one foot in the right moment on top of the ball (cf. Fig. 6). As this is not that
different from kicking a ball, we use our kick motion engine [10] to dynamically
alter the motion trajectory of a prototypical stop ball motion similar to our long
distance kick trajectories. In doing so, the robot is able to quickly react to the
ball movement direction, and it can decide in advance where the foot has to be
placed. Unfortunately, this motion only works really well if the robot is standing
at the start. Otherwise, it takes too long for a walking robot to slow down with
the result that the motion is not executed in time and therefore the ball cannot
be stopped.

In case the robot is walking, we developed a key frame based ball stopping
motion that is stable enough to interrupt the walk even if one foot is still in the
air phase. Thereby the robot opens its legs to a split alike position (cf. Fig. 6)
but leaves one sole of one foot on the ground, which ensures stable camera data.
In doing so, we made sure that the motion is stable enough for the robot to track
the ball during the movement. Thus, the movement can be aborted as soon as
the ball movement direction or speed changes. In order to protect the robot
best we took special care to reduce the motor stiffness in the right moments
during the movement with the result that the robot lands fairly soft. Getting up
afterwards is handled by our getup motion engine [12] with a modified starting
point to match the split alike position from our normal getup routine.



Fig. 7: On the left, a robot lifted the ball a little bit above the ground. On the
right, the referee “lazy S” diagonal run and the assistant’s positions are shown.

Ball Lifting. As the 2014 rules interpret it as a goal keeper’s kick-out if it lifts
the ball, we implemented a new motion that is able to pull the ball between the
robots legs, very near to the body, so that the robot can role the ball up along
a leg with one of its arms as shown in Fig. 7. The arm used to lift the ball is
determined by the ball’s position.

6 Technical Challenges

Open Challenge. In all RoboCup soccer leagues that use robots, refereeing
is still performed by humans. However, some situations that referees have to
decide upon are, at least partially, already detected by the players themselves.
For instance B-Human’s robots estimate where the ball has to reenter the field
after it was kicked out and they also know when the ball is free after a kick-off.
Therefore, it makes sense to think about which situations could be detected by
robots and to start implementing robot referees.

The way a robot referee walks over the field is based on human referees in
real soccer matches. In general, a game has a head referee and two assistants.
Their positions and walking paths are displayed in Fig. 7. The two assistants are
located on opposing field sides (red circles in the picture). The referee walks on
a smooth diagonal curve, often called “lazy S”, depending on the current ball
position. Therefore, all relevant events are always taking place between it and
one of the assistants, so all situations can be seen from two perspectives. Thus,
it is less likely that none of them has seen a relevant situation.

Our Open Challenge contribution is the implementation of a robot head
referee and its two assistants. The presentation involves these robots as well as
field players of different teams. There will be no communication between the
referee robots and the robots playing. The players provoke some situations that
the referees should identify. Such situations could be an Illegal Defender or a
Fallen Robot, but also a ball kicked out or a goal scored. The head referee robot
will announce its decision and, when announcing a penalty, point at the position
where the infraction happened.



Any Place Challenge. The aim of the Any Place Challenge is to make robot
football more realistic by encouraging the use of less environmentally-dependent
vision systems. Our current approach to object recognition is largely based on
color segmentation and needs to be hand-tuned to the given lighting conditions.
To overcome that limitation and to successfully take part in the technical chal-
lenge, we are adapting the works of Härtl et al. [5], in which the ball and the
goals are found based on color similarities with a detection rate that is compara-
ble to color-table-based object recognition under static lighting conditions, but
that is substantially better under changing illumination.

Sound Recognition Challenge. In this challenge, robots have to recognize
different signals based on a Audio Frequency Shift Keying (AFSK) as well as the
sound of a whistle.

For recognizing the AFSK, we decided to demodulate the signal incoherent,
i. e. without recovering the carrier [13]. We decided to check the frequency spec-
trum for the incoming signals, i. e. the AFSK signal when it is transmitted and
most of the time noise. Therefore, we have to take different aspects into account,
which are mainly the sampling frequency with respect to the highest signal fre-
quency, the time domain resolution of the window to be transferred by discrete
Fourier transform (DFT) into the frequency domain, and the window length of
the DFT for the frequency resolution. Here we have a conflict between window
length in time and DFT window length, as we get a higher resolution of the DFT
spectrum with higher window length N, but this leads to a greater time window
where the signal length is less than the window length, which is not useful.

The sampling frequency fs has to be set to more than the doubled highest
frequency in the spectrum (Shannon’s theorem) fs > 2× fhigh. For our case, we
have fs > 2× 320Hz → fs = 1kHz. As the NAO microphones’ lowest sampling
frequency is 8 kHz, we downsample the signal to 1 kHz after we low pass filtered
the 8 kHz signal to eliminate aliasing. As low pass filter we use a Finite Impulse
Response (FIR) filter, which has a constant group delay [4] [6].

For the DFT length, we use approximately a third of the signal length, the
rest which is then missing to get a good resolution in the frequency domain is
padded with zeros. This so-called zero padding can also be used to get a good
FFT (Fast Fourier Transform) length, which has to be a power of two. The
window used is a sliding window, such that the last samples are also included
in the next window frame. The advantage is given by a smoother frequency
transition, e. g. from 200Hz to 320Hz [6].

Finally, we check the magnitude at the given signal frequencies compared
to the overall average magnitude of a set of last spectra. This allows us to
distinguish between noise and the signal itself.

The same process can be used for the whistle, as this has also a specified
frequency. Moreover, we can check for harmonics in the higher frequencies. We
only need to adapt the sampling frequency as the whistle’s frequency is higher
than 500 Hz (the highest detectable frequency at fs = 1kHz).



7 Infrastructural Changes

B-Human Framework. After the 2013 code release [12], we completely switched
to 64 bit with the desktop side of our software. In addition, we upgraded to Mi-
crosoft’s Visual Studio 2013 on Windows, which supports the use of more C++11
features. The STREAMABLE macros introduced in the 2013 code release now
use C++’s in-place initialization that allows streamable representations to have
regular default constructors again. In addition, a similar syntax is now used
to define the dependencies of our modules, i. e. their requirements and what
they provide. This gives us more flexibility for the module base classes that are
generated. Thereby, we were able to drop the central blackboard class without
modifying existing modules and replace it with a hashtable-based blackboard
that is not a bottleneck in terms of code dependencies anymore.

In addition, this allowed us to simplify our online logger. The latter was also
improved in terms of performance. We also introduced downscaled grayscale
images for online logging, which again reduces the logging bandwidth required
by a factor of two. As an alternative it is now also possible to log full images
rarely, e. g., once a second, to store in-game images that, e. g., could be used to
improve the image processing system. At the RoboCup German Open 2014 we
logged all games on all robots, except for the final, and used the data to improve
our code for subsequent games.

The encapsulation of the behavior specification language CABSL that was
introduced in 2013 was improved, which makes it a more general means to pro-
vide a state-machine to a class. For instance, the logger now also uses CABSL
to manage its different processing states.

GameController. The GameController mainly developed by B-Human team
members is used as the official referee application in the SPL since 2013 and in
the Humanoid League since 2014. Due to the rule changes for the RoboCup 2014
it was required to implement these rule changes in the GameController. To adapt
it to the latest rule changes, we added the official coach interface and support
for a substitute player. In addition, the SPL drop-in competition was integrated
as a mode with a different set of penalties and neither coach nor substitute. The
GameController now also supports all-time team numbers, i. e. teams keep their
number over the years and do not need to reconfigure it for each competition.

8 Conclusions

In this paper, we described a number of new approaches that we have imple-
mented or we have been working on since RoboCup 2013. As in previous years,
we did not re-develop major parts from scratch but aim towards incremental im-
provements of the overall system. This concerns all areas of research, i. e. vision,
state estimation, behavior, and motion.

In addition to the “normal” soccer software, we work on approaches for all
three technical challenges as well as for the new Drop-In Player Competition.



Besides our annual code releases, the GameController is another contribution
of B-Human to the development of the Standard Platform League and the Hu-
manoid Leagues.
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1. Birbach, O., Bäuml, B., Frese, U.: Automatic and self-contained calibration of a
multi-sensorial humanoid’s upper body. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). pp. 3103–3108. St. Paul, MN,
USA (2012)

2. Elatta, A.Y., Gen, L.P., Zhi, F.L., Daoyuan, Y., Fei, L.: An overview of robot
calibration. IEEE Journal on Robotics and Automation 3, 74–78 (October 2004)
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