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Chapter 1

Introduction

1.1 About Us

B-Human is a joint RoboCup team of the Universitdt Bremen and the German Research Center
for Artificial Intelligence (DFKI). The team was founded in 2006 as a team in the Humanoid
League, but switched to participating in the Standard Platform League in 2009. Since then,
B-Human has won seven RoboCup German Open competitions, the RoboCup European Open
2016 competition, and has become RoboCup world champion five times.

After reaching the third place in 2014 and becoming runner-up world champion in 2015, we
finally regained the world champion title in 2016. We won all six matches in the main indoor
competition, achieving a goal difference of 43 : 1 (including three penalty shots in the final).
Instead of the first indoor round, we participated in the Outdoor Competition, which we finished
as vice champion by winning four games and losing only the final (total goal difference: 18 : 1).
Furthermore, we also won the Drop-In Competition by reaching the maximum possible score of
300/300 and became third in the overall ranking of the technical challenges.

The 2016 team consisted of the following persons (most of them are shown in Fig. 1.1):

Members: Tristan Bruns, Yannick Bilter, Mathis Engelbart, Miguel Kasparick, Daniel
Krause, Jonas Kuball, Lam Duy Le, Andre Liibken, Florian Maaf}, Andre Miihlenbrock,
Tim Miiller, Lukas Post, Kameran Q.E.Abdi, Jesse Richter-Klug, Peter Schulz, Leonid
Schwenke, René Schroder, Dennis Schiirholz, Andreas Stolpmann, Alexander Stowing,
Kannan Thambiah, Felix Thielke, Alexis Tsogias.

Associated Researchers: Udo Frese, Judith Miiller, Dennis Schiithe, Felix Wenk

Leaders: Tim Laue, Thomas Rofer.

1.2 About the Document

This document provides a survey of this year’s code release, continuing the tradition of annual
releases that was started several years ago. A short description of the changes to our system
compared to last year has already been given in our Team Description Paper for RoboCup 2016
[28] . This document is based on the code releases of the last years and aims to provide a
complete description of the system that we used at RoboCup 2016. The major changes made
to the system since last year are shortly enumerated in Section 1.3.
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Figure 1.1: The majority of the team members, celebrating after having won RoboCup 2016

The remainder of this document is organized as follows: Chapter 2 gives a short introduction
on how to build the code including the required software and how to run the NAO with our
software. Chapter 3 describes our framework’s architecture. Our image processing approaches
are presented in Chapter 4, followed by the state estimation approaches in Chapter 5. Chapter 6
explains the use of our behavior description language and gives an overview of the behavior used
at RoboCup 2016. Surveys of the sensor reading and motion control parts of the system are given
in Chapter 7 and Chapter 8 respectively. Our specific developments for the sub-competitions
and the technical challenges are described in Chapter 9. Finally, in Chapter 10, our simulation
and remote control environment SimRobot, the B-Human User Shell, and some other tools are
presented.

1.3 Major Changes Since 2015

The major changes made since RoboCup 2015 are described in the following sections:

3.7.8 Image Patches
Logging of multiple “high resolution” image parts.

4.1.4 Color Segmentation / YHS2
Full image color classification as image preprocessing.

4.3 Ball Detection
The ball detection has been completely rewritten to handle the new black and white ball
of 2016.

10
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4.2.6 Field Features
A combination of several basic field elements now comprises so called ,.field features” that
are used to improve the self localization.

5.1 Self-Localization
The implementation has been revised and the sensor resetting does not require any goal
detections anymore. Instead, new pose alternatives can be generated based on field fea-
tures.

5.4 Ball Search
Improved ball search with team field coverage.

6.3 Behavior of 2016
The behavior was improved to more precision (cf. Roles and Tactic 6.3.1).

8.7.1 Pointing Arm Motion
New arm motion engine to point at something with an outstretched arm.

9 Implementations for Sub-Competitions and Technical Challenges
In addition to the main indoor soccer competition, we also participated in the Outdoor
Competition, the Drop-In Competition, as well as in both technical challenges, i.e. the No
Wi-Fi Challenge and the Outdoor Challenge.

11



Chapter 2

Getting Started

The goal of this chapter is to give an overview of the code release package and to give instructions
on how to enliven a NAO with our code. For the latter, several steps are necessary: downloading
the source code, compiling the code using Visual Studio, Xcode, or make on Linux, setting up
the NAO, copying the files to the robot, and starting the software. In addition, all calibration
procedures are described here.

2.1 Download

The code release can be downloaded from GitHub at https://github.com/bhuman. Store the
code release to a folder of your liking. After the download is finished, the chosen folder should
contain several subdirectories which are described below.

Build is the target directory for generated binaries and for temporary files created during the
compilation of the source code. It is initially missing and will be created by the build
system.

Config contains configuration files used to configure the B-Human software. A brief overview
of the organization of the configuration files can be found in Sect. 2.9.

Install contains all files needed to set up B-Human on a NAO.

Make Contains Makefiles, other files needed to compile the code, the Copyfiles tool, and a
script to download log files from a NAO. In addition there are generate scripts that create
the project files for Xcode, Visual Studio, CodeLite, and NetBeans.

Src contains the source code of the B-Human software including the B-Human User Shell (cf.
Sect. 10.2).

Util contains auxiliary and third party libraries (cf. Sect. 11) as well as our simulator SimRobot
(cf. Sect. 10.1).

2.2 Components and Configurations

The B-Human software is usable on Windows, Linux, and macOS. It consists of two shared
libraries for NAOqi running on the real robot, an additional executable for the robot, the same

12
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software running in our simulator SimRobot (without NAOqi), as well as some libraries and
tools. Therefore, the software is separated into the following components:

bush is a tool to deploy and manage multiple robots at the same time (cf. Sect. 10.2).

Controller is a static library that contains NAO-specific extensions of the simulator, the in-
terface to the robot code framework, and it is also required for controlling and high level
debugging of code that runs on a NAO.

copyfiles is a tool for copying compiled code to the robot. For a more detailed explanation see
Sect. 2.5. In the Xcode project, this is called Deploy.

libbhuman is the shared library used by the B-Human executable to interact with NAOqi.

libgamectrl is a shared NAOqi library that communicates with the GameController. Addi-
tionally it implements the official button interface and sets the LEDs as specified in the
rules. More information can be found at the end of Sect. 3.1.

libgxt is a static library that provides an additional widget for Qt on Windows and Linux. On
macOS, the same source files are simply part of the library Controller.

Nao is the B-Human executable for the NAO. It depends on libbhuman and libgamectrl.
gtpropertybrowser is a static library that implements a property browser in Qt.

SimRobot is the simulator executable for running and controlling the B-Human robot code. It
dynamically links against the components SimRobotCore2, SimRobotEditor, SimulatedNao,
and some third-party libraries. SimRobot is compilable in Release, Develop, and Debug
configurations. All these configurations contain debug code, but Release performs some
optimizations and strips debug symbols (Linux and macOS). Develop produces debuggable
robot code while linking against non-debuggable but faster Release libraries.

SimRobotCore2 is a shared library that contains the simulation engine of SimRobot.
SimRobotEditor is a shared library that contains the editor widget of the simulator.

SimulatedNao is a shared library containing the B-Human code for the simulator. It depends
on Controller, gtpropertybrowser and libgzt. It is statically linked against them.

All components can be built in the three configurations Release, Develop, and Debug. Release
is meant for “game code” and thus enables the highest optimizations; Debug provides full de-
bugging support and no optimization. Develop is a special case. It generates executables with
some debugging support for the components Nao and SimulatedNao (see the table below for
more specific information). For all other components it is identical to Release.

The different configurations for Nao and SimulatedNao can be looked up here:

2.3 Building the Code

2.3.1 Project Generation

The scripts generate (or generate.cmd on Windows) in the Make/<OS/IDE> directories gen-
erate the platform or IDE specific files that are needed to compile the components. The script

13
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without debug symbols debug libs! optimizations
assertions | (compiler flags) (_.DEBUG, (compiler flags)
(NDEBUG) compiler flags)

Release

Nao v X X v
SimulatedNao v X X v
Develop

Nao X X X v
SimulatedNao X v X X
Debug

Nao X v v X
SimulatedNao X v v X

L~ on Windows - http://msdn.microsoft.com/en-us/library/0b98s6w8 (v=vs.140) .aspx

collects all the source files, headers, and other resources if needed and packs them into a solution
matching your system (i.e. Visual Studio projects and a solution file for Windows, a CodeLite
project for Linux, and an Xcode project for macOS). It has to be called before any IDE can
be opened or any build process can be started and it has to be called again whenever files are
added or removed from the project. On Linux, the generate script is needed when working with
CodeLite or NetBeans. Building the code from the command line, via the provided Makefile,
works without calling generate on Linux.

2.3.2 Visual Studio on Windows
2.3.2.1 Required Software

e Windows 8.1 64 bit or later
e Visual Studio 2015 or later

e Cygwin x86 / x64 (available at http://www.cygwin.com) with the additional packages
rsync, openssh, ccache, and clang. Let the installer add an icon to the start menu (the
Cygwin Terminal). Add the ...\cygwin64\bin directory to the beginning of the PATH en-
vironment variable (before the Windows system directory, since there are some commands
that have the same names but work differently). Make sure to start the Cygwin Terminal
at least once, since it will create a home directory.

e alcommon — For the extraction of the required alcommon library and compatible boost
headers from the NAOgi C++ SDK 2.1.4 Linuz 32 bit (naoqi-sdk-2.1.4.13-linux32.tar.gz)
the script Install/installAlcommon can be used, which is delivered with the B-Human
software. The required package has to be downloaded manually and handed over to the
script. It is available at https://community.ald.softbankrobotics.com (account re-

quired). Please note that this package is only required to compile the code for the actual
NAO robot.

Visual Studio 2015 Community Edition Update 3 with only the “Common Tools for Visual C++ 2015”
installed is sufficient.

14
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2.3.2.2 Compiling

Generate the Visual Studio project files using the script Make/VS2015/generate.cmd and open
the solution Make/VS2015/B-Human.sln in Visual Studio. Visual Studio will then list all the
components (cf. Sect. 2.2) of the software in the “Solution Explorer”. Select the desired configu-
ration (cf. Sect. 2.2, Develop would be a good choice for starters) and build the desired project:
SimRobot compiles every project used by the simulator, Nao compiles every project used for
working with a real NAO, and Utils/bush compiles the B-Human User Shell (cf. Sect. 10.2). You
may select SimRobot or Utils/bush as “StartUp Project”.

2.3.3 Xcode on macOS
2.3.3.1 Required Software

The following components are required:

e macOS 10.12 or later
e Xcode 8.1 or later

e alcommon — For the extraction of the required alcommon library and compatible boost
headers from the NAOgi C++ SDK 2.1.4 Linuz 32 bit (naoqi-sdk-2.1.4.13-linux32.tar.gz)
the script Install/installAlcommon can be used, which is delivered with the B-Human
software. The required package has to be downloaded manually and handed over to the
script. It is available at https://community.ald.softbankrobotics.com (account re-
quired). Please note that this package is only required to compile the code for the actual
NAO robot. Also note that installAlcommon expects the extension .tar.gz. If the NAOqi
archive was partially unpacked after the download, e. g., by Safari, repack it again before
executing the script.

2.3.3.2 Compiling

Generate the Xcode project by executing Make/macOS/generate. Open the Xcode project
Make/macOS/B-Human.xcodeproj. A number of schemes (selectable in the toolbar) allow
building SimRobot in the configurations Debug, Develop, and Release, as well as the code for
the NAO? in all three configurations (cf. Sect. 2.2). For both targets, Develop is a good choice.
In addition, the B-Human User Shell bush can be built. It is advisable to delete all the schemes
that are automatically created by Xcode, i.e. all non-shared ones.

When building for the NAO, a successful build will open a dialog to deploy the code to a robot
(using the copyfiles script, cf. Sect. 2.5).3 If the login script was used before to login to a NAO,
the IP address used will be provided as default. In addition, the option -r is provided by default,
which will restart the software on the NAO after it was deployed. Both the IP address selected
and the options specified are remembered for the next use of the deploy dialog. The IP address is
stored in the file Config/Scenes/Includes/connect.con that is also written by the login script and
used by the RemoteRobot simulator scene. The options are stored in Make/macOS/copyfiles-
options.txt. A special option is —a: If it is specified, the deploy dialog is not shown anymore in
the future. Instead, the previous settings will be reused, i. e. building the code will automatically

2Note that the cross compiler actually builds code for Linux, although the scheme says “My Mac”.
3Before you can do that, you have to setup the NAO first (cf. Sect. 2.4).
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deploy it without any questions asked. To get the dialog back, hold down the key Shift at the
time the dialog would normally appear.

2.3.3.3 Support for Xcode

Calling the script Make/macOS/generate also installs a lot of development support for Xcode:
Data formatters. If the respective file does not already exist, a symbolic link is created to
formatters that let Xcode’s debugger display summaries of several Figen datatypes.

Source file templates. Xcode’s context menu entry New File... contains a category B-
Human that allows to create some B-Human-specific source files.

Code snippets. Many code snippets are available that allow adding standard constructs fol-
lowing B-Human’s coding style as well as some of B-Human’s macros.

Source code formatter. A system text service for formatting B-Human code is available to
be used from Xcode’s menu Xcode— Services.

2.3.4 Linux

The following has been tested and works on Ubuntu 16.04 64-bit. It should also work on other
Linux distributions (as long as they are 64-bit); however, different or additional packages may
be needed.

2.3.4.1 Required Software

The build has been tested using the software versions provided by the current Ubuntu distribu-
tion repositories. Earlier versions of, e. g., clang may work, but are untested.

Requirements (listed by common package names) for Ubuntu 16.04:

e clang

e (t5-default

e libqt5svgh-dev

e libglew-dev

e libxml2-dev

e libasound2-dev

e graphviz — Optional, for generating module graphs and the behavior graph.

e alcommon — For the extraction of the required alcommon library and compatible boost
headers from the NAOgi C++ SDK 2.1.4 Linuz 32 bit (naoqi-sdk-2.1.4.13-linux32.tar.gz)
the script Install/installAlcommon can be used, which is delivered with the B-Human
software. The required package has to be downloaded manually and handed over to the
script. It is available at https://community.ald.softbankrobotics.com (account re-
quired). Please note that this package is only required to compile the code for the actual

NAO robot.
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On Ubuntu 16.04, you can execute the following command to install all requirements except for
alcommon:

sudo apt-get install qt5-default libqtbsvgb-dev libglew-dev libxml2-dev
libasound2-dev clang graphviz

2.3.4.2 Compiling

To compile one of the components described in Section 2.2 (except Copyfiles), simply select
Make/Linux as the current working directory and type:

make

to build the whole solution or

make <component> [CONFIG=<configuration>]

to build single components.

To clean up the whole solution, use:

make clean [CONFIG=<configuration>]

As an alternative, there is also support for the integrated development environments NetBeans
and CodeLite that work similar to Visual Studio for Windows (cf. Sect. 2.3.2.2).

To use CodelLite, execute Make/LinuxCodeLite/generate and open the B-Human.workspace
afterwards. Note that CodeLite 5 or later is required to open the workspace generated. Older
versions might crash.

2.4 Setting Up the NAO

2.4.1 Requirements

First of all, download the atom system image, e.g. version 2.1.4 (opennao-atom-system-image-
2.1.4.18_.2015-08-27.0pn), and the Flasher, e.g. version 2.1.0, for your operating system from
the download area of https://community.ald.softbankrobotics.com (account required). In
order to flash the robot, you need a USB flash drive having at least 2 GB space and a network
cable.

To use the scripts in the directory Install, the following tools are required?:
sed, rsync.

Each script will check its requirements and will terminate with an error message if a required
tool is not found.

The commands in this chapter are shell commands. They should be executed inside a Unix
shell. On Windows, you must use the Cygwin Terminal to execute the commands. All shell
commands should be executed from the Install directory.

2.4.2 Creating Robot Configuration Files for a NAO

Before you start to set up the NAO, you need to create configuration files for each robot you
want to set up. To create the configuration files, run createRobot followed by addRobotlds in

“In the unlikely case that they are missing in a Linux distribution, execute sudo apt-get install sed scp. On
Windows and macOS, they are already installed at this point.
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the Install directory. The first script expects a team id, a robot id and a robot name. The team
id is usually equal to your team number configured in Config/settings.cfg, but you can use any
number between 1 and 254. The given team id is used as third part of the IPv4 address of the
robot on both interfaces LAN and WLAN. All robots playing in the same team need the same
team id to be able to communicate with each other. The robot id is the last part of the IP
address and must be unique for each team id. The robot name identifies the robot and is used
in the system to load robot specific configurations. Furthermore, it is used as the host name of
the NAO operating system. The second file creates a table associating the headld and bodyld
of each NAO to the name used by createRobot. These ids are the serial-numbers SoftBank
Robotics uses for the NAO. Apart from the name this script expects either those ids, typed in
manually, or the current ip-address of the NAO, in which case the ids will be loaded from the
robot.

Before creating your first robot configuration, check whether the network configuration template
files wireless and wired in Install/Network and default in Install/Network/Profiles match the
requirements of your local network configuration.

Here is an example for creating a new set of configuration files for a robot named Penny in team
three with IP xxx.xxx.3.25:

cd Imstall
./createRobot -t 3 -r 25 Penny
./addRobotIds -ids ALDxxxxxxxxxXxxx ALDxxxxxxxxXxxxXx Penny

If the robot is already running after the installation in Sect. 2.4.4 the script can use its ip (e. g.
169.254.54.28) to extract the ids from the robot directly:

./addRobotIds -ip 169.254.54.28 Penny

Help for both scripts is available using the option -h. Running createRobot creates all needed files
to install the robot. This script also creates a directory with the robot’s name in Config/Robots.
addRobotlds will store the table in Config/Robots/robots.cfg.

Note: When upgrading from an older B-Human code release running createRobot is not nec-
essary. Nevertheless, the script addRobotlds has to be executed!

2.4.3 Managing Wireless Configurations

All wireless configurations are stored in Install/Network/Profiles. Additional configurations
must be placed here and will be installed alongside the default configuration. After the setup will
be completed, the NAO will always load the default configuration, when booting the operating
system.

You can later switch between different configurations by calling the script setprofile on the NAO,
which overwrites the default configuration.

setprofile SPL_A
setprofile Home

Another way to switch between different configurations is by using the tools copyfiles (cf.
Sect. 2.5) or bush (cf. Sect. 10.2).
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2.4.4 Setup

After the robot specific configuration files were created (cf. Sect. 2.4.2 and Sect. 2.4.3), plug
in your USB flash drive and start the NAO flasher tool®. Select the opennao-atom-system-
image-2.1.4.13.0pn and your USB flash drive. Enable “Factory reset” and click on the write
button.

After the USB flash drive has been flashed, plug it into the NAO that is switched off and press
the chest button for about 5 seconds. Afterwards, the NAO will automatically install NAO OS
and reboot. While installing the basic operating system, connect your computer to the robot
using the network cable and configure your network for DHCP. Once the reboot is finished, the
NAO will do its usual wake-up procedure. Now the NAO will say its current IP address by
pressing the chest button.

Afterwards the script installRobot has to be executed in order to prepare the robot for the
B-Human software. This script only expects the current IP address of the robot. For example
run:

./installRobot 169.254.54.28

Follow the instructions on the screen until the robot reboots.

If you did not set the id of the robot in Sect. 2.4.2 you can now refer to it using the ip flag for
the addRobotlds script.

Now you can use copyfiles (cf. Sect. 2.5) or bush (cf. Sect. 10.2) to copy compiled code and
configuration files to the NAO.

2.5 Copying the Compiled Code

The script copyfiles is used to copy compiled code and configuration files to the NAO. Although
copyfiles allows specifying the team number, it is usually better to configure the team number
and the UDP port used for team communication permanently in the file Config/settings.cfg.

On Windows as well as on macOS, you can use your IDE to use copyfiles. In Visual Studio, you
can run the script by “building” the project copyfiles, which can be built in all configurations.
If the code is not up-to-date in the desired configuration, it will be built. After a successful
build, you will be prompted to enter the parameters described below. On the Mac, a successful
build for the NAO always ends with a dialog asking for copyfiles’ command line options. You
can also execute the script at the command prompt, which is the only option for Linux users.
The script is located in the folder Make/<OS/IDE>.

copyfiles requires two mandatory parameters. First, the configuration the code was compiled
with (Debug, Develop, or Release)®, and second, the IP address of the robot. To adjust the
desired settings, it is possible to set the following optional parameters:

50On Linux and macOS you have to start the flasher with root permissions. Usually you can do this with sudo
./flasher
5This parameter is automatically passed to the script when using IDE-based deployment.
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Option Description

-d Removes all log files from the robot’s /home/nao/logs directory before
copying files.

-h | ==help Prints the help.

-1 <location>
-m <n> <ip>

-mn <number>

-n <number>
-nc

-0 <port>

-p <number>
-r

-S

-t <color>

-v <percent>
-w <profile>
-wce

Sets the location, replacing the value in the settings.cfg.

Copies to IP address <ip> and sets the player number to n. This option
can be specified more than ones to deploy to multiple robots.

Sets the magic number. Robots with different magic numbers will ignore
each other when communicating.

Sets team number, replacing the value in the settings.cfg.

Never compiles, even if binaries are outdated. Default on Windows.
Overwrite team port (default is 10000 + team number).

Sets the player number, replacing the value in the settings.cfg.

Restarts bhuman (and naoqi if necessary) after copying.

Stops naoqi.

Sets the team color to blue, red, yellow, or black, replacing the value in
the settings.cfg.

Set NAO’s sound volume.

Set wireless profile.

Compiles also under Windows if the binaries are outdated.

Possible calls could be:

./copyfiles Develop 134.102.204.229 -n 5 -t blue -p 3 -r
./copyfiles Release -m 1 10.0.0.1 -m 3 10.0.0.2

The destination directory on the robot is /home/nao/Config. Alternatively, the B-Human User
Shell (cf. Sect. 10.2) can be used to copy the compiled code to several robots at once.

2.6 Working with the NAO

After pressing the chest button, it takes about 40 seconds until NAOqi is started. Currently,
the B-Human software consists of two shared libraries (libbhuman.so and libgamectrl.so) that
are loaded by NAOqi at startup, and one executable (bhuman), which is also loaded at startup.

To connect to the NAO, the subdirectories of Make contain a login script for each supported
platform. The only parameter of that script is the IP address of the robot to login. It automat-
ically uses the appropriate SSH key to login. In addition, the IP address specified is written to
the file Config/Scenes/Includes/connect.con. Thus a later use of the SimRobot scene RemoteR-
obot.ros2 will automatically connect to the same robot. On macOS, the IP address is also the
default address for deployment in Xcode.

Additionally, the script Make/Linux/ssh-config can be used to output a valid ssh config file
containing all robots currently present in the robots folder. Using this configuration file, one
can connect to a robot using its name instead of the IP address.

There are several scripts to start and stop NAOqi and bhuman via SSH. Those scripts are copied
to the NAO upon installing the B-Human software.

naoqi executes NAQOqi in the foreground. Press Ctri+C to terminate the process. Please note
that the process will automatically be terminated if the SSH connection is closed.

nao start|stop|restart starts, stops or restarts NAOqi. In case libbhuman or libgamectr] were
updated, copyfiles restarts NAOqi automatically.
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bhuman executes the bhuman executable in the foreground. Press Ctrl+C to terminate the
process. Please note that the process will automatically be terminated if the SSH connec-
tion is closed.

bhumand start|stop|restart starts, stops or restarts the bhuman executable. Copyfiles al-
ways stops bhuman before deploying. If copyfiles is started with option -r, it will restart
bhuman after all files were copied.

status shows the status of NAOqi and bhuman.
stop stops running instances of NAOqi and bhuman.

halt shuts down the NAO. If NAQOqi is running, this can also be done by pressing the chest
button longer than three seconds.

reboot reboots the NAO.

2.7 Starting SimRobot

On Windows and macOS, SimRobot can either be started from the development environment
or by starting a scene description file in Config/Scenes’. In the first case, a scene description
file has to be opened manually, whereas it will already be loaded in the latter case. On Linux,
just run Build/SimRobot/Linux/< configuration>/SimRobot, either from the shell or from your
favorite file browser, and load a scene description file afterwards. When a simulation is opened
for the first time, only the scene graph is displayed. The simulation is already running, which
can be noted from the increasing number of simulation steps shown in the status bar. A scene
view showing the soccer field can be opened by double-clicking RoboCup. The view can be
adjusted by using the context menu of the window or the toolbar. Double-clicking Console will
open a window that shows the output of the robot code and that allows entering commands.
All windows can be docked in the main window.

After starting a simulation, a script file may automatically be executed, setting up the robot(s)
as desired. The name of the script file is the same as the name of the scene description file but
with the extension .con. Together with the ability of SimRobot to store the window layout, the
software can be configured to always start with a setup suitable for a certain task.

Although any object in the scene graph can be opened, only displaying certain entries in the ob-
ject tree makes sense, namely the main scene RoboCup, the objects in the group RoboCup/robots,
and all other views.

To connect to a real NAO, open the RemoteRobot scene Config/Scenes/RemoteRobot.ros2. You
will be prompted to enter the NAO’s IP address.® In a remote connection, the simulation scene
is usually empty. Therefore, it is not necessary to open a scene view.

2.8 Calibrating the Robots

Correctly calibrated robots are very important since the software requires all parts of the NAO to
be at the expected locations. Otherwise the NAO will not be able to walk stable and projections

"On Windows, the first time starting such a file the SimRobot.exe must be manually chosen to open these files.
Note that both on Windows and macOS, starting a scene description file bears the risk of executing a different
version of SimRobot than the one that was just compiled.

8The script might instead automatically connect to the IP address that was last used for login or deployment.
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from image coordinates to world coordinates (and vice versa) will be wrong. In general, a lot
of calculations will be unreliable. Two physical components of the NAO can be calibrated
via SimRobot; the joints (cf. Sect. 2.8.2) and the cameras (cf. Sect. 2.8.3). Checking those
calibrations from time to time is important, especially for the joints. New robots come with
calibrated joints and are theoretically ready to play out of the box. However, over time and
usage, the joints wear out. This is especially noticeable with the hip joint.

In addition to that, the B-Human software uses four color classes (cf. Sect. 4.1.4) which have to
be calibrated, too (cf. Sect. 2.8.4). Changing locations or light conditions might require them
to be adjusted.

2.8.1 Overall physical calibration

The physical calibration process can be split into three steps with the overall goal of an upright
and straight standing robot, and a correctly calibrated camera. The first step is to get both
feet in a planar position. This does not mean that the robot has to stand straight. It is done
by lifting the robot up so that the bottom of the feet can be seen. The joint offsets of feet and
legs are then changed until both feet are planar and the legs are parallel to one another. The
distance between the two legs can be measured at the gray parts of the legs. They should be 10
cm apart from center to center.

The second step is the camera calibration (cf. Sect. 2.8.3). This step also measures the tilt of
the body with respect to the feet. This measurement can then be used in the third step to
improve the joint calibration and straighten the robot up (cf. Sect. 2.8.2). In some cases it may
be necessary to repeat these steps.

2.8.2 Joint Calibration

The software supports two methods for calibrating the joints; either by manually adjusting
offsets for each joint, or by using the JointCalibrator module which uses an inverse kinematic to
do the same (cf. Sect. 8.3.3). The third step of the overall calibration process (cf. Sect. 2.8.1)
can only be done via the JointCalibrator. When switching between those two methods, it is
necessary to save the JointCalibration, redeploy the NAO and restart bhuman. Otherwise, the
changes done previously will not be used.

Before changing joint offsets, the robot has to be set in a standing position with fixed joint
angles. Otherwise, the balancing mechanism of the motion engine might move the legs, messing
up the joint calibrations. This can be done with

get representation:MotionRequest

and then set motion = stand in the returned statement.
When the calibration is finished it should be saved:

save representation:JointCalibration

Manually Adjusting Joint Offsets

First of all, the robot has to be switched to a stationary stand, otherwise the balancing mecha-
nism of the motion engine might move the legs, messing up the joint calibration:

mr StandOutput CalibrationStand
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There are two ways to adjust the joint offsets. Either by requesting the JointCalibration repre-
sentation with a get call:

get representation:JointCalibration
modifying the calibration returned and then setting it. Or by using a Data View (cf.
Sect. 10.1.4.5)

vd representation:JointCalibration

which is more comfortable.

The JointCalibration also contains other information for each joint that should not be changed!

Using the JointCalibrator

First set the JointCalibrator to provide the JointCalibration and switch to the CalibrationStand:

call JointCalibrator

When a completely new calibration is desired, the JointCalibration can be reset:

dr module:JointCalibrator:reset

Afterwards, the translation and rotation of the feet can be modified. Again either with

get module:JointCalibrator:offsets

or with:

vd module:JointCalibrator:offsets

The units of the translations are in millimeters and the rotations are in degrees.

Straightening Up the NAO

The camera calibration (cf. Sect. 2.8.3) also calculates a rotation for the body rotation. These
values can be passed to the JointCalibrator that will then set the NAO in an upright position.
Call:

get representation:CameraCalibration
call JointCalibrator

Copy the values of bodyRotationCorrection (representation CameraCalibration) into bodyRotation
(representation JointCalibration). Afterwards, set bodyRotationCorrection (representation Cam-
eraCalibration) to zero. Another way to make these actions more or less automatically is possible
by using the AutomaticCameraCalibrator with the automation flag (cf. Sect. 2.8.3).

The last step is to adjust the translation of both feet at the same time (and most times in the
same direction) so they are perpendicular positioned below the torso. A plummet or line laser
is very useful for that task.

When all is done save the representations by executing

save representation:JointCalibration
save representation:CameraCalibration

Then redeploy the NAO and restart bhuman.
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Figure 2.1: Projected lines before (a) and after (b) the calibration procedure

2.8.3 Camera Calibration

For calibrating the cameras (cf. Sect. 4.1.2.1) using the module AutomaticCameraCalibrator, follow
the steps below:

24

. Connect the simulator to a robot on the field and place it on a defined spot (e.g. the

penalty mark).

. Run the SimRobot configuration file AutomaticCameraCalibrator.con (in the console type

call AutomaticCameraCalibrator). This will initialize the calibration process and further-
more print commands or help to the simulator console that will be needed later on.

. Announce the robot’s position on the field (cf. Sect. 4.1.2) wusing the

AutomaticCameraCalibrator module (e.g. for setting the robot’s position to the
penalty mark of a field, type set module:AutomaticCameraCalibrator:robotPose rotation
= 0; translation = {x = -3200; y = 0;}; in the console).

. To automatically generate the commands for the following joint calibration to

correct the body rotation, you can set a flag via set module:AutomaticCame-
raCalibrator:setJointOffsets true. After you finished the optimization you can just enter
the generated commands and thereby correct the rotation.

. To start the point collection use the command dr module:AutomaticCameraCalibra-

tor:start and wait for the output “Accumulation finished. Waiting to optimize...”. The
process includes both cameras and will collect samples for the calibration and make the
head motions to cover the whole field. The samples for the upper camera are drawn blue
and the smaple for the lower camera red. A drawing above the images signalizes if the
sample amount is sufficient for optimization (green) or not (red).

. If you are unhappy with the collection of some specific samples you are now able to delete

samples by left-clicking onto the sample in the image in which it has been found. If there
are some samples missing you can manually add them by Ctrl + left-clicking into the
corresponding image.

. Run the automatic calibration process using dr module:AutomaticCameraCalibrator:-

optimize and wait until the optimization has converged.
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In addition to the code release of the last year [30], the module AutomaticCameraCalibrator has
been fixed for the manual sample collection and deletion. The chance to delete or add a sample
is like in the former manual versions of the calibrator. Also a color changed for the upper camera
because the color and the size of samples in this camera could be mistaken with BallSpots.

RS - Points collected: 94

=

Figure 2.2: The three interesting camera calibration stages. a) is the start of the calibrator. b)
is the view after the control start with gathered samples. c) is the stage after optimization.

2.8.4 Color Calibration

Calibrating the color classes is split into two steps. First of all, the parameters of the camera
driver must be updated to the environment’s needs. The command:

get representation:CameraSettings

will return the current settings. Furthermore, the necessary set command will be generated.
The most important parameters are:

whiteBalance: The white balance used. The available interval is [2700, 6500].

exposure: The exposure used. The available interval is [0, 1000]. Usually, an exposure of 140
is used, which equals 14 ms. Be aware that high exposures lead to blurred images.

gain: The gain used. The available interval is [0, 255]. Usually, the gain is set to 50 - 70. Be
aware that high gain values lead to noisy images.

autoWhiteBalance: Enable(1) / disable(0) the automatism for white balance. This parameter
should always be disabled since a change in the white balance can change the color and
mess up the color calibration. On the other hand, a real change in the color temperature
of the environment will have the same result.

autoExposure: Enable (1) / disable (0) the automatism for exposure. When playing under
static light conditions such as in the standard indoor tournament, this parameter should
always be disabled, since the automation will often choose higher values than necessary,
which will result in blurry images. However, for dynamic light conditions as were present
in the Outdoor Competition at RoboCup 2016, using the automatism of the camera driver
may be a necessity. In this case, its behavior can be altered using the parameters autoEx-
posureAlgorithm and brightness.

The camera driver can do a one-time auto white balance. This feature can be triggered with
the commands:
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Figure 2.3: The left figure shows an image with improper white balance. The right figure shows
the same image with better settings for white balance.

dr module:CameraProvider:doWhiteBalanceUpper
dr module:CameraProvider:doWhiteBalancelLower

After setting up the parameters of the camera driver, the parameters of the color classes must
be updated (cf. Sect. 4.1.4). To do so, one needs to open the views with the segmented
upper and lower camera images and the color calibration view. See (cf. Sect. 10.1.4.1 and
Sect. 10.1.4.1). After finishing the color class calibration and saving the current parameters,
copyfiles/bush (cf. Sect. 2.5) can be used to deploy the current settings. Ensure the updated
files cameraSettingsV5.cfg (or cameraSettingsV4.cfg if the NAO is a V4 model) and fieldCol-
orsCalibrationV5.cfg (or fieldColorsCalibrationV4.cfg) are stored in the correct location.

2.9 Configuration Files

Since the recompilation of the code takes a lot of time in some cases and each robot needs
a different configuration, the software uses a huge amount of configuration files which can be
altered without causing recompilation. All the files that are used by the software® are located
below the directory Config.

Locations can be used to configure the software for different independent tasks. They can be set
up by simply creating a new folder with the desired name within Config/Locations and placing
configuration files in it. Those configuration files are only taken into account if the location is
activated in the file Config/settings.cfg.

Besides the global configuration files, there are some files which depend on the robot’s head,
body, or both. To differentiate the locations of these files, the names of the head and the body
of each robot are used. They are defined in the file Config/Robots/robots.cfg that maps the
serial numbers of the heads and the bodies of the robots to their actual names. In the Simulator,
both names are always “Nao”.

To handle all these different configuration files, there are fall-back rules that are applied if a
requested configuration file is not found. The search sequence for a configuration file is:

1. Config/Robots/<head name>/Head /< filename>

9There are also some configuration files for the operating system of the robots that are located in the directory
Install.

26



2.9. CONFIGURATION FILES B-Human 2016

e Used for files that only depend on the robot’s head
e e.g.: Robots/Amy/Head/cameralntrinsics.cfg

2. Config/Robots/<body name>/Body/< filename>

e Used for files that only depend on the robot’s body
e e.g.: Robots/Alex/Body/walkingEngine.cfq

3. Config/Robots/<head name>/<body name> /< filename>

e Used for files that depend on both, the robot’s head and body.
e c.g.: Robots/Amy/Alex/cameraCalibration.cfg

4. Config/Robots/<head name> /<filename>

e If the head and body constellations for your robots are always the same, all files which
belong to a robot may also be saved here.

5. Config/Robots/Default /< filename>
6. Config/Locations/<current location> /< filename>
7. Config/Locations/Default /< filename>

8. Config/<filename>

So, whether a configuration file is robot-dependent or location-dependent or should always be
available to the software is just a matter of moving it between the directories specified above.
This allows for a maximum of flexibility. Directories that are searched earlier might contain
specialized versions of configuration files. Directories that are searched later can provide fallback
versions of these configuration files that are used if no specialization exists.

Using configuration files within our software requires very little effort, because loading them is
completely transparent for a developer when using parametrized modules (cf. Sect. 3.3.5).
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Chapter 3

Architecture

The B-Human architecture [25] is based on the framework of the GermanTeam 2007 [24], adapted
to the NAO. This chapter summarizes the major features of the architecture: binding, processes,
modules and representations, communication, and debugging support.

3.1 Binding

The actuators and sensors (except the camera) of the NAO are accessed using the NAOgi SDK
that is actually a stand-alone module framework that we do not use as such. Therefore, we
deactivated all non-essential pre-assembled modules and implemented the very basic module
libbhuman for accessing the actuators and sensors from another native platform process called
bhuman that encapsulates the B-Human module framework.

Whenever the Device Communication Manager (DCM) reads a new set of sensor values, it
notifies the libbhuman about this event using an atPostProcess callback function. After this
notification, libbhuman writes the newly read sensor values into a shared memory block and
raises a semaphore to provide a synchronization mechanism to the other process. The bhuman
process waits for the semaphore, reads the sensor values that were written to the shared memory
block, calls all registered modules within B-Human’s process Motion and writes the resulting
actuator values back into the shared memory block right after all modules have been called.
When the DCM is about to transmit desired actuator values (e.g. target joint angles) to the
hardware, it calls the atPreProcess callback function. On this event libbhuman sends the
desired actuator values from the shared memory block to the DCM.

It would also be possible to encapsulate the B-Human framework as a whole within a single
NAOgqi module, but this would lead to a solution with a lot of drawbacks. The advantages of
the separated solution are:

e Both frameworks use their own address space without losing their real-time capabilities
and without a noticeable reduction of performance. Thus, a malfunction of the process
bhuman cannot affect NAOgqi and vice versa.

e Whenever bhuman crashes, libbhuman is still able to display this malfunction using red
blinking eye LEDs and to make the NAO sit down slowly. Therefore, the bhuman process
uses its own watchdog that can be activated using the -w flagt when starting the bhuman
process. When this flag is set, the process forks itself at the beginning where one instance

!The start up scripts bhuman and bhumand set this flag by default.
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waits for a regular or irregular exit of the other. On an irregular exit the exit code can
be written into the shared memory block. The libbhuman monitors whether sensor values
were handled by the bhuman process using the counter of the semaphore. When this
counter exceeds a predefined value the error handling code will be initiated. When using
release code (cf. Sect. 2.2), the watchdog automatically restarts the bhuman process after
an irregular exit.

e Debugging with a tool such as the GDB is much simpler since the bhuman executable can
be started within the debugger without taking care of NAOqi.

The GameController (cf. Sect. 10.3) provides the library libgamectr] that handles the network
packets, sets the LEDs, and handles the official button interface. The library is already inte-
grated into the B-Human project. Since the libgamectrl is a NAOqi module, the libbhuman (cf.
Sect. 3.1) handles the data exchange with the library and provides the resulting game control
data packet to the main B-Human executable. The libbhuman also sets the team number, team
color, and player number whenever a new instance of the main B-Human executable is started,
so that the libgamectrl resets the game state to Initial.

3.2 Processes

Most robot control programs use concurrent processes. The number of parallel processes is best
dictated by external requirements coming from the robot itself or its operating system. The
NAO provides images from each camera at a frequency of 30 Hz and accepts new joint angles
at 100 Hz. For handling the camera images, there would actually have been two options: either
to have two processes each of which processes the images of one of the two cameras and a third
one that collects the results of the image processing and executes world modeling and behavior
control, or to have a single process that alternately processes the images of both cameras and also
performs all further steps. We use the latter approach, because each interprocess communication
might add delays to the system. Since the images of both cameras are processed, that single
process runs at 60 Hz. In addition, there is a process that runs at the motion frame rate of the
NAO, i.e. at 100 Hz. Another process performs the TCP communication with a host PC for
the purpose of debugging.

This results in the three processes Cognition, Motion, and Debug used in the B-Human system
(cf. Fig. 3.1). Cognition receives camera images from Video for Linuz, as well as sensor data

Cameras

Robot
Control * i

Program

Figure 3.1: The processes used on the NAO
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from the process Motion. It processes this data and sends high-level motion commands back to
the process Motion. This process actually executes these commands by generating the target
angles for the 25 joints of the NAO. It sends these target angles through the libbhuman to NAO’s
Device Communication Manager, and it receives sensor readings such as the actual joint angles,
acceleration and gyro measurements, etc. In addition, Motion reports about the motion of the
robot, e. g., by providing the results of dead reckoning. The process Debug communicates with
the host PC. It distributes the data received from it to the other two processes, and it collects
the data provided by them and forwards it back to the host machine. It is inactive during actual
games.

Processes in the sense of the architecture described can be implemented as actual operating
system processes, or as threads. On the NAO and in the simulator, threads are used. In
contrast, in B-Human’s past team in the Humanoid League, framework processes were mapped
to actual processes of the operating system (i.e. Windows CE). For the sake of consistency, we
will use the term “processes” in this document.

3.3 Modules and Representations

A robot control program usually consists of several modules, each performing a certain task,
e. g. image processing, self-localization, or walking. Modules require a certain input and produce
a certain output (so-called representations). Therefore, they have to be executed in a specific
order to make the whole system work. The module framework introduced in [24] simplifies
the definition of the interfaces of modules and automatically determines the sequence in which
the modules must be executed. It consists of the blackboard, the module definition, and a
visualization component (cf. Sect. 10.1.4.5).

3.3.1 Blackboard

The blackboard [12] is the central storage for information, i.e. for the representations. Each
process is associated with its own instance of the blackboard. Representations are transmitted
through inter-process communication if a module in one process requires a representation that is
provided by a module in another process. The blackboard itself is a map that associates names of
representations to reference-counted instances of these representations. It only contains entries
for the representations that at least one of the modules in associated process actually requires
or provides.

3.3.2 Module Definition

The definition of a module consists of three parts: the module interface, its actual implementa-
tion, and a statement that allows instantiating the module. Here an example:

MODULE (SimpleBallLocator,
{,
REQUIRES (BallPercept),
REQUIRES (FrameInfo),
PROVIDES (BallModel) ,
DEFINES_PARAMETERS (
{,
(Vector2f)(5.f, 0.f) offset,
(float) (1.1f) scale,
B,
)M

30



3.3. MODULES AND REPRESENTATIONS B-Human 2016

class SimpleBallLocator : public SimpleBallLocatorBase

{
void update (BallModel& ballModel)
{
if (theBallPercept.wasSeen)
{
ballModel.position = theBallPercept.position * scale + offset;
ballModel .wasLastSeen = theFramelnfo.frameTime;
}
}
}

MAKE_MODULE (SimpleBalllLocator , modeling) ;

The module interface defines the name of the module (e.g. SimpleBallLocator), the represen-
tations that are required to perform its task, the representations provided by the module, and
the parameters of the module, the values of which can either be defined in place or loaded from
a file. The interface basically creates a base class for the actual module following the naming
scheme <ModuleName>Base. The actual implementation of the module is a class that is derived
from that base class. It has read-only access to all the required representations in the black-
board (and only to those), and it must define an update method for each representation that
is provided. It also inherits all parameters. As will be described in Section 3.3.3, modules can
expect that all their required representations have been updated before any of their provider
methods is called. Finally, the MAKE MODULE statement allows the module to be instantiated.
It has a second parameter that defines a category that is used for a more structured visual-
ization of the module configuration (cf. Sect. 10.1.4.5). This second parameter is also used to
filter modules that can be loaded in the current framework environment, i.e. the process (cf.
Sect. 3.2). In process Cognition the categories cognitionInfrastructure, communication,
perception, modeling, and behaviorControl are available and in process Motion the cate-
gories motionInfrastructure, motionControl, and sensing. The list of available categories is
defined in the main implementation file of the respective process (Src/Processes/Cognition.cpp
and Src/Processes/Motion.cpp). While the module interface is usually part of the header file,
the MAKE_MODULE statement has to be part of the implementation file.

MODULE is a macro that gets all the information about the module as parameters, i.e. they are
all separated by commas. The macro ignores its second and its last parameter, because by
convention, these are used for opening and closing curly brackets. These let some source code
formatting tools to indent the definitions as a block. Currently, MODULE is limited to up to 80
definitions between the curly brackets. When the macro is expanded, it creates a lot of hidden
functionality. Each entries that references a representation makes sure that it is created in the
blackboard when the module is constructed and freed when the module is deconstructed. The
information that a module has certain requirements and provides certain representations is not
only used to generate a base class for that module, but is also available for sorting the providers,
and can be requested by a host PC. On a host PC the information can be used to change the
configuration and for visualization (cf. Sect. 10.1.4.5).

For each representation provided with PROVIDES the execution time can be determined (cf.
Sect. 3.6.7) and it can be sent to a host PC or even altered by it. If the latter is not desired,
PROVIDES _WITHOUT_MODIFY can be used instead. If a MesssageID id<representation> exists,
the representation can also be logged.

If a representation provided defines a parameterless method draw, that method will be called
after the representation was updated. The method is intended to visualize the representation
using the techniques described in Sect. 3.6.3. If the representation defines a parameterless
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method verify, that method will be called in Debug and Develop builds after the representation
was updated as well. A verify method should contain ASSERTs that check whether the contents
of the representation are plausible. Both methods are only called if they are defined in the
representation itself and not if they are inherited from its base class.

3.3.3 Configuring Providers

Since modules can provide more than a single representation, the configuration has to be per-
formed on the level of providers. For each representation it can be selected which module
provides it or that it is not provided at all. Normally, the configuration is read from the file
Config/Location/<location>/modules.cfg during the start-up of the process, but it can also be
changed interactively when the robot has a debug connection to a host PC using the command
mr (cf. Sect. 10.1.6.3).

The configuration does not specify the sequence in which the providers are executed. This
sequence is automatically determined at runtime based on the rule that all representations
required by a provider must already have been provided by other providers before, i.e. those
providers have to be executed earlier.

In some situations it is required that a certain representation is provided by a module before any
other representation is provided by the same module, e.g., when the main task of the module
is performed in the update method of that representation, and the other update methods rely
on results computed in the first one. Such a case can be implemented by both requiring and
providing a representation in the same module.

3.3.4 Pseudo-Module default

During the development of the robot control software, it is sometimes desirable to simply de-
activate a certain provider or module. As mentioned above, it can always be decided not to
provide a certain representation, i. e. all providers generating the representation are switched off.
However, not providing a certain representation typically makes the set of providers inconsis-
tent, because other providers rely on that representation, so they would have to be deactivated
as well. This has a cascading effect. In many situations, it would be better to be able to de-
activate a provider without any effect on the dependencies between the modules. That is what
the module default was designed for. It is an artificial construct — so not a real module — that
can provide all representations that can be provided by any module in the same process. It will
never change any of the representations — so they basically remain in their initial state — but it
will make sure that they exist, and thereby, all dependencies can be resolved. However, in terms
of functionality, a configuration using default is never complete and should not be used during
actual games.

3.3.5 Parameterizing Modules

Modules usually need some parameters to function properly. Those parameters can also be
defined in the module’s interface description. Parameters behave like protected class members
and can be accessed in the same way. Additionally, they can be manipulated from the console
using the commands get parameters:<ModuleName> or vd parameters:<ModuleName> (cf.
Sect. 10.1.6.3).

There are two different parameter initialization methods. In the hard-coded approach, the
initialization values are specified as part of the C4++ source file. They are defined using the
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DEFINES_PARAMETERS macro. This macro is intended for parameters that may change dur-
ing development but will never change again afterwards. In contrast, loadable parameters are
initialized to values that are loaded from a configuration file upon module creation, i.e. the
initialization values are not specified in the source file. These parameters are defined using the
LOADS_PARAMETERS macro. By default, parameters are loaded from a file with the same base
name as the module, but starting with a lowercase letter? and the extension .cfg. For instance if
a module is named SimpleBallLocator, its configuration file is simpleBallLocator.cfg. This file can
be placed anywhere in the usual configuration file search path (cf. Sect. 2.9). It is also possible
to assign a custom name to a module’s configuration file by passing the name as a parameter to
the constructor of the module’s base class.

Only either DEFINES PARAMETERS or LOADS_PARAMETERS can be used in a module definition.
They can both only be used once. Their syntax follows the definition of generated streamable

classes (cf. Sect. 3.4.4). Parameters may have any data type as long as it is streamable (cf.
Sect. 3.4.3).

3.4 Serialization

In most applications, it is necessary that data can be serialized, i. e. transformed into a sequence
of bytes. While this is straightforward for data structures that already consist of a single block
of memory, it is a more complex task for dynamic structures, e.g. lists, trees, or graphs. Our
implementation for streaming data follows the ideas introduced by the C++ iostreams library,
i.e., the operators << and >> are used to implement the process of serialization. In contrast
to the iostreams library, our implementation guarantees that data is streamed in a way that it
can be read back without any special handling, even when streaming into and from text files,
i.e. the user of a stream does not need to know about the representation that is used for the
serialized data (cf. Sect. 3.4.1).

On top of the basic streaming class hierarchy, it is also possible to derive classes from class
Streamable and implement the mandatory method serialize(In*, QOut*). In addition, the
basic concept of streaming data was extended by a mechanism to gather information on the
structure of the data while serializing it. This information is used to translate between the data
in binary form and a human-readable format that reflects the hierarchy of a data structure, its
variables, and their actual values.

As a third layer of serialization, two macros allow defining classes that automatically implement
the method serialize(In*, Outx*).

3.4.1 Streams

The foundation of B-Human’s implementation of serialization is a hierarchy of streams. As a
convention, all classes that write data into a stream have a name starting with “Out”, while
classes that read data from a stream start with “In”. In fact, all writing classes are derived from
the class Out, and all reading classes are derivations of the class In. All classes support reading
or writing basic datatypes with the exceptions of long, unsigned long, and size_t, because
their binary representations have different sizes on currently used platforms (32/64 bits). They
also provide the ability to read or write raw binary data.

All streaming classes derived from In and Out are composed of two components: One for read-

2 Actually, if a module name begins with more than one uppercase letter, all initial uppercase letters but the
last one are transformed to lowercase, e.g. the module USControl reads the file usControl.cfg.
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ing/writing the data from/to a physical medium and one for formatting the data from/to a
specific format. Classes writing to physical media derive from PhysicalOutStream, classes
for reading derive from PhysicalInStream. Classes for formatted writing of data derive from
StreamWriter, classes for reading derive from StreamReader. The composition is done by the
OutStream and InStream class templates.

A special case are the OutMap and the InMap streams. They only work together with classes
that are derived from the class Streamable, because they use the structural information that
is gathered in the serialize method. They are both directly derived from Out and In, respec-
tively.

Currently, the following classes are implemented:

PhysicalOutStream: Abstract class

OutFile: Writing into files
OutMemory: Writing into memory
OutSize: Determine memory size for storage

OutMessageQueue: Writing into a MessageQueue
StreamWriter: Abstract class

OutBinary: Formats data binary
OutText: Formats data as text

OutTextRaw: Formats data as raw text (same output as “cout”)
Out: Abstract class

OutStream<PhysicalOutStream, StreamWriter>: Abstract template class

OutBinaryFile: Writing into binary files
OutTextFile: Writing into text files
OutTextRawFile: Writing into raw text files
OutBinaryMemory: Writing binary into memory
OutTextMemory: Writing into memory as text
OutTextRawMemory: Writing into memory as raw text
OutBinarySize: Determine memory size for binary storage
OutTextSize: Determine memory size for text storage
OutTextRawSize: Determine memory size for raw text storage
OutBinaryMessage: Writing binary into a MessageQueue
OutTextMessage: Writing into a MessageQueue as text
OutTextRawMessage: Writing into a MessageQueue as raw text
OutMap: Writing into a stream in configuration map format (cf. Sect. 3.4.5). This only
works together with serialization (cf. Sect. 3.4.3), i.e. a streamable object has to be
written. This class cannot be used directly.
OutMapkFile: Writing into a file in configuration map format
OutMapMemory: Writing into a memory area in configuration map format
OutMapSize: Determine memory size for configuration map format storage

PhysicallnStream: Abstract class
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InFile: Reading from files
InMemory: Reading from memory

InMessageQueue: Reading from a MessageQueue
StreamReader: Abstract class

InBinary: Binary reading
InText: Reading data as text

InConfig: Reading configuration file data from streams
In: Abstract class

InStream<PhysicallnStream, StreamReader>: Abstract class template
InBinaryFile: Reading from binary files
InTextFile: Reading from text files
InConfigFile: Reading from configuration files
InBinaryMemory: Reading binary data from memory
InTextMemory: Reading text data from memory
InConfigMemory: Reading config-file-style text data from memory
InBinaryMessage: Reading binary data from a MessageQueue
InTextMessage: Reading text data from a MessageQueue
InConfigMessage: Reading config-file-style text data from a MessageQueue
InMap: Reading from a stream in configuration map format (cf. Sect. 3.4.5). This only
works together with serialization (cf. Sect. 3.4.3), i.e. a streamable object has to be
read. This class cannot be used directly.
InMapFile: Reading from a file in configuration map format
InMapMemory: Reading from a memory area in configuration map format

3.4.2 Streaming Data

To write data into a stream, Tools/Streams/OutStreams.h must be included, a stream must be
constructed, and the data must be written into the stream. For example, to write data into a
text file, the following code would be appropriate:

#include "Tools/Streams/OutStreams.h"

//

OutTextFile stream("MyFile.txt");
stream << 1 << 3.14 << "Hello Dolly" << endl << 42;

The file will be written into the configuration directory, e.g. Config/MyFile.txt on the PC. It
will look like this:

1 3.14 "Hello Dolly"
42

As spaces are used to separate entries in text files, the string “Hello Dolly” is enclosed in double
quotes. The data can be read back using the following code:

#include "Tools/Streams/InStreams.h"
//

InTextFile stream("MyFile.txt");

int a, d;

double b;

std::string c;

stream >> a >> b >> c >> d;
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It is not necessary to read the symbol endl here, although it would also work, i.e. it would be
ignored.

For writing to text streams without the separation of entries and the addition of double quotes,
OutTextRawFile can be used instead of OutTextFile. 1t formats the data such as known from
the ANSI C++4 cout stream. The example above is formatted as following:

13.14Hello Dolly
42

To make streaming independent of the kind of the stream used, it could be encapsulated in
functions. In this case, only the abstract base classes In and Out should be used to pass streams
as parameters, because this generates the independence from the type of the streams:

#include "Tools/Streams/InOut.h"

void write(Out& stream)

{
stream << 1 << 3.14 << "Hello Dolly" << endl << 42;
X

void read(In& stream)
{
int a, d;
double b;
std::string c;
stream >> a >> b >> c >> d;
}
//
OutTextFile stream("MyFile.txt");
write(stream) ;

//
InTextFile stream("MyFile.txt");
read(stream) ;

3.4.3 Streamable Classes

A class is made streamable by deriving it from the class Streamable and implementing the
abstract method serialize(In*, Out*). For data types derived from Streamable stream-
ing operators are provided, meaning they may be used as any other data type with standard
streaming operators implemented. To implement the modify functionality (cf. Sect. 3.6.6), the
streaming method uses macros to acquire structural information about the data streamed. This
includes the data types of the data streamed as well as that names of attributes. The process of
acquiring names and types of members of data types is automated. The following macros can
be used to specify the data to stream in the method serialize:

STREAM _REGISTER _BEGIN indicates the start of a streaming operation.
STREAM_BASE(<class>) streams the base class.

STREAM ((<attribute> [, <class>]) streams an attribute, retrieving its name in the process.
The second parameter is optional. If the streamed attribute is of an enumeration type
(single value, array, or vector) and that enumeration type is not defined in the current
class, the second parameter specifies the name of the class in which the enumeration type
is defined. The enumeration type streamed must either be defined with the ENUM macro
(cf. Sect. 3.4.6) or a matching getName function must exist.
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STREAM_REGISTER_FINISH indicates the end of the streaming operation for this data
type.

These macros are intended to be used in the serialize method. For instance, to stream an
attribute test, an attribute testEnumVector which is a vector of values of an enumeration
type that is defined in this class, and an enumeration variable of a type which was defined in
SomeOtherClass, the following code can be used:
virtual void serialize(In* in, Out* out)
' STREAM_REGISTER_BEGIN;
STREAM (test);
STREAM(testEnumVector) ;
STREAM(otherEnum, SomeOtherClass);
STREAM_REGISTER_FINISH;
}

In addition to the above listed macros STREAM * () there is another category of macros of the form
STREAM_*_EXT(). In contrast to the macros described above, they are not intended to be used
within the serialize-method, but to define the external streaming operators operator<<(...)
and operator>>(...). For this purpose, they take the actual stream to be read from or written
to as an additional (generally the first) parameter. The advantage of using external streaming
operators is that the class to be streamed does not need to implement a virtual method and
thus can save the space needed for a virtual method table, which is especially reasonable for
very small classes. Consider an example of usage as follows:

template<typename T> 0Out& operator<<(Out& out, const Range<T>& range)
{

STREAM_REGISTER_BEGIN_EXT (range) ;

STREAM_EXT (out, range.min);

STREAM_EXT (out, range.max) ;

STREAM_REGISTER_FINISH;

return out;

3.4.4 Generating Streamable Classes

The approach to make classes streamable described in the previous section has been proven
tedious and prone to mistakes in recent years. Each new member variable has to be added in
two or even three places, i.e. it must be declared, it must be streamed, and often it also must
be initialized. Two macros automatically generate all this code for a streamable struct?® and
optionally also initialize its member variables. The first is:

STREAMABLE (<class>,

{ <header>,

<comma-separated-declarations>,

b

The second is very similar:

STREAMABLE_WITH_BASE (<class>, <base>,

The parameters have the following meaning;:

class: The name of the struct to be declared.

3Meaning, the default access for members is public.

37



B-Human 2016 3.4. SERIALIZATION

base: Its base class. It must be streamable and its serialize method must not be private.
The default (without WITH_BASE) is the class Streamable.

header: Everything that can be part of a class body except for the attributes that should
be streamable and the default constructor. Please note that this part must not contain
commas that are not surrounded by parentheses, because C++ would consider it to be
more than a single macro parameter otherwise. A workaround is to use the macro COMMA
instead of an actual comma. However, the use of that macro should be avoided if possible,

e. g. by defining constructors with comma-separated initializer lists outside of the struct’s
body.

comma-separated-declarations: Declarations of the streamable attributes® in four possible
forms®:
(<type>) <var>
(<type>) (<init>) <var>

((<enum-domain>) <type>) <var>
((<enum-domain>) <type>) (init) <var>

type: The type of the attribute that is declared.
var: The name of the attribute that is declared.

init: The initial value of the attribute, or in case an object is declared, the parameter(s)
passed to its constructor.

enum-domain: If an enum is declared, the type of which is not declared in the cur-
rent class, the class the enum is declared in must be specified here. The type and
the optional init value are automatically prefixed by this entry with :: in be-
tween. Please note that there is a single case that is not supported, i.e. streaming
a std::array or std::vector of enums that are declared in another class, because
in that case, the class name is not a prefix of the typename rather than a prefix of
its type parameter. The macro would, e.g., generate C: :std::vector<E> instead
of std: :vector<C::E>, which does not compile.

Please note that all these parts, including each declaration of a streamable attribute, are sepa-
rated by commas, since they are parameters of a macro. Here is an example:

STREAMABLE (Example ,

{
ENUM (ABC,
{,
a,
b,
C,
B
Example ()
{
std::memset (array, 0, sizeof (array));
},

(int) anInt,

(float) (3.14f) pi,

(int [4]) array,

(Vector2f) (1.f, 2.f) aVector,

4Currently, the macros support up to 60 entries.
5The spaces are actually important when compiling on Windows.
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(ABC) aletter,
((MotionRequest) Motion) (stand) motionId,
b

In this example, all attributes except for anInt and aLetter would be initialized when an
instance of the class is created.

The macros can even be used if the serialize method should do more than just streaming the
member variables. If a method onRead () is defined within the struct, it will be called at the
end of serialize if data was read allowing to implement some post-processing, e. g. to compute
the values of member variables that are not streamed from the values of other member variables
that were.

3.4.5 Configuration Maps

Configuration maps introduce the ability to handle serialized data from files in a random order.
The sequence of entries in the file does not have to match the order of the attributes in the C++
data structure that is filled with them. In contrast to most streams presented in Sect. 3.4.1,
configuration maps do not contain a serialization of a data structure, but rather a hierarchical
representation.

Since configuration maps can be read from and be written to files, there is a special syntax for
such files. A file consists of an arbitrary number of pairs of keys and values, separated by an
equality sign, and completed by a semicolon. Values can be lists (encased by square brackets),
complex values (encased by curly brackets) or plain values. If a plain value does not contain any
whitespaces, periods, semicolons, commas, or equality signs, it can be written without quotation
marks, otherwise it has to be encased in double quotes. Configuration map files have to follow
this grammar:

map ::= record

record ::= field ’;’ { field ’;’ %}

field ::= literal °’=’ ( literal | ’{’ record ’}’ | array )
array ::= ’[” [ element { ’,’ element } [ ’,” 1 ’]1°
element ::= literal | ’{’ record ’}’

literal = "> { anycharl } ’"’ | { anychar2 }

anycharl must escape doublequotes and the backslash with a backslash. anychar2 cannot con-
tain whitespace and other characters used by the grammar. However, when such a configuration
map is read, each literal must be a valid literal for the datatype of the variable it is read into.
As in C++4, comments can be denoted either by // for a single line or by /* ... */ for multiple
lines. Here is an example:

// A record

defensiveGoaliePose = {

rotation = 0;

translation = {x = -4300; y = 0;};
};

/* An array of
* three records

*/
kickoffTargets = [
{x = 2100; y = 0},
{x = 1500; y = -1350;1},
{x = 1500; y = 1350;}

1;

// Some individual values
out0OfCenterCircleTolerance = 150.0;
ballCounterThreshold = 10;
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Configuration maps can only be read or written through the streams derived from OutMap and
InMap. Accordingly, they require an object of a streamable class to either parse the data in map
format or to produce it. Here is an example of code that reads the file shown above:

STREAMABLE (KickOffInfo,

{,
(Pose2f) defensiveGoaliePose,
(std::vector<Vector2f>) kickoffTargets,
(float) outOfCenterCircleTolerance,
(int) ballCounterThreshold,

)

InMapFile stream("kickOffInfo.cfg");
KickOffInfo info;
if (stream.exists ())

stream >> info;

3.4.6 Enumerations

To support streaming, enumeration types should be defined using the macro ENUM defined in
Src/Tools/Streams/Enum.h rather than using the C++ enum keyword directly. The macro’s
first parameter is the name of the enumeration type. The second and the last parameter are
reserved for curly brackets and are ignored. All other parameters are the elements of the defined
enumeration type. It is not allowed to assign specific integer values to the elements of the
enumeration type, with one exception: It is allowed to initialize an element with the symbolic
value of the element that has immediately been defined before (see example below). The macro
automatically defines a function static inline const char* getName(Typename), which can
return the string representations of all “real” enumeration elements, i.e. all elements that are
not just synonyms of other elements. In addition, the function will return 0 for all values outside
the range of the enumeration type.

The macro also automatically defines a constant num0f <Typename>s which reflects the number
of elements in the enumeration type. Since the name of that constant has an added “s” at the
end, enumeration type names should be singular. If the enumeration type name already ends
with an “s”, it might be a good idea to define a constant outside the enumeration type that
can be used instead, e. g. static const unsigned char numOfClasses = numOfClasss for an
enumeration type with the name Class.

The following example defines an enumeration type Letter with the “real” enumeration ele-
ments a, b, ¢, and d, a user-defined helper constant numOfLettersBeforeC, and an automat-
ically defined helper constant numOfLetters. The numerical values of these elements are a =
0, b=1, ¢ =2, d = 3, numOfLettersBeforeC = 2, numOfLetters = 4. In addition, the
function getName (Letter) is defined that can return “a”, “b”, “c”, “d”, and 0.

ENUM(Letter,

{,
a,
b,
numOfLettersBeforeC,
c = numOfLettersBeforeC,
d,
B
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3.4.6.1 Iterating over Enumerations

It is often necessary to enumerate all constants defined in an enumeration type. This can easily
be done using the FOREACH_ENUM macro:
FOREACH_ENUM(Letter, letter)

{
// do something with "letter", which is of type "Letter"

}

It is also possible to specify a different upper limit to only enumerate a part of the constants.
The upper limit must be one of the constants defined:
FOREACH_ENUM(Letter, letter, numOfLettersBeforeC)

{
// do something with "letter", which is of type "Letter"

}

If the enumeration type is defined in another class, that class needs to be specified separately:

FOREACH_ENUM ((MotionRequest) Motion, motion)
{

// do something with "motion", which is of type "MotionRequest::Motion"

}

In that case, an optional upper limit would automatically be assumed to be defined in the other
class as well, i.e. it must not be prefixed by the classes’ name.

3.4.6.2 Enumerations as Array Indices

In the B-Human code, enumerations are often used as indices for arrays, because this gives entries
a name, but still allows to iterate over these entries. However, in configuration files and in the UI,
it is hard to find specific entries in arrays, in particular if they have a larger number of elements.
For instance, the arrays of all joint angles has 26 elements, making it hard to identify the angle of
a specific joint. Therefore, a special macro (defined in Src/Tools/Streams/EnumlIndexedArray.h)
that is backed by a template class allows to define an array indexed by an enumeration type that
solves this problem by streaming such an array as if it were a structure with a member variable
for each of its elements named after the respective enumeration constant. Technically, such an
array is derived from std: :array and simply defines the method serialize (cf. Sect. 3.4.3). For
example, an array of all joint angles could be defined by using the enumeration Joints: :Joint
as index:
ENUM_INDEXED_ARRAY (Angle, (Joints) Joint) jointAngles;

jointAngles still behaves like an array, i.e. it is derived from std::array<Angle,
Joints: :num0f Joints>, but when, e.g., written to a file using OutMapFile (cf. Sect. 3.4.5), it
would appear differently:

headYaw = Odeg;
headPitch = Odeg;
1ShoulderPitch = Odeg;

The class prefix of the enumeration type used as an index only needs to be specified if that type
was defined in another class. However, if the elements of the array are also of an enumeration
type, that type must be fully specified, i. e. including the class prefix, even if that type is defined
in the same class as the array:

ENUM_INDEXED_ARRAY ((MotionRequest) Motion, Letter) someArray;
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3.5 Communication

Three kinds of communication are implemented in the B-Human framework: inter-process com-
munication, debug communication, and team communication.

3.5.1 Inter-process Communication

The representations sent back and forth between the processes Cognition and Motion (so-called
shared representations) are automatically calculated by the ModuleManager based on the repre-
sentations required by modules loaded in the respective process but not provided by modules in
the same process. The directions in which they are sent are also automatically determined by
the ModuleManager.

All inter-process communication is triple-buffered. Thus, processes never block each other,
because they never access the same memory blocks at the same time. In addition, a receiving
process always gets the most current version of a packet sent by another process.

3.5.2 Message Queues

The debug communication, the team communication, and logging are all based on the same
technology: message queues. The class MessageQueue allows storing and transmitting a sequence
of messages. Each message has a type (defined in Src/Tools/MessageQueue/MessagelDs.h) and
a content. Each queue has a maximum size which is defined in advance. On the robot, the
amount of memory required is pre-allocated to avoid allocations during runtime. On the PC,
the memory is allocated on demand, because several sets of robot processes can be instantiated
at the same time, and the maximum size of the queues is rarely needed.

Since almost all data types are streamable (cf. Sect. 3.4), it is easy to store them in message
queues. The class MessageQueue provides different write streams for different formats: messages
that are stored through out.bin are formatted binary. The stream out.text formats data as
text and out.textRaw as raw text. After all data of a message was streamed into a queue, the
message must be finished with out.finishMessage (MessageID), giving it a message id, i.e. a

type.

MessageQueue m;

m.setSize (1000); // can be omitted on PC
m.out.text << "Hello world!";
m.out.finishMessage (idText) ;

To declare a new message type, an id for the message must be added to the enumeration
type MessageID in Src/Tools/MessageQueue/MessagelDs.h. The enumeration type has three
sections: the first for representations that should be recorded in log files, the second for team
communication, and the last for infrastructure. When changing this enumeration by adding,
removing, or re-sorting message types, compatibility issues with existing log files or team mates
running an older version of the software are highly probable.

Messages are read from a queue through a message handler that is passed to the queue’s
method handleAl1lMessages (MessageHandler&). Such a handler must implement the method
handleMessage (InMessage&) that is called for each message in the queue. It must be imple-
mented in a way as the following example shows:

class MyClass : public MessageHandler

{
protected:

42



3.5. COMMUNICATION B-Human 2016

bool handleMessage (InMessage& message)
{
switch(message.getMessageID())

{
default:
return false;

case idText:

{
std::string text;
message.text >> text;
return true;

}

3
X
}

The handler has to return whether it handled the message or not. Messages are read from a
MessageQueue via streams. Thereto, message.bin provides a binary stream, message.text a
text stream, and message.config a text stream that skips comments.

3.5.3 Debug Communication

For debugging purposes, there is a communication infrastructure between the processes Cogni-
tion and Motion and the PC. This is accomplished by debug message queues. Each process has
two of them: theDebugSender and theDebugReceiver, often also accessed through the refer-
ences debugIn and debugOut. The macro OUTPUT(<id>, <format>, <sequence>) defined
in Src/Tools/Debugging/Debugging.h simplifies writing data to the outgoing debug message
queue. id is a valid message id, format is text, bin, or textRaw, and sequence is a streamable
expression, i.e. an expression that contains streamable objects, which — if more than one — are
separated by the streaming operator <<.

OUTPUT (idText, text, "Could not load file " << filename << " from " << path);
OUTPUT (idImage, bin, Image());

For receiving debugging information from the PC, each process also has a message handler, i. e.
it implements the method handleMessage to distribute the data received.

The process Debug manages the communication of the robot control program with the tools on
the PC. For each of the other processes (Cognition and Motion), it has a sender and a receiver for
their debug message queues (cf. Fig. 3.1). Messages that arrive via WLAN or Ethernet from the
PC are stored in debugIn. The method Debug: :handleMessage (InMessage&) distributes all
messages in debugIn to the other processes. The messages received from Cognition and Motion
are stored in debugOut. When a WLAN or Ethernet connection is established, they are sent to
the PC via TCP/IP. To avoid communication jams, it is possible to send a QueueFillRequest to
the process Debug. The command gfr to do so is explained in Section 10.1.6.3.

3.5.4 Team Communication

The purpose of the team communication is to send messages to the other robots in the team.
These messages are always broadcasted, so all teammates can receive them. Originally, our
team communication used a message queue embedded in a UDP package that could be filled
from everywhere in the process Cognition using the macro TEAM_OUTPUT. However, filling the
queue was mostly bundled in the module TeamDataSender later to make it more clear which
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information is actually exchanged. In addition, in 2014 the SPLStandardMessage was introduced
as the format for team communication. Therefore, the approach currently used is still based on
a message queue, but some information is filtered from the queue to fill the standardized fields
of the UDP packet. The remaining messages are still sent in the form of a message queue in the
non-standardized part of the packet.

The non-standardized part also contains a header that allows our robots to detect that they
actually received a B-Human message and can safely interpret the remaining data as a message
queue. When receiving, the whole contents of a SPLStandardMessage are converted back to
a single message queue that is then processed by the module TeammateDataProvider. It also
implements the network time protocol (NTP) and translates time stamps contained in the
messages it receives into the local time of the robot.

According to the rules, team communication packets are only broadcasted every 200 ms. The
representation TeammateData contains a flag that states whether a team communication packet
will be sent out in the current frame or not. The TeammateDataProvider also provides the
representation Unfiltered TeammateData that is the input for a module that judges the reliability
of the information provided by teammates during the Drop-in Player competition. This module
will then provide the representation TeammateData instead with all messages from untrustworthy
teammates removed.

3.6 Debugging Support

Debugging mechanisms are an integral part of the B-Human framework. They are all based
on the debug message queues already described in Section 3.5.3. Since the software runs fast
enough and the debug mechanisms greatly support developers when working with a NAO, these
mechanisms are available in all project configurations.

3.6.1 Debug Requests

Debug requests are used to enable and disable parts of the source code. They can be seen as
runtime switches for debugging.

The debug requests can be used to trigger certain debug messages to be sent as well as to switch
on certain parts of algorithms. They can be sent using the SimRobot software when connected to
a NAO (cf. command dr in Sect. 10.1.6.3). The following macros ease the use of the mechanism
as well as hide the implementation details:

DEBUG_RESPONSE(<id>) executes the following statement or block if the debug request
with the name id is enabled.

DEBUG_RESPONSE_ONCE(<id>) executes the following statement or block once when
the debug request with the name id is enabled.

DEBUG_RESPONSE_NOT(<id>) executes the following statement or block if the debug

request with the name id is not enabled.

These macros can be used anywhere in the source code, allowing for easy debugging. For
example:

DEBUG_RESPONSE("test") test();
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This statement calls the method test () if the debug request with the identifier “test” is enabled.
Debug requests are commonly used to send messages on request as the following example shows:

DEBUG_RESPONSE ("sayHello") OUTPUT(idText, text, "Hello");

This statement sends the text “Hello” if the debug request with the name "sayHello" is ac-
tivated. Please note that only those debug requests are usable that are in the current path
of execution. This means that only debug requests in those modules can be activated that
are currently executed. To determine which debug requests are currently available, a method
called polling is employed. It asks each debug response to report the name of the debug request
that would activate it. This information is collected and sent to the PC (cf. command poll in
Sect. 10.1.6.3).

3.6.2 Debug Images

Debug images are used for low level visualization of image processing debug data. They can
either be displayed as background image of an image view (cf. Sect. 10.1.4.1) or in a color space
view (cf. Sect. 10.1.4.1). Each debug image consists of pixels in one of the formats defined in
Src/Tools/ImageProcessing/Pixel Types.h, which are RGB, BGRA, YUYV, YUV, Colored and
Grayscale. Except for Colored and Grayscale, pixels of these formats are all made up of four
unsigned byte values, each representing one of the color channels of the format. The YUYV
format is special as one word of the debug image describes two image pixels by specifying two
luminance values, but only one value per U and V channel. Thus, it resembles the YUV/22
format of the images supplied by the NAO’s cameras. Debug images in the Grayscale format
only contain a single channel of unsigned byte values describing the luminance of the associated
pixel. The Colored format consists of only one channel, too. Values in this channel are entries
of the FieldColors: :Color enumeration which contains identifiers for the color classes used for
image processing (cf. Sect. 4.1.4).

Debug images are supposed to be declared as instances of the template class TImage, instantiated
with one of the pixel formats named above, or the Image class which is otherwise only used for
the camera image. The following macros are used to transfer debug images to a connected PC.

SEND DEBUG _IMAGE(<id>, <image>) sends the debug image to the PC. The identi-
fier given to this macro is the name by which the image can be requested.

COMPLEX IMAGE(<id>) only executes the following statement if the creation of a certain
debug image is requested. For debug images that require complex instructions to paint, it
can significantly improve the performance to encapsulate the drawing instructions in this
macro (and maybe additionally in a separate method).

These macros can be used anywhere in the source code, allowing for easy creation of debug
images. For example:

class Test

{

private:
TImage<GrayscaledPixel> testImage;

public:
void doSomething () {

// [...]
COMPLEX_IMAGE("test") draw();

45



B-Human 2016 3.6. DEBUGGING SUPPORT

/7 L]
}

void draw()
{
testImage.setResolution (640, 480);
memset (testImage [0], O0x7F, testImage.width * testImage.height);
SEND_DEBUG_IMAGE("test", testImage);
}
}s;

The example calls the draw () method if the "test" image was requested, which then initializes
a grayscale debug image, paints it gray and sends it to the PC.

3.6.3 Debug Drawings

Debug drawings provide a virtual 2-D drawing paper and a number of drawing primitives, as
well as mechanisms for requesting, sending, and drawing these primitives to the screen of the
PC. In contrast to debug images, which are raster-based, debug drawings are vector-based, i.e.,
they store drawing instructions instead of a rasterized image. Each drawing has an identifier
and an associated type that enables the application on the PC to render the drawing to the right
kind of drawing paper. In the B-Human system, two standard drawing papers are provided,
called “drawingOnlmage” and “drawingOnField”. This refers to the two standard applications
of debug drawings, namely drawing in the system of coordinates of an image and drawing in the
system of coordinates of the field. Hence, all debug drawings of type “drawingOnlmage” can be
displayed in an image view (cf. Sect. 10.1.4.1) and all drawings of type “drawingOnField” can
be rendered into a field view (cf. Sect. 10.1.4.1).

The creation of debug drawings is encapsulated in a number of macros in Src/Tools/Debug-
ging/DebugDrawings.h. Most of the drawing macros have parameters such as pen style, fill
style, or color. Available pen styles (solidPen, dashedPen, dottedPen, and noPen) and fill
styles (solidBrush and noBrush) are part of the namespace Drawings. Colors can be specified
as ColorRGBA. The class also contains a number of predefined colors such as ColorRGBA: :red.
A few examples for drawing macros are:

DECLARE _DEBUG_DRAWING(<id>, <type>) declares a debug drawing with the
specified id and type.

COMPLEX DRAWING(<id>) only executes the following statement or block if the cre-
ation of a certain debug drawing is requested. This can significantly improve the perfor-
mance when a debug drawing is not requested, because for each drawing instruction it has
to be tested whether it is currently required or not. By encapsulating them in this macro
(and maybe in addition in a separate method), only a single test is required. However, the
macro DECLARE_DEBUG_DRAWING must be placed outside of COMPLEX_DRAWING.

DEBUG _DRAWING(<id>, <type>) is a combination of DECLARE DEBUG_DRAWING and
COMPLEX_DRAWING. It declares a debug drawing with the specified id and type. It also
executes the following statement or block if the debug drawing is requested.

CIRCLE(<id>, <x>, <y>, <radius>, <penWidth>, <penStyle>, <penColor>,
<fillStyle>, <fillColor>) draws a circle with the specified radius, pen width, pen style,
pen color, fill style, and fill color at the coordinates (x,y) to the virtual drawing paper.
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LINE(<id>, <x1>, <yl>, <x2>, <y2>, <penWidth>, <penStyle>, <penColor>)
draws a line with the pen color, width, and style from the point (z1,yl) to the point
(x2,y2) to the virtual drawing paper.

DOT(<id>, <x>, <y>, <penColor>, <fillColor>) draws a dot with the pen color and fill
color at the coordinates (x,y) to the virtual drawing paper. There also exist two macros
MID DOT and LARGE_DOT with the same parameters that draw dots of larger size.

DRAWTEXT(<id>, <x>, <y>, <fontSize>, <color>, <text>) writes a text with a
font size in a color to a virtual drawing paper. The upper left corner of the text will
be at coordinates (z,y).

TIP(<id>, <x>, <y>, <radius>, <text>) adds a tool tip to the drawing that will pop up
when the mouse cursor is closer to the coordinates (z,y) than the given radius.

ORIGIN(<id>, <x>, <y>, <angle>) changes the system of coordinates. The new origin
will be at (z,y) and the system of coordinates will be rotated by angle (given in radians).
All further drawing instructions, even in other debug drawings that are rendered afterwards
in the same view, will be relative to the new system of coordinates, until the next origin
is set. The origin itself is always absolute, i.e. a new origin is not relative to the previous
one.

These macros can be used wherever statements are allowed in the source code. For example:

DECLARE_DEBUG_DRAWING ("test", "drawingOnField");
CIRCLE("test", 0, O, 1000, 10, Drawings::solidPen, ColorRGBA::blue,
Drawings::solidBrush, ColorRGBA (O, 0, 255, 128)
)

This example initializes a drawing called test of type drawingOnField that draws a blue circle
with a solid border and a semi-transparent inner area.

3.6.4 3-D Debug Drawings

In addition to the aforementioned two-dimensional debug drawings, there is a second set of
macros in Src/Tools/Debugging/DebugDrawings3D.h which provide the ability to create three-
dimensional debug drawings.

3-D debug drawings can be declared with the macro DECLARE_DEBUG_DRAWING3D(<id>,
<type>). The id can then be used to add three dimensional shapes to this drawing. type de-
fines the coordinate system in which the drawing is displayed. It can be set to “field”, “robot”,
or any named part of the robot model in the scene description. Note that drawings directly
attached to hinges will be drawn relative to the base of the hinge, not relative to the moving
part. Drawings of the type “field” are drawn relative to the center of the field, whereas drawings
of the type “robot” are drawn relative to the origin of the robot according to SoftBank Robotics’
documentation. B-Human uses a different position in the robot as origin, i. e. the middle between
the two hip joints. An object called “origin” has been added to the NAO simulation model at
that position. It is often used as reference frame for 3-D debug drawings in the current code.
The optional parameter allows defining code that is executed while the drawing is requested.

The parameters of macros adding shapes to a 3-D debug drawing start with the id of the drawing
this shape will be added to, followed, e. g., by the coordinates defining a set of reference points
(such as corners of a rectangle), and finally the drawing color. Some shapes also have other
parameters such as the thickness of a line. Here are a few examples for shapes that can be used
in 3-D debug drawings:
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LINE3D(<id>, <fromX>, <fromY>, <fromZ>, <toX>, <toY>, <toZ>, <size>,
<color> ) draws a line between the given points.

QUAD3D(<id>, <cornerl>, <corner2>, <corner3>, <cornerd>, <color>) draws a
quadrangle with its four corner points given as 3-D vectors and specified color.

SPHERE3D(<id>, <x>, <y>, <z>, <radius>, <color>) draws a sphere with specified
radius and color at the coordinates (x,y, z).

COORDINATES3D(<id>, <length>, <width>) draws the axis of the coordinate system
with specified length and width into positive direction.

COMPLEX DRAWING3D(<id>) only executes the following statement or block if the
creation of the debug drawing is requested (similar to COMPLEX_DRAWING(<id>) for 2-D
drawings).

DEBUG_DRAWING3D(<id>, <type>) is a combination of DECLARE_DEBUG_DRAWING3D
and COMPLEX DRAWING3D. It declares a debug drawing with the specified id and type. It
also executes the following statement or block if the debug drawing is requested.

The header file furthermore defines some macros to scale, rotate, and translate an entire 3-D
debug drawing:

SCALE3D(<id>, <x>, <y>, <z>) scales all drawing elements by given factors for z, y,
and z axis.

ROTATE3D(<id>, <x>, <y>, <z>) rotates the drawing counterclockwise around the
three axes by given radians.

TRANSLATE3D(<id>, <x>, <y>, <z>) translates the drawing according to the given
coordinates.

An example for 3-D debug drawings (analogously to the example for regular 2-D debug draw-
ings):

DECLARE_DEBUG_DRAWING3D("test3D", "field");
SPHERE3D ("test3D", 0, O, 250, 75, ColorRGBA::blue);

This example initializes a 3-D debug drawing called test3D which draws a blue sphere. Because
the drawing is of type field and the origin of the field coordinate system is located in the center
of the field, the sphere’s center will appear 250 mm above the center point.

Watch the result in the scene view of SimRobot (cf. Sect. 10.1.3) by sending a debug request
(cf. Sect. 10.1.6.3) for a 3-D debug drawing with the ID of the desired drawing prefixed by
“debugDrawing3d:” as its only parameter. If you wanted to see the example described above,
you would type “dr debugDrawing3d:test3D” into the SimRobot console. The rendering of
debug drawings can be configured for individual scene views by right-clicking on the view and
selecting the desired type of visualization in the “Drawings Rendering” submenu.

3.6.5 Plots

The macro PLOT(<id>, <number>) allows plotting data over time. The plot view (cf.
Sect. 10.1.4.5) will keep a history of predefined size of the values sent by the macro PLOT and
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plot them in different colors. Hence, the previous development of certain values can be observed
as a time series. Fach plot has an identifier that is used to separate the different plots from each
other. A plot view can be created with the console commands vp and vpd (cf. Sect. 10.1.6.3).

For example, the following code statement plots the measurements of the gyro for the pitch axis
in degrees. It should be placed in a part of the code that is executed regularly, e.g. inside the
update method of a module.

PLOT("gyroY", thelnertialSensorData.gyro.y());

The macro DECLARE_PLOT(<id>) allows using the PLOT(<id>, <number>) macro within a
part of code that is not regularly executed as long as the DECLARE_PLOT (<id>) macro is executed
regularly.

3.6.6 Modify

The macro MODIFY(<id>, <object>) allows reading and modifying of data on the actual
robot during runtime. Every streamable data type (cf. Sect. 3.4.3) can be manipulated and read,
because its inner structure is gathered while it is streamed. This allows generic manipulation of
runtime data using the console commands get and set (cf. Sect. 10.1.6.3). The first parameter
of MODIFY specifies the identifier that is used to refer to the object from the PC, the second
parameter is the object to be manipulated itself. When an object is modified using the console
command set, it will be overridden each time the MODIFY macro is executed.

int i = 3;

MODIFY ("i", 1i);

MotionRequest m;
MODIFY("representation:MotionRequest", m);

The macro PROVIDES of the module framework (cf. Sect. 3.3) includes the MODIFY macro for the
representation provided. For instance, if a representation Foo is provided by PROVIDES (Foo),
it is modifiable under the name representation:Foo. If a representation provided should not
be modifiable, e. g., because its serialization does not register all member variables, it must be
provided using PROVIDES_WITHOUT_MODIFY.

If a single variable of an enumeration type should be modified, another macro called MODIFY_ENUM
has to be used. It has an optional third parameter to which the name of the class must be passed
in which the enumeration type is defined. It can be omitted if the enumeration type is defined
in the current class. This is similar to the STREAM macro (cf. Sect. 3.4.3).

class Foo

{
public:
ENUM (Bar,
{,
a,
b,
c,
s
void £ ()
{
Bar x = a;
MODIFY_ENUM("x", x);
}
};

class Other
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{
void £()
{
Foo::Bar y = Foo::a;
MODIFY_ENUM("y", y, Foo);
X
};

3.6.7 Stopwatches

Stopwatches allow the measurement of the execution time of parts of the code. The macro
STOPWATCH(<id>) (declared in Src/Tools/Debugging/Stopwatch.h) measures the runtime of
the statement or block that follows. id is a string used to identify the time measurement. To
activate the time measurement of all stopwatches, the debug request dr timing has to be sent.
The measured times can be seen in the timing view (cf. Sect. 10.1.4.5). By default, a stopwatch
is already defined for each representation that is currently provided and for the whole processes
Cognition and Motion.

An example to measure the runtime of a method called myCode:

STOPWATCH("myCode") myCode () ;

Often rudimentary statistics (cf. Sect. 10.1.4.5) of the execution time of a certain part of the
code are not sufficient, but the actual progress of the runtime is needed. For this purpose
there is another macro STOPWATCH_WITH_PLOT(<id>) that enables measuring and plotting the
execution time of some code. This macro is used exactly as the one without WITH_PLOT, but it
additionally creates a plot stopwatch:myCode (assuming the example above) (cf. Sect. 3.6.5 for
the usage of plots).

3.7 Logging

The B-Human framework offers a sophisticated logging functionality that can be used to log
the values of selected representations while the robot is playing. There are two different ways
of logging data:

3.7.1 Online Logging

The online logging feature can be used to log data directly on the robot during regular games.
It is implemented as part of the Cognition and Motion processes and is designed to log repre-
sentations in real-time.

Online logging starts as soon as the robot enters the ready state and stops upon entering the
finished state. Due to the limited space on the NAQ’s flash drive, the log files are compressed
on the fly using Google’s snappy compression [8]. The name of the log file consists of the name
of the process it logs and the names of the head and bodies of the robot. If connected to the
GameController, the name of the opponent team, the half, and the player number are also added
to the log file name. Otherwise, “Testing” is used instead. If a log file with the given name
already exists, a number is added that is incremented for each duplicate.

To retain the real-time properties of the processes, the heavy lifting, i. e. compression and writing
of the file, is done in separate threads without real-time scheduling, one for Cognition logging
and one for Motion logging. These threads use every bit of remaining processor time that is
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not used by one of the real-time parts of the system. Communication with these threads is
realized using very large ring buffers (usually around 500MB). Each element of the ring buffers
represents one second of data. If a buffer is full, the current element is discarded. Due to the
size of the buffers, writing of log files might continue for quite a while after the robot has entered
the finished state.

Due to the limited buffer size, the logging of very large representations such as the Image is
not possible. It would cause a buffer overflow within seconds rendering the resulting log file
unusable. However, without images a log file is nearly useless, therefore loggable thumbnail
images (cf. Sect. 3.7.7) or image patches (cf. Sect. 3.7.8) are generated and used instead.

In addition to the logged representations, online log files also contain timing data, which can be
seen using the TimingView (cf. Sect. 10.1.4.5).

3.7.2 Configuring the Online Loggers

The online loggers can be configured by changing values in the files logger< Process>.cfg, which
should be located inside the configuration folder.

Following values can be changed:

log filePath: All log files will be stored in this path on the NAO.
maxBufferSize: Maximum size of the buffer in seconds.

blockSize: How much data can be stored in a single buffer slot, i.e. in one second. Note that
maxBufferSize x blockSize is always allocated.

representations: List of all representations that should be logged.

enabled: An online logger is enabled if this is true. Note that it is not possible to enable online
loggers inside the simulator.

writePriority: Priority of the logging process. Priorities greater than zero use the real-time
scheduler, zero uses the normal scheduler, and negative values (—1 and —2) use idle pri-
orities.

debugStatistics: If true a logger will print debugging messages to the console.

minFreeSpace: The minimum amount of disk space that should always be left on the NAO in
bytes. If the free space falls below this value the logger will cease operation.

3.7.3 Remote Logging

Online logging provides the maximum possible amount of debugging information that can be
collected without breaking the real-time capability. However in some situations one is interested
in high precision data (i.e. full resolution images) and does not care about real-time. The
remote logging feature provides this kind of log files. It utilizes the debugging connection (cf.
Sect. 3.5.3) to a remote computer and logs all requested representations on that computer. This
way the heavy lifting is outsourced to a computer with much more processing power and a bigger
hard drive. However sending large representations over the network severely impacts the NAO’s
performance resulting in loss of the real-time capability.

To reduce the network load, it is usually a good idea to limit the number of representations to
the ones that are really needed for the task at hand. Listing 3.7.3 shows the commands that
need to be entered into SimRobot to record a minimal vision log.
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Figure 3.2: This graphic is borrowed from [32] and displays the regular log file format.
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3.7.4 Log File Format

In general, log files consist of serialized message queues (cf. Sect. 3.5.2). Each log file consists
of up to three chunks. Each chunk is prefixed by a single byte defining its type. The enum
log fileFormat in Src/Tools/Logging/log fileFormat.h defines these chunk identifiers in the
namespace Logging that have to appear in the given sequence in the log file if they appear at

all:

logFileMessagelDs: This chunk contains a string representation of the MessageIDs (cf.
Sect. 3.5.2) stored in this log file. It is used to convert the MessageIDs from the log
file to the ones defined in the version of SimRobot (cf. Sect. 10.1) that is replaying the log
file. Thereby, log files still remain usable after the enumeration MessageID was changed.

logFileStreamSpecification: This chunk contains the specification of all datatypes used in
the log file. It is used to convert that data logged to the specifications that are defined in
the version of SimRobot that is replaying the log file. If the specification changed, messages
will appear in SimRobot’s console about the representations that are converted. Please
note that a conversion is only possible for representations the specification of which is
fully registered. This is not the case for representations that use read and write methods
to serialize their data, e.g. Image, JPEGImage, Thumbnail, andImagePatches. Therefore,
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such representations cannot be converted and will likely crash SimRobot when trying to
replay log files containing them after they were changed.

logFileUncompressed: Uncompressed log data is stored in a single MessageQueue. Its seri-
alized form starts with an eight byte header containing two values. These are the size
used by the log followed by the number of messages in the queue. Those values can also
be set to -1 indicating that the size and number of messages is unknown. In this case
the amount will be counted when reading the log file. The header is followed by several
frames. A frame consists of multiple log messages enclosed by a idProcessBegin and
idProcessFinished message. Every log message consists of its id, its size and its payload
(cf. Fig. 3.2). This kind of chunk is created by remote logging.

logFileCompressed: This chunk contains a sequence of compressed MessageQueues. Each
queue contains a single second worth of log data and is compressed using Google’s
snappy [8] compression (cf. Fig. 3.3). Each compressed MessageQueues is prefixed by
its compressed size. This kind of chunk is created by online logging.

The first two chunks are optional. Each log file must contain one of the latter two chunks, which
is also the last chunk in the file.

3.7.5 Replaying Log Files

Log files are replayed using the simulator. Special modules, the CognitionLogDataProvider and
the MotionLogDataProvider automatically provide all representations that are present in the log
file. All other representations are provided by their usual providers, which are simulated. This
way log file data can be used to test and evolve existing modules without access to an actual
robot. However, it is currently only possible to replay a single log file for a single instance of
the B-Human code. For online logging, this means that i.e. either a Cognition log or a Motion
log can be replayed, but not both at the same time.

For SimRobot to be able to replay log files, they have to be placed in Config/Logs. Afterwards
the SimRobot scene ReplayRobot.con can be used to load the log file. In addition to loading
the log file this scene also provides several keyboard shortcuts for navigation inside the log
file. However, the most convenient way to control log file playback is the log player view (cf.
Sect. 10.1.4.5). If you want to replay several log files at the same time, simply create a file
Config/Scenes/Includes/replay.con and add several sl statements (cf. Sect. 10.1.6.1) to it. The
data of each log file will be fed into a separate instance of the B-Human code.

3.7.6 Annotations

To further enhance the usage of log files, we added the possibility for our modules to annotate
individual frames of a log file with important information. This is, for example, information
about a change of game state, the execution of a kick, or other information that may help us to
debug our code. Thereby, when replaying the log file, we may consult a list of those annotations
to see whether specific events actually did happen during the game. In addition, if an annotation

Size Size

sbyie | Compressed log file | ... | ;3. | Compressed log file

Figure 3.3: A compressed log file consists of several regular log files and their compressed sizes.
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was recorded, we are able to directly jump to the corresponding frame of the log file to review
the emergence and effects of the event without having to search through the whole log file.

This feature is accessed via the ANNOTATION-Macro. An example is given below:

#include "Tools/Debugging/Annotation.h"

ANNOTATION("GroundContactDetector", "Lost GroundContact");

It is advised to be careful to not send an annotation in each frame because this will clutter
the log file. When using annotations inside of a behavior option the output option Annotation
should be used to make sure annotations are not sent multiple times.

The annotations recorded can be displayed while replaying the log file in the annotations view
(cf. Sect. 10.1.4.5).

3.7.7 Thumbnail Images

Logging raw YUV422 images as the cameras capture them seems impossible with the current
hardware. One second would consume about 45000 KB. This amount of data could not be stored
fast enough on the harddrive/USB flash drive and would fill it up within a few minutes. Thus
images have to be compressed. This compression must happen within a very small time frame,
since the robot has to do a lot of other tasks in order to play football. Despite the compression,
the resulting images must still contain enough information to be useful.

For compressing the images in a way that fulfills the criteria mentioned above, two separate
methods have been implemented. One of these generates grayscaled images by taking the lu-
minance channel (Y) of the camera image and averaging blocks of adjacent pixels. The other
method compresses the YUV camera image by first eliminating every second row of pixels and
then averaging every channel of adjacent blocks of pixels. Afterwards the size of each pixel is
reduced to two bytes by eliminating one of the two Y channels in each pixel and using only six
bits for the remaining luminance channel and five bits for each of the two chroma channels. In
both of the two possible methods, averaging adjacent pixels is done using SSE instructions to
speed up the computation.

The total compression rate as well as the usefulness of the resulting images depends on the
downscales parameter of the ThumbnailProvider, which determines the size of the blocks of
pixels being averaged as 2dcvnscales , gdounscales pivels For a downscales parameter of 2, the
resulting grayscale thumbnail images are 32 times smaller and the resulting colored images are
128 times smaller than the original camera image. Although a lot of detail is lost in the thumbnail
images, it is still possible to see and assess the situations the robot was in (cf. Fig. 3.4).

3.7.8 Image Patches

While logging of thumbnail images allows analysis of the robot’s behavior during the game,
their compression restricts any use for later image processing. Therefore, image patches were
implemented which enable logging of parts of the image. An image patch is defined by an offset
into the current camera image as well as its width and height. When logging image patches,
only the parts of the image belonging to a patch are written into the log file. This makes it
possible to log parts of every image that are important for certain perception modules. An
example of this would be the perception of the ball: as described in Sect. 4.3, only areas around
ball spots obtained from analyzing vertical color-classified scanlines are considered for further
steps of the ball perception. Thus, if functionality of the ball perceptor is to be evaluated and
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Figure 3.4: (a) Image from the upper camera of the NAO and (b) the corresponding colored
thumbnail with a downscale factor of 2 as well as the corresponding grayscale thumbnails with
downscale factors (c) 2 and (d) 3. (e) shows the image patches containing only areas of the
image in which a potential ball candidate was seen.
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adjusted based on log files, it is sufficient to log image patches containing areas around the ball
spots. An example of this can be seen in figure 3.4e.

In order to assure that the perception components work normally with images reconstructed
from logged image patches, all areas not covered by an image patch are filled with a dark green
color resembling the field color.
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Chapter 4

Perception

The perception modules run in the context of the process Cognition. They detect features in the
image that was just taken by the camera. The modules can be separated into four categories. The
modules of the perception infrastructure provide representations that deal with the perspective
of the image taken, provide the image in different formats, and provide representations that limit
the area interesting for further image processing steps. Based on these representations, modules
detect features useful for self-localization, the ball, and obstacles. All information provided by
the perception modules is relative to the robot’s position.

An overview of the perception modules and representations is shown in Fig. 4.1.

4.1 Perception Infrastructure

4.1.1 Using Both Cameras

The NAO robot is equipped with two video cameras that are mounted in the head of the robot.
The first camera is installed in the middle forehead and the second one approx. 4cm below.
The lower camera is tilted by 39.7° with respect to the upper camera and both cameras have a
vertical opening angle of 47.64°. Because of that, the overlapping parts of the images are too
small for stereo vision. It is also impossible to get images from both cameras at the exact same
time, as they are not synchronized on a hardware level. This is why we analyze only one picture
at a time and do not stitch the images together. To be able to analyze the pictures from both
the upper and lower camera in real-time without loosing any images, the Cognition process runs
at 60Hz.

Since the NAO is currently not able to provide images from both cameras at their maximum
resolution, we use a smaller resolution for the lower camera. During normal play the lower
camera sees only a very small portion of the field, which is directly in front of the robot’s feet.
Therefore, objects in the lower image are close to the robot and rather big. We take advantage
of this fact and run the lower camera with half the resolution of the upper camera, thereby
saving a lot of computation time.

Both cameras deliver their images in the YUV422 format. The upper camera provides 640 x 480
pixels while the lower camera only provides 320 x 240 pixels. As the perception of features in
the images relies either on color classes (e. g. for reqion building) or the luminance values of the
image pixels (e.g. for computing edges in the image), the YUV/22 images are converted to the
“extracted and color-classified” ECImage. The ECImage consists of two images: the grayscaled
image obtained from the Y channel of the camera image and a so-called “colored” image mapping
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each image pixel to a color class.

Cognition modules processing an image need to know from which camera it comes. For this
reason, we implemented the representation Cameralnfo, which contains this information as well
as the resolution of the current image.

4.1.2 Definition of Coordinate Systems

The global coordinate system (cf. Fig. 4.2) is described by its origin lying at the center of the
field, the z-axis pointing toward the opponent goal, the y-axis pointing to the left, and the z-axis
pointing upward. Rotations are specified counter-clockwise with the x-axis pointing toward 0°,
and the y-axis pointing toward 90°.

In the robot-relative system of coordinates (cf. Fig. 4.3), the axes are defined as follows: the
z-axis points forward, the y-axis points to the left, and the z-axis points upward.

4.1.2.1 Camera Matrix and Camera Calibration

The CameraMatrix is a representation containing the transformation matrix of the active cam-
era of the NAO (cf. Sect. 4.1.1) that is provided by the CameraMatrixProvider. It is used for
projecting objects onto the field as well as for the creation of the ImageCoordinateSystem (cf.
Sect. 4.1.2.2). It is computed based on the TorsoMatrix that represents the orientation and po-
sition of a specific point within the robot’s torso relative to the ground (cf. Sect. 7.4). Using the
RobotDimensions and the current joint angles, the transformation of the camera matrix relative
to the torso matrix is computed as the RobotCameraMatrix. The latter is used to compute the
BodyContour (cf. Sect. 4.1.3). In addition to the fixed parameters from the RobotDimensions,
some robot-specific parameters from the CameraCalibration are integrated, which are necessary,
because the camera cannot be mounted perfectly plain and the torso is not always perfectly ver-
tical. A small variation in the camera’s orientation can lead to significant errors when projecting
farther objects onto the field.

The process of manually calibrating the robot-specific correction parameters for a camera is a
very time-consuming task, since the parameter space is quite large (8 resp. 11 parameters for
calibrating the lower resp. both cameras). It is not always obvious, which parameters have to
be adapted, if a camera is miscalibrated. In particular during competitions, the robots’ cameras
require recalibration very often, e. g. after a robot returned from repair.

In order to overcome this problem, an automatic CameraCalibrator module was introduced. It
collects points on the field lines fully autonomously. The points on the lines required are provided
by the LineSpotProvider (see Sect. 4.2.1). They are collected for both cameras, after the head
moved to predefined angles. Although this calibrator significantly reduces the time needed for a
calibration, it has a drawback in terms of precision. The line detection has problems in detecting
lines that are further away, in particular when the color calibration is not very good. This can
lead to inaccurate values for the estimated tilts of the cameras.

Notable features of the automatic CameraCalibrator are:

e The user can mark arbitrary points on field lines if the automatic detection does not pro-
duce enough points. This is particularly useful during competitions because it is possible
to calibrate the camera if parts of the field lines are covered (e.g. by robots or other team
members).

e Since both cameras are used, the calibration module is able to calibrate the parameters of
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Figure 4.2: Visualization of the global coordi-
nate system (opponent goal is marked in yellow)

95

Figure 4.3: Visualization of the
robot-relative coordinate system

the lower as well as the upper camera. Therefore, the user simply has to mark additional
reference points in the image of the upper camera.

In order to optimize the parameters, the Gauss-Newton algorithm is used! instead of hill
climbing. Since this algorithm is designed specific for non-linear least squares problems
like this, the time to converge is drastically reduced to an average of 5-10 iterations. This
has the additional advantage that the probability to converge is increased.

During the calibration procedure, the robot stands on a defined spot on the field. Since
the user is typically unable to place the robot exactly on that spot and a small variance
of the robot pose from its desired pose results in a large systematical error, additional
correction parameters for the RobotPose are introduced and optimized simultaneously.

The error function takes the distance of a point to the next line in image coordinates
instead of field coordinates into account. This is a more accurate error approximation
because the parameters and the error are in angular space.

A manual deletion of samples is possible by left-clicking into the image and on the point
the sample has been taken. Likewise, a manual insertion of samples is now possible by
CTRL + left-clicking into the image at the point you want the sample to be.

Command generation for correcting the body rotation. In case you don’t want the BodyRo-
tationCorrection stored in the CameraCalibration, you can manually call the JointCalibrator
and transfer the values or you can use the command

set module: AutomaticCameraCalibrator:setJointOffsets true

before running the optimization. After the optimization, a bunch of commands will be
generated and you can enter them in order of appearance to transfer the values into the
JointCalibration.

With these features, the module typically produces a parameter set that requires only little
manual adjustments, if any. The calibration procedure is described in Sect. 2.8.3.
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Figure 4.4: Origin of the ImageCoordinateSystem

4.1.2.2 Image Coordinate System

Based on the camera transformation matrix, another coordinate system is provided which applies
to the camera image. The ImageCoordinateSystem is provided by the module CoordinateSystem-
Provider. The origin of the y-coordinate lies on the horizon within the image (even if it is
not visible in the image). The z-axis points right along the horizon whereby the y-axis points
downwards orthogonal to the horizon (cf. Fig. 4.4). For more information see also [29].

Using the stored camera transformation matrix of the previous cycle in which the same camera
took an image enables the CoordinateSystemProvider to determine the rotation speed of the
camera and thereby interpolate its orientation when recording each image row. As a result,
the representation ImageCoordinateSystem provides a mechanism to compensate for different
recording times of images and joint angles as well as for image distortion caused by the rolling
shutter. For a detailed description of this method, applied to the Sony AIBO, see [23].

4.1.3 Body Contour

If the robot sees parts of its body, it might confuse white areas with field lines or other robots.
However, by using forward kinematics, the robot can actually know where its body is visible in
the camera image and exclude these areas from image processing. This is achieved by modeling
the boundaries of body parts that are potentially visible in 3-D (cf. Fig. 4.5 left) and projecting
them back to the camera image (cf. Fig. 4.5 right). The part of the projection that intersects
with the camera image or above is provided in the representation BodyContour. It is used by
image processing modules as lower clipping boundary. The projection relies on the representation
ImageCoordinateSystem, i.e., the linear interpolation of the joint angles to match the time when
the image was taken.

4.1.4 Color Classification

Identifying the color classes of pixels in the image is done by the ECImageProvider when com-
puting the ECImage. In order to be able to clearly distinguish different colors and easily define
color classes while still being able to compute the ECImage for every camera image in real time,
the YHS2 color space is used.
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L

Figure 4.5: Body contour in 3-D (left) and projected to the camera image (right).

YHS2 Color Space

The YHS2 color space is defined by applying the idea behind the HSV color space, i.e. defining
the chroma components as a vector in the RGB color wheel, to the YUV color space. In YHS2,
the hue component H describes the angle of the vector of the U and V components of the color
in the YUV color space, while the saturation component S describes the length of that vector
divided by the luminance of the corresponding pixel. The luminance component Y is just the
same as it is in YUV. By dividing the saturation by the luminance, the resulting saturation
value describes the actual saturation of the color more accurately, making it more useful for
separating black and white from actual colors. This is because in YUV, the chroma components
are somewhat dependent of the luminance (cf. Fig. 4.6).

Classification Method

Classifying a pixel’s color is done by first applying a threshold to the saturation channel. If it
is below the given threshold, the pixel is considered to describe a non-color, i.e. black or white.
In this case, whether the color is black or white is determined by applying another threshold
to the luminance channel. However, if the saturation of the given pixel is above the saturation
threshold, the pixel is of a certain color, if its hue value lies within the hue range defined for
that color.

Figure 4.6: The UV plane of the YUV color space for Y =0, Y =128 and Y = 255.
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(d) (e)

Figure 4.7: (a) An image from the upper camera of a NAO with (b) a corresponding color
classification based on its (c¢) luminance, (d) hue and (e) saturation channels in the YHS2 color
space.

This approach was used throughout the RoboCup 2016 and provided very good results. It is how-
ever possible to use an alternative classification method by setting the simpleClassification
parameter of the ECImageProvider to false. In this case, colors are defined not only by a hue
range, but by one range of values for each of H, S and Y. Additionally, white and black are not
separated by a single threshold for the Y channel, but there is a minimum Y threshold for white
and a maximum Y threshold for black to enable non-classified pixels with low saturation.

In order to classify the whole camera image in real time, both the color conversion to YHS2 and
the color classification are done using SSE instructions.

Fig. 4.7 shows representations of an image from the upper camera in the YHS2 color space and
a classification based on it for the colors white, black, green and “none” (displayed gray).

4.1.5 Segmentation and Region-Building

The ColorScanlineRegionizer scans along vertical and horizontal scanlines whose distances from
each other are small enough to detect the field boundary, field lines, and the ball. These scanlines
are segmented into regions, i. e. line segments of a similar color based on the colored part of the
ECImage. In vertical direction, the sampling frequency is not constant. Instead, it is given by
the ScanGrid, the steps of which depend on the vertical orientation of the camera and basically
correspond to a distance of a bit less than the expected width of a horizontal field line at that
position in the image. Whenever the color classes of two successive scan points on a vertical line
differ, the region in between is scanned to find the actual position of the edge between the two
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Figure 4.8: (a) Visualization of the ScanGrid: the blue dots are checked for building regions

of colors. (b) and (c) show the high resolution vertical and the horizontal scanline regions,
respectively.

neighboring regions. The best position is the one above which enough pixels are found that are
classified as color classes different from the one of the previous region. Fig. 4.8 visualizes the
subsampling.

In order to save computational time, the ScanGrid starts at the horizon as given by the Im-
ageCoordinateSystem. Additionally, the vertical scanlines are divided into “low resolution” and
“high resolution” scanlines. At first, only the low resolution scanlines are computed and used
for determining the field boundary. Afterwards, the high resolution scanlines are computed for
further processing, starting at the field boundary.

4.1.6 Detecting The Field Boundary

The rules state that if fields are further away from each other than 3 m, a barrier between them
can be omitted. This means that robots can see goals on other fields that look exactly like
the goals on their own field. In addition, these goals can even be closer than a goal on their
field. Therefore, it is very important to know where the own field ends and to ignore everything
outside. For this purpose, our current approach searches for vertical scan lines, starting from
the bottom of the image going upwards. Simply using the first non-green pixel for the boundary
is not an option, since pixels on field lines and all other objects on the field would comply with
such a criterion. In addition, separating two or more fields would not be possible and noise
could lead to false positives.

Our approach builds a score for each scan line while the pixels are scanned. For each green
pixel, a reward is added to the score. For each non-green pixel a penalty is subtracted from it.
The pixel where the score is the highest is then selected as boundary spot for the corresponding
scan line. The rewards and penalties are modified depending on the distance of the pixel from
the robot when projected to the field. Field lines tend to have more green pixels above them in
the image. As a result, they are easily skipped, but the gaps between the fields tend to be small
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Figure 4.9: Boundary spots (blue) and the estimated field boundary (orange) in a simulated
environment with multiple fields.

in comparison to the next field when they are seen from a greater distance. Thus, for non-green
pixels with a distance greater than 3.5 meters, a higher penalty is used. This also helps with
noise at the border of the own field. Figure 4.9 shows that most of the spots are placed on the
actual boundary using this method.

Since the detection of the field lines (cf. Sect. 4.2.1) should only take place inside the area of
the field, the ColorScanlineRegionsVertical are clipped by the FieldBoundary resulting in a rep-
resentation called ColorScanlineRegionsVerticalClipped that is used for further processing. Since
clipping away the area outside the field also means to remove the regions that are potentially
cluttered the most, ignoring them in further processing also benefits the computation time.

Since other robots in the image also produce false positives below the actual boundary, the
general idea is to calculate the upper convex hull from all spots. However, such a convex hull is
prone to outliers in upward direction. Therefore, an approach similar to the one described by
Thomas Reinhardt [22, Sect. 3.5.4] is used. Several hulls are calculated successively from the
spots by removing the point of the hull with the highest vertical distances to its direct neighbors.
These hulls are then evaluated by comparing them to the spots. The best hull is the one with
the most spots in near proximity. This one is selected as boundary. An example can be seen in
Fig. 4.9.

The lower camera does not see the actual field boundary most of the time. So calculating the
boundary in every image would lead to oscillating representations. Thus, the field boundary is
calculated on the upper image. Nevertheless, a convex hull is calculated on the lower image too,
since the boundary can start there. The resulting hull is stored for one frame in field coordinates
so that the movement of the NAO can be compensated in the upper image. It is then used to
provide starting points for the calculations. The resulting hull is used as field boundary over
two images.
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4.2 Localization Features

To provide input for the self-localization (cf. 5.1), there exist multiple approaches to extract
information from the visual sensors. Every (visual) knowledge relevant for position estimation
that our robot is aware of is based on the field line detection. Although the penalty mark and
the center circle are basically lines as well, they are — at least partly — detected separately to
ensure more robustness for each single detection. Together, the representations of all three basic
detections make up the first layer in the process chain of the visual perception. FEach layer
combines previously known information to provide more specific features. Information of every
layer can be used by the self-localization. The main layers after the basic feature detection are
the intersections perception and the following field feature perception.

4.2.1 Detecting Lines

The perception of field lines by the LinePerceptor relies mostly on the scanline regions. In order to
find horizontal lines in the image, adjacent white vertical regions that are not within a perceived
obstacle (cf. Sect. 4.5) are combined to line segments. Correspondingly, vertical line segments
are constructed from white horizontal regions. These line segments and the center points of the
regions they are made up of, called line spots, are then projected onto the field. Using linear
regression of the line spots, the line segments are then merged together and extended to larger
line percepts. During this step, line segments are only merged together if at least a given ratio
of the resulting line consists of white pixels in the image. Fig. 4.10 shows the process of finding
lines in the camera image.

4.2.2 Detecting the Center Circle

Besides providing the LinesPercept containing perceived field lines, the LinePerceptor also detects
the center circle in an image if it is present. In order to do so, when combining line spots to line
segments, their field coordinates are also fitted to circle candidates. After the LinesPercept was
computed, spots on the circle candidates are then projected back into the image and adjusted
so they lie in the middle of white regions in the image. These adjusted spots are then again
projected onto the field and it is once again tried to fit a circle through them, excluding outliers.

If searching the center circle using this approach did not yield any results, another method of
finding the center circle is applied. For this method, for all previously detected lines whose line
spots describe an arc, the center points of the arcs — described by three adjacent line spots — are
accumulated into clusters. If one of these clusters contains a sufficient number of center points,
the average point of these center points is considered to be the center of the center circle.

If a potential center circle was found by any of these two methods, it is accepted as a valid center
circle only if — after projecting spots on the circle back into the image — at least a certain ratio
of the corresponding pixels is white (cf. Fig. 4.10c).

4.2.3 Line Coincidence Detection

To find points where two lines coincide, we are calculating the intersections of the previously
perceived lines (cf. 4.2.1). This approach is probably much faster and more accurate? than
any separate (visual) perception such as e.g. corner search, but it means that detecting a line

2 Assuming a pretty accurate line detection.
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Figure 4.10: (a) Line spots constructed from the scanline regions. Spots from horizontal re-
gions are marked red, spots from vertical regions blue. (b) The detected line segments in the
image. (c) Points on the circle candidate that were projected back into the image for check-
ing if the corresponding pixels are white. (d) Filtered line and circle percepts in the FieldLines
representation.

intersection without a line (percept) is impossible. In particular this disadvantage applies to
line corners of a penalty area that extend into the image.

The IntersectionProvider fills the IntersectionPercept based on the LinesPercept. Each known line
will be compared to all other known lines, excluding those that are known to be part of the
center circle. Because of the way the field is set up (cf. the current rules [4]), an intersection is
only possible, if the inclination of two compared lines in field coordinates is roughly 5. If that
is the case, the point of intersection of the two lines is calculated. In order to be valid, this
point must lie in between both detected line segments. Next, we also want to specify the type of
each intersection. The types of intersections are congruent with their names: L, T, and X. This
means that intersections lying clearly in-between both lines are of type X while those that are
clearly inside one line but roughly at one end of the other are considered to be of type T. If the
point of intersection lies roughly at the ends of both lines, it is assumed to belong to an L-type
intersection.

In case that parts of both lines are seen, but the point of intersection does not lie on either
line — e. g. because an obstacle is standing in front of the intersection point — the lines will be
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virtually stretched to some extend so that the point of intersection lies roughly at their ends.
The possible distance by which a line can be extended depends on the length of its recognized
part.

The IntersectionPercept stores the type of each intersection as well as its position, its base lines,
and its rotation.

4.2.4 Preprocessed Lines and Intersections

Some features of the LinesPercept and IntersectionPercept, such as the spots from which the
lines were fitted and image coordinates, are not needed for further processing. On the other
hand, now that the positions of all lines and intersections are known, additional information
can be gained by making assumptions based on the known layout of the field lines. Therefore,
as a next step, the FieldLinesProvider provides adapted representations of the LinesPercept and
IntersectionPercept for further use.

The representation FieldLines contains the processed line percepts (cf. Fig. 4.10d). For this,
every line that is assumed to be seen on the center circle or inside the goal frame or net (cf.
4.2.6) was sorted out. Lines that extend into the goal frame are clipped to its boundaries. In
addition to that, every line that is as long as a ball would appear at the corresponding position
in the image is removed®. Apart from removing invalid percepts, lines in FieldLines also have
additional properties. A line is marked as mid, if it goes through the center circle, which means
that it is probably the center line. The long attribute is given to any line that is longer than
a specific on-field distance. A long line means the detected line probably belongs to the outer
lines, center line or penalty front lines. For this reason, it is advisable to check on a distance
that is longer than the penalty area sidelines or a part line inside the center circle, but as short
as possible to receive the additional information as often as possible.

The representation FieldLinelntersections contains the processed line intersection percepts. It
consists only of intersections that do not apply to any previously removed lines. If one of
the lines belonging to an intersection was cut, the intersection type is corrected accordingly.
Additionally, an intersection can now have a type of mid or big. If both lines of the intersection
are of type mid, the intersection is also considered to be mid. Analogous to that, an intersection
consisting of two long lines has the attribute big. After all this processing, L-type intersections
are filtered out, if the angle between their two lines is not about ninety degrees.

4.2.5 Penalty Mark Perception

The current module that provides the penalty mark, the PenaltyMarkPeceptor3000, was devel-
oped with an emphasis on performance instead on detection rate, while not allowing too many
false positives. The main idea is to find a white spot that is surrounded by (only) green and has
no black inside.

Therefore, the low resolution vertical scan lines in ColorScanlineRegionsVerticalClipped are
searched for white spots that have approximately the same height as a penalty mark would
have at this position in the image. These spots are tested against a number of criteria, with
the first spot passing all tests successfully being considered to be the actual penalty mark. The
tests are checking on duplicates, position inside the ball, width, black inside and green around.
To ensure that every area in the image in which spots were found will be checked only once,
no spot will be further evaluated if the distance to any previously checked spot is less than the

3This is a competition quick hack to avoid further calculations on false-positive lines that are fitted inside the
ball.

68



4.2. LOCALIZATION FEATURES B-Human 2016

calculated in-image-width of the currently checked penalty mark. The check on area intersec-
tion with the ball prediction is theoretically unnecessary but during competition it allowed us to
easily compensate for non-perfect color conditions thanks to a good ball detection. The width
will be checked by comparing the calculated in-image-width of the penalty mark with a simply
measured width by scanning to the left and right from the spot. In addition to the check, this
will be used to relocate the in-image x-position of the spot. The scan lines for the finishing black
and green checks are generated by the estimated in-image penalty mark size. The green scan
should ensure that this white plot does not belong to anything else. This check is supposed to
be successful only for real penalty marks and balls, with the last being sorted out by the black
scan.

4.2.6 Field Features

The self-localization has always used field lines, their crossings, and the center circle as measure-
ments. Since 2015, these features are complemented by the perception of the penalty marks.
All of these field elements are distributed over the whole field and can be detected very reliably,
providing a constant input of measurements in most situations.

Built upon this, the perception of a new category of measurements, the so-called Field Features,
has been implemented. They are created by combining multiple basic field elements in a way
that a robot pose (in global field coordinates) can be derived directly. The handling of the field
symmetry, which leads to actually two poses, is described Sect. 5.1.2.

Overall, this approach provides a much higher number of reliable pose estimates than the previ-
ous goal-based approach, as the field lines on which it is based can be seen from many perspec-
tives and have a more robust context (straight white lines surrounded by green carpet) than the
noisy unknown background of goal posts.

Every FieldFeature is a Pose2f, which is the pose of this in relative field coordinates. In addition,
it has the following attributes and methods:

isValid is an attribute that describes, if the pose is valid or rather if the feature was detected
in this frame.

markedPoints, markedLines and markedIntersections are attributes that associate several
percepts with explicitly defined global field elements such as the center line. Although
these lists are filled by the individual feature providers, the functionality is not described
in detail in this report, as these elements are not in use right now.

isLikeEnoughACorrectPerception(...) calculates if more lines are unmarked inside a given
space around this feature than allowed.

getGlobalFeaturePosition() calculates the two global robot poses that the robot can have
according to this feature (if it is valid).

clear() clears the lists markedPoints, markedLines and markedIntersections. The intended
use is inside a provider at the start of an update method.

draw() draws the result of getGlobalFeaturePosition() into a world state drawing context.

Normally, all feature detections are using the preprocessed field elements (cf. 4.2.4). We are
currently computing the following field features:
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Penalty Area The PenaltyAreaPerceptor, which provides PenaltyArea, tries to find a penalty
area by the help of the penalty mark and a line or two intersections. If a penalty mark
is known, it searches a line that matches the corresponding penalty area front line. The
penalty area can also be found by combining two small (not big) T-intersections or one
small T-intersection and one small L-intersection.

Outer Corner The OuterCorner refers to the areas where ground lines meet side lines, which
means that the outer corner is on the right or left side. To find such a corner, the Outer-
CornerPerceptor combines a big L-intersection with an element of the penalty area.

Mid Circle The MidCircleProvider is combining a detected center circle with a detected mid
line to provide the MidCircle.

Mid Corner A MidCorner, which is provided by the MidCornerPerceptor, is simply derived from
a big T-intersection.

Goal Frame Besides the obvious reason to have another field feature to get more information
to put into the self-locator, the GoalFrame is also used to sort out false-positive lines that
were detected inside the goal net. Thus, the GoalFrameDetector has to calculate directly
based on the line percepts. In general, the module searches for points around the goal and
validates the rotation with a special use of the FieldBoundary.

4.3 Detecting the Black and White Ball

The introduction of the black and white ball is the major new challenge in the Standard Platform
League in 2016. Until the RoboCup 2015, the ball was orange and rather easy to detect. In
particular, it was the only orange object on the field. The new ball is mainly white with a
regular pattern of black patches, just as a miniature version of a regular soccer ball. The main
problem is that the field lines, the goals, and the NAO robots are also white. The latter even
have several round plastic parts and they also contain grey parts. Since the ball is often in the
vicinity of the NAOs during a game, it is quite challenging to avoid a large number of false
positives.

We use a multi-step approach for the detection of the ball. First, the vertical scan lines our
vision system is mainly based on are searched for ball candidates. Then, a contour detector fits
ball contours around the candidates’ locations. Afterwards, fitted ball candidates are filtered
using some general heuristics. Finally, the surface pattern inside each remaining candidate is
checked.

4.3.1 Searching for Ball Candidates

Our vision system scans the image vertically using scan lines of different density based on the
size that objects, in particular the ball, would have at a certain position inside the image. To
determine ball candidates, the BallSpotProviderl7 searches these scan lines for sufficiently large
gaps in the green that also have a sufficiently large horizontal extension and contain enough
white (cf. Fig. 4.11a). Only the first and second resolutions of the scanlines are used. From a
specific distance, the ball is that small inside the image that the calculation can not provide
good results. For this reason, ball spots more far away than this distance will be generated on
white blobs that paled of green. In addition, all initial spots are ignored if they are nearby a

70



4.3. DETECTING THE BLACK AND WHITE BALL B-Human 2016

(a) Vertical scan lines and a detected ball candidate (b) Contrast-normalized Sobel image. The colors
(the cross). Parts of the robot’s body are ignored indicate the directions of the gradients.
(bottom left).

(¢) Visualization of the search space for the ball con- (d) The contour with the highest response (green)
tour. The actual search is only performed around and the sample grid to check the ball pattern (pixels
the ball candidate, but in single pixel steps in both classified as black are shown in red, white pixels in
dimensions. blue).

Figure 4.11: The main steps of the ball detection

previous one? or are clearly inside a detected robot. In this context, “clearly inside a robot”

means all parts except for feet and arms, as these elements cannot be detected accurately.

4.3.2 Fitting Ball Contours

As the position of a ball candidate is not necessarily in the center of an actual ball, the area
around such a position is searched for the contour of the ball as it would appear in this part of
the image given the intrinsic parameters of the camera and its pose relative to the field plane.
The approach is very similar to the detection of objects in 3-D space using a stereo camera
system as described by Miiller et al. [19], but we only use a single image instead. For each ball
candidate, the CNSBallRegionsProvider computes a rectangle that surrounds the area a ball could
occupy in that part of the image. The CNSImageProvider then first joins neighboring areas to

4Despite this step is unnecessary for the following used ball perceptor, it saves a bit calculation time inside
the ball spot provider itself, but even more inside different ball percept provider approaches.
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bigger rectangles and computes a contrast-normalized Sobel image for each area (cf. Fig. 4.11b).
Technically, only a single Sobel image is filled, in which only the areas surrounding the candidate
positions are updated. The CNSBallPerceptor then performs the actual ball detection. It searches
this contrast image in each of the areas provided by the CNSBallRegionsProvider for the best
match with the expected ball contour (cf. Fig. 4.11c). The best match is then refined by adapting
its hypothetical 3-D coordinates (cf. Fig. 4.11d).

4.3.3 Filtering Ball Candidates

The fitting process results in a measure, the response, for how well the image matches with
the contour expected at the candidate’s location. If this value is below a threshold, the ball
candidate is dropped. The threshold is dynamically determined from the amount of green that
surrounds the ball candidate. On the one hand, the less green is around the candidate, the
higher the response has to be to reduce the amount of false positives inside robots. However,
if a ball candidate is completely surrounded by green pixels and the response was high enough
to exclude the possibility of being a penalty mark, the ball candidate is accepted right away,
skipping the final step described below that might be failing if the ball is rolling quickly. All
candidates that fit well enough are processed in descending order of their response. As a result,
the candidate with the highest response that also passes all other checks will be accepted. These
other checks include that the ball radius found must be similar to the radius that would be
expected at that position inside the image.

4.3.4 Checking the Surface Pattern

For checking the black and white surface pattern, a fixed set of 3-D points on the surface of
the ball candidate are projected into the image (cf. Fig. 4.11d). For each of these pixels, the
brightness of the image at its location is determined. Since the ball usually shows a strong
gradient in the image from its bright top to a much darker bottom half, the pixels are artificially
brightened depending on their position inside the ball. Then, Otsu’s method [21] is used to
determine the optimal threshold between the black and the white parts of the ball for the pixels
sampled. If the average brightnesses of both classes are sufficiently different, all pixels sampled
are classified as being either black or white. Then, this pattern is looked up in a pre-computed
table to determine whether it is a valid combination for the official ball. The table was computed
from a 2-D texture of the ball surface considering all possible rotations of the ball around all
three axes and some variations close the transitions between the black and the white parts of
the ball.

The approach allows our robots to detect the ball in distances of up to five meters with only
a few false positive detections. It works better under good lighting conditions. In a rather
dark environment, as on Field A in the indoor competition of RoboCup 2016, balls with lower
responses had to be accepted in order to detect the ball at all. This resulted in more false positive
detections, in particular in the feet of other robots, because they are also largely surrounded by
green.

4.4 Ball Perception Statistics

Due to the change of the official ball of the Standard Platform League, the team members of
B-Human developed a number of different solutions for this task. To determine which perception
approach is the best, it was considered useful to raise some statistics like the perception range
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for example. The module BallPerceptorEvaluator provides those statistics in the representation
BallPerceptorEvaluation. This representation contains the following attributes:

e seenPercentage: The rate of percepts over all images in percent. Please note that both
cameras are taken into account for this attribute. Thus, an overall rate of 0.5 is perfectly
fine if the percept is computed by just one camera.

e guessedFalsePositives: The guessed rate of false positives over all percepts. This value
is calculated by thresholds for percept jumps in BallPerceptorEvaluator.

e averageDifferenceUpper: The average of differences between percept positions on the
field in the upper camera.

e averageDifferenceLower: The average of differences between percept positions on the
field in the lower camera.

e maximumPerceptDistance: The longest distance between robot and percept.
e minimumPerceptDistance: The shortest distance between robot and percept.

e averagePerceptDistance: The average distance between robot and percept.

The module BallPerceptorEvaluator requires the BallPercept to get the relevant data for the statis-
tics, and the Cameralnfo to check which camera received the current percept. The parameters
are the following.

e jumpAngleThreshold: A threshold that describes the maximum angular difference be-
tween the last two percepts. Values above the threshold can be an indication for a false
positive.

e jumpOnFieldThreshold: The threshold that describes the maximum positional difference
between the last two percepts. Values above the threshold can be an indication for a false
positive.

The BallPerceptorEvaluator computes the statistics by using the status and the positionOnField
(relative to the robot) of the BallPercept. The module uses a lot of variables and buffers to
avoid complications inside the representation BallPerceptorEvaluation. The special attribute
guessedFalsePositives should not be taken too serious. A percept is seen as a false positive if the
angular and positional difference to the last percept are above the thresholds that are declared
as parameters. The averaged values are calculated by using a ring buffer with a maximum of
100 elements. To avoid numerical problems, the counting variables are checked at every update
cycle.

4.5 Detecting Other Robots and Obstacles

The PlayersPerceptor recognizes standing and fallen robots up to seven meters away in less than
two milliseconds of computation time.

Initially, the approach searches for robot parts within the field boundary (cf. Fig. 4.12a). Starting
at the boundary, it scans down in vertical lines, looking only at a subset of the pixels. The
distance between these pixels is constantly growing. The space and its growing rate are calculated
from the distance of the corresponding points on the field. If there are a couple of non-green
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Figure 4.12: (a) Searching for a robot below the boundary of the field (depicted in orange) at a
subset of the pixels (depicted as yellow dots). (b) Jersey colors are recognized on robots.

pixels scanned in a vertical line, then the lowest of these pixels gets marked as a potential robot
base point. These are possible spots at the feet and hands of a robot, and they can be merged to
a bounding box. After calculating the surrounding box, the method searches for a jersey within
it and tries to determine the jersey color (cf. Fig. 4.12b).

For jersey association, the module uses the team color information from the GameController.
If one of the teams uses black jerseys (in most cases our own team), we scan up to four times
with the first scan checking the shins of the NAO, to determine whether it is a referee or not.
Otherwise, we scan up to three times. All other scans are performed below the shoulders, at the
height of the chest, and at the hip, when no jersey was detected in each previous scan.

During each scan, the color values of scanned pixels are analyzed by using the following condi-
tions:

1. Is the intensity high and the saturation low enough to be white?
Then a counter for white will be increased.

2. Do the hue and intensity values resemble that of a prototypical green color?
Then the pixel will be ignored.

3. Is one of the jerseys black?

o Yes

— Is the intensity too high for black but low enough for a dark color and the satu-
ration not too high for gray?
Then it could be a black jersey.

e No

— Is the intensity too high for black?
Then it will be checked which team color is within the ranges or next to the color
of the pixel, if both are within the ranges.

Depending on which color dominates, the obstacle will be marked as an opponent, teammate,
or obstacle. The HSI color values for all team colors have to be predefined prototypically.

74



Chapter 5

Modeling

To compute an estimate of the world state — including the robot’s position, the ball’s position
and velocity, and the presence of obstacles — given the noisy and incomplete data provided by
the perception layer, a set of modeling modules is necessary. Since these modules have to update
their output for each new image processed, they also run in the process Cognition. Together
with their dependencies, they are depicted in Fig. 6.1.

5.1 Self-Localization

A robust and precise self-localization has always been an important requirement for successfully
participating in the Standard Platform League. B-Human has always based its self-localization
solutions on probabilistic approaches [31] as this paradigm has been proven to provide robust
and precise results in a variety of robot state estimation tasks. However, due to the high amount
of noise and the problems arising from the field’s symmetry, the main state estimation module
is complemented by additional modules that generate new robot pose alternatives and check, if
a robot’s current orientation is point-symmetrically flipped.

5.1.1 Probabilistic State Estimation

As in previous years, the pose state estimation is handled by multiple hypotheses that are each
modeled as an Unscented Kalman Filter [13]. The hypotheses management and hypotheses
resetting (cf. Sect. 5.1.2) is realized as a particle filter [5]. Both approaches are straightforward
textbook implementations [31], except for some adaptions to handle certain RoboCup-specific
game states, such as the positioning after returning from a penalty. In addition, we only use a
very low number of particles (currently 12), as multimodalities do not occur often in RoboCup
games.

The current self-localization implementation is the SelfLocator that provides the RobotPose.
Furthermore, for debugging purposes, the module also provides the loggable representation
SelfLocalizationHypotheses which contains the states of all currently internally maintained pose
hypotheses.

Overall, this combination of probabilistic methods enables a robust, precise and efficient self-
localization on the RoboCup field. However, eventually, the result always depends on the quality
and quantity of the incoming perceptions.
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Figure 5.1: Modeling module graph. Modeling modules are depicted as yellow rectangles. All
representations they provide are shown as blue ellipses. The representations they require are
shown as ellipses colored in either yellow if they are provided by other Cognition modules and
orange if they are received from the process Motion.

5.1.1.1 Perceptions Used for Self-Localization

In the past, B-Human used goals as a dominant feature for self-localization. When the field was
smaller and the goal posts were painted yellow, they were easy to perceive from most positions
and provided precise and valuable measurements for the pose estimation process. In particular
the sensor resetting part (cf. Sect. 5.1.2), i. e. the creation of alternative pose estimates in case of
a delocalization, was almost completely based on the goal posts perceived. In 2015, we still relied
on this approach, using a detector for the white goals [27]. However, as it turned out that this
detector required too much computation time and did not work reliably in some environments
(requiring lots of calibration efforts), we decided to perform self-localization without goals but
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by using the new complex field features (cf. Sect. 4.2.6) instead.

In addition, the self-localization still uses basic features such as field lines, their crossings, and the
center circle as measurements. Since 2015, these features are complemented by the perception
of the penalty marks (cf. Sect. 4.2.5). All these field elements are distributed over the whole
field and can be detected very reliably, providing a constant input of measurements in most
situations.

Field features are also used as measurements but not as a perception of relative landmarks.
Instead, an artificial measurement of a global pose is generated, reducing the translational error
in both dimensions as well as the rotational error at once. Furthermore, in contrast to the
basic field elements that are not unique, no data association (cf. Sect. 5.1.1.2) is required. The
handling of the field symmetry, which leads to actually two poses, is similar to the one that is
done for the sensor resetting as described in Sect. 5.1.2.

5.1.1.2 Resampling based on Particle Validity

One important part of any Monte Carlo localization approach is the resampling (cf. [5]), i.e.
to determine which particles become copied how often to the new particle set representing the
current state’s probability distribution. For this purpose, each particle has a weighting that
describes how “good” it is; the higher the weighting, the higher the likelihood that the particle
will be copied to the new set. There is no general-purpose approach to compute these weights,
each application requires its own way to determine the quality of a particle instead.

In our implementation, each particle’s validity is directly used as its weighting (combined with
a base weighting, as described below). The validity is our measure for a particle’s compatibility
to the recent perceptions and is computed during the process of data association. To use a
perception in the UKF’s measurement step, it needs to be associated to a field element in global
field coordinates first. For instance, given a perceived line and a particle’s current pose estimate,
the field line that is most plausible regarding length, angle, and distance is determined. In a
second step, it is checked whether the difference between model and perception is small enough
to consider the perception for the measurement step. For all kinds of perceptions, different
thresholds exist, depending on the likelihood of false positives and the assumed precision of the
perception modules. After the association process has been carried out for all perceptions, the
current validity v. can be computed by setting the number of successfully associated perceptions
in relation to the total number of perception in this frame. For this computation, we consider
different weights for different kinds of perceptions, i.e. a field feature — which is a very reliable
perception — that cannot be associated has a higher impact on the validity than a field line that
has not been matched.

To avoid strong oscillations of the validity, which might cause instabilities within the sample set
and hence a robot pose that reacts too quickly to false measurements, a particle’s validity v, is
filtered over n frames (currently, n is configured to 60):

vl x (n—1)+wv
v, = 2 (n) c (5.1)

Furthermore, the addition of a base weighting w; in the computation of a particle’s weighting
w), contributes to a more stable resampling process:

wp = wp + (1 —wp) X vp (5.2)
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5.1.2 Sensor Resetting based on Field Features

When using a particle filter on a computationally limited platform, only few particles, which
cover the state space very sparsely, can be used. Therefore, to recover from a delocalization, it
is a common approach to perform sensor resetting, i.e. to insert new particles based on recent
measurements [18]. The new field features provide exactly this information — by combining
multiple basic field elements in a way that a robot pose (in global field coordinates) can be
derived directly — and thus are used by us for creating new particles. These particles are
provided as AlternativeRobotPoseHypothesis by the AlternativeRobotPoseProvider.

Overall, this approach provides a much higher number of reliable pose estimates than the previ-
ous goal-based approach, as the field lines on which it is based can be seen from many perspec-
tives and have a more robust context (straight white lines surrounded by green carpet) than the
noisy unknown background of goal posts.

As false positives can be among the field features, e. g. caused by robot parts overlapping parts
of lines and thereby inducing a wrong constellation of elements, an additional filtering step is
necessary. All robot poses that can be derived from recently observed field features are clustered
and only the largest cluster, which also needs to contain a minimum number of elements, is
considered as a candidate for a new sample. This candidate is only inserted into the sample set
in case it significantly differs from the current robot pose estimation.

To resolve the field’s symmetry when handling the field features, we use the constraints given
by the rules (e.g. all robots are in their own half when the game state switches to Playing or
when they return from a penalty) as well as the assumption that the alternative that is more
compatible to the previous robot pose is more likely than the other one. An example is depicted
in Fig. 5.2. This assumption can be made, as no teleportation happens in real games. Instead,
most localization errors result from situations in which robots lose track of their position and
accumulate translational and rotational errors.

These changes in localization — along with a growing number of robots that have a z-axis
gyroscope — enabled us to reduce the number of leaving the field penalties from 15 in seven
games during RoboCup 2015 to 0 in five games during the RoboCup European Open and 2 in
eleven games during RoboCup 2016 '. In comparison, the average number of leaving the field
calls at RoboCup 2016 was 35.45 times per team (5.8 per team per game), which either meant
that the robots were delocalized or they were chasing a false ball they detected outside the field.

5.1.3 Handling the Field’s Symmetry

As aforementioned, the self-localization already includes some mechanisms that keep a robot
playing in the right direction. However, it still happens that sometimes a single robot loses
track of its playing direction. To detect such situations, a separate module — the ExpSideConfi-
denceProvider — compares a robot’s ball observations with those of the teammates. If the current
constellation indicates that the robot has probably been flipped, the representation SideConfi-
dence is set accordingly and the subsequently executed SelfLocator can mirror all particles.

In the past, the comparison of the ball observations has been made between the own observation
and special team ball, similar to the one described in Sect. 5.2.3. As such a team ball always
describes an interpolated position and might be strongly influenced by single robots, we have
replaced this implementation by a list of mutual agreements. Whenever a teammate commu-
nicates a new ball, it is checked, whether both robots can agree about the ball position or if
they disagree, i. e. agree about the flipped alternative. If none of both alternatives appears to be

! Actually, both were the result of human errors, as we confirmed from analyzing video footage and log files.
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Figure 5.2: Whenever a new alternative pose is inserted into the sample set, it has to be decided,
if it can be used directly or if it needs to be flipped. This decision depends on the current robot
pose. This figure visualizes the possible decisions for one example robot pose (located on the
right side of the own half). The stars denote example alternative poses. A red line means:
if a new pose is computed here, it has to be flipped before its insertion into the sample set.
Consequently, black lines mean that the pose can be used directly. As one can see, the current
formula prefers the direction towards the opponent goal over the current position.

likely, the status is considered to be unknown. The ExpSideConfidenceProvider keeps an internal
list of all teammates and the result of the last comparisons.

To agree about a ball position, both observations need to have occurred within a certain amount
of time (currently one second) and at a similar place (currently up to one meter distance). As
not all robots can see the ball frequently, each agreement / disagreement will be remembered
for some time (currently eight seconds). However, if the (own or teammate) ball is located at
certain positions, it will not be used to compute any agreement / disagreement: as the field
is point-symmetric, the area around the field’s center is useless for any computations; as there
might be false positives on penalty marks or on lines that are close to robots or close to other
lines, all balls close to any of these are discarded. Furthermore, as the robots have to agree
within a certain time slice, a fast rolling ball could be perceived at very different positions and
has to be ignored, too.

Finally, to make a decision whether a robot is flipped or not, the list of mutual agreements is
checked:

e The localization is considered as being correct, if the robot agrees with more teammates
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about the ball position than it disagrees with.

e The robot is considered as flipped, if it disagrees with multiple teammates but does not
agree with anyone.

5.2 Ball Tracking

To keep track of the current ball state, all robots maintain two ball models: a local one that
estimates the ball position and velocity based on the own observations and a global one that
fuses the own observations with observations communicated by the teammates. Furthermore,
to predict upcoming positions of rolling balls, a model for the current carpet’s friction can be
learned.

5.2.1 Local Ball Model

Given the ball perceptions described in Sect. 4.3, the ExpBallLocator uses Kalman filters to
derive the current ball position and velocity, represented as the BallModel. Since ball motion on
a RoboCup soccer field has its own peculiarities, our implementation extends the usual Kalman
filter approach in several ways described below.

First of all, the problem of multimodal probability distributions, which is naturally handled by
the particle filter, deserves some attention when using a Kalman filter. Instead of only one, we
use twelve multivariate Gaussian probability distributions to represent the belief concerning the
ball. Each of these distributions is used independently for the prediction step and the correction
step of the filter. Effectively, there are twelve Kalman filters running in every frame. Only one
of these distributions is used to generate the actual ball model. That distribution is chosen
depending on how well the current measurement, i.e. the position the ball is currently seen
at, fits and how small the variance of that distribution is. That way we get a very accurate
estimation of the ball motion while being able to quickly react on displacements of the ball, for
example when the ball is moved by the referee after being kicked off the field.

To further improve the accuracy of the estimation, the twelve distributions are equally divided
into two sets, one for rolling balls and one for balls that do not move. Both sets are maintained
at the same time and get the same measurements for the correction steps. In each frame, the

Figure 5.3: Ball model and measurement covariances for (a) short and (b) medium distances.
The orange circles show the ball models computed from the probablhty dlstrlbutlon. The larger
ellipses show the assumed covariances of the measurements.
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worst distribution of each set gets reset to effectively throw one filter away and replace it with
a newly initialized one.

The robot influences the motion of the ball either by kicking or just standing in the way of a
rolling ball. To incorporate theses influences into the ball model, the mean value of the best
probability distribution from the last frame gets clipped against the robot’s feet. In such a case,
the probability distribution is reset, so that the position and velocity of the ball get overwritten
with new values depending on the motion of the foot the ball is clipped against. Since the vector
of position and velocity is the mean value of a probability distribution, a new covariance matrix
is calculated as well.

Speaking of covariance matrices, the covariance matrix determining the process noise for the
prediction step is fixed over the whole process. Contrary to that, the covariance for the correction
step is derived from the actual measurement; it depends on the distance between robot and ball
(cf. Fig. 5.3).

The major parts of this module remained unchanged for many years. However, the introduction
of the new black and white ball required the addition of a few more checks. In previous years,
the number of false positive ball perceptions has been zero in most games. Hence, the ball
tracking was implemented as being as reactive as possible, i. e. every perception was considered.
Although the new ball perception is quite robust in general (cf. Sect. 4.3), several false positives
per game cannot be avoided due to the similarity between the ball’s shape and surface and
some robot parts. Therefore, there must be multiple ball perceptions within a certain area and
within a maximum time frame before a perception is considered for the tracking process. This
slightly reduces the module’s reactivity but is still fast enough to allow the execution of ball
blocking moves in a timely manner. Furthermore, a common problem is the detection of balls
inside robots that are located at the image’s border and thus are not perceived by our software.
A part of these perceptions, i.e. those resulting from our teammates, is excluded by checking
against the communicated teammate positions.

5.2.2 Friction and Prediction

For a precise Kalman filter prediction step as well as for an estimation of a rolling ball’s end
position, which is required by some behaviors, a model of the friction between ball and ground
is essential. For this model, we assume a linear model for ball deceleration

1
s:vxt+§xa><t2 (5.3)

with s being the distance rolled by the ball, ¢ the time, and a the friction coefficient. The coeffi-
cient can be configured for each individual field and has to be set in the file fieldDimensions.cfg
(cf. Sect. 2.9).

The coefficient can be guessed by rolling a ball and comparing its end position with the pre-
dicted end position. To make this process more convenient, the code contains the module
FrictionLearner, which is deactivated during games, in order to automatically determine the
floor-dependent friction parameter. When the module is active, a robot with remote connection
can be placed on the field and the ball has to be rolled through its field of view with medium
speed. Preferably, the start and end position of the ball should both be outside the robot’s field
of view and the field should be even. The module buffers all ball perceptions and after the ball
is outside the field of view or has come to a stop, a least squares optimization determines the
coefficient a that provides the best explanation for the ball’s movement. The result is printed
to the SimRobot console window afterwards. As this process is subject to noise and outliers
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happen quite often, it should be carried out multiple times and the results have to be checked
and compared carefully by the user.

All computations for ball state prediction that involve friction have been encapsulated in the
class BallPhysics to be used by different modules.

Some modules, such as the ball perception (cf. Sect. 4.3), might require the current ball posi-
tion estimate before the BallModel has been updated in current execution frame. Hence, the
BallPredictor provides a BallPrediction by using the previous frame’s ball estimate and applying
odometry and motion updates.

5.2.3 Team Ball Model

The team ball model is calculated locally by each robot, but takes the ball models of all team-
mates into account. This means that the robot first collects the last valid ball model of each
teammate, which is in general the last received one, except for the case that the teammate is
not able to play, for instance because it is penalized or fallen down. In this case, the last valid
ball model is used. The only situation in which a teammate’s ball model is not used at all is if
the ball was seen outside the field, which is considered as a false perception. After the collection
of the ball models, they are combined in a weighted sum calculation to get the team ball model.
There are four factors that are considered in the calculation of the weighted sum:

e The approximated validity of the self-localization: the higher the validity, the higher the
weight.

e The time since the ball was last seen: the higher the time, the less the weight.

e The time since the ball should have been seen, i.e. the time since the ball was not seen
although it should have appeared in the robot’s camera image: the higher the time, the
less the weight.

e The approximated deviation of the ball based on the bearing: the higher the deviation,
the less the weight.

Based on these factors, a common ball model, containing an approximated position and velocity,
is calculated and provided as the representation TeamBallModel.

Among other things, the team ball model is currently used to make individual robots hesitate
to start searching for the ball if they currently do not see it but their teammates agree about
its position.

5.3 Obstacle Modeling

Similar to the previously described ball tracking, all robots maintain two different models for
the obstacles in their environment, one based solely on own observations and own incorporating
information sent by teammates.

5.3.1 Local Obstacle Model

To compute the ObstacleModel, the ObstacleModelProvider creates an Extended Kalman Filter
for each obstacle. All obstacles are held in a list. The position of an obstacle is relative to the
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position of the robot on the field plane. Sources for measurements are visually recognized goal
posts, robots and sensed contacts with arms and feet. Arm and feet contacts are interpreted as
an obstacle somewhere near the shoulder or foot. In the prediction step of the Extended Kalman
Filter, the odometry offset since the last update is applied to all obstacle positions. The update
step tries to find the best match for a given measurement, by using Euclidean distance and
updates that Kalman sample. If there is no suitable sample to match, a new sample is created.
Due to noise in images and motion, not every measurement might create an obstacle if no best
match was found. To prevent false positive obstacles in the model, there is a minimum number
of measurements in a fixed duration required to generate an obstacle. If an obstacle was not
seen for some time, it is removed. This might also happen if an obstacle cannot be perceived
although its estimated position is in the current field of view.

5.3.2 Global Obstacle Model

As in some situations, a local model as base for team cooperation is not sufficient, an additional
global obstacle model — the TeamPlayersModel — is computed by the TeamPlayersLocator, which
makes use of communicated percepts.

5.3.2.1 Positions of Teammates

For the coordination of the own team, for instance for the role selection or for the execution
of certain tactics, it is important to know the current positions of all teammates. Computing
these positions does not require special calculations such as filtering or clustering, because each
robot sends its already filtered position to the teammates via team communication. This means
that each robot is able to get an accurate assumption of all positions of its teammates just by
listening to the team communication. Besides to the coordination of the team, the positions
of the teammates are of particular importance for distinguishing whether perceived obstacles
belong to own or opponent players.

5.3.2.2 Positions of Opponent Players

In contrast to the positions of the teammates, it is more difficult to estimate the positions
of the opponent players. The opponent robots need to be recognized by vision to compute
their positions. Compared to only using the local models, which are solely based on local
measurements and may differ for different teammates, it is more difficult to get a consistent
model among the complete team based on all local models. For a “global” model of opponent
robot positions, which is intended here, it is necessary to merge the models of all teammates to
get accurate positions. The merging consists of two steps, namely clustering of the positions of
all local models and reducing each cluster to a single position.

For the clustering of the individual positions an e-neighborhood is used, which means that all
positions that have a smaller distance to each other than a given value are put into a cluster. It
is important for the clustering that only positions are used that are located near a teammate.

After the clustering is finished, the positions inside each cluster that represents a single oppo-
nent robot have to be merged to a single position. For this reduction, the covariances of the
measurements are merged using the measurement update step of a Kalman filter. The result of
the whole merging procedure is a set of positions that represent the estimated positions of the
opponent robots. In addition, the four goal posts are also regarded as opponent robots because
they are obstacles that are not teammates.
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5.4 Field Coverage

In recent years, the reaction of our robots to losing knowledge about the ball position was to just
turn on the spot and wait for the ball to show up in the field of view again. This was sufficient in
times of near perfect ball perception even across the whole field. However, the introduction of the
new ball in 2016 brought up new problems. It is no longer possible to detect the ball at very far
ranges. In addition, there exist several configurations that obstruct ball detection from certain
perspectives, such as a ball between the legs of a robot. As a consequence, there are more periods
of time during which no robot knows the current ball position. To overcome this problem, we
reintegrated our cooperative ball search (as presented in [15]), which takes into account which
parts of the field are actually visible for which robot and accordingly computes search areas for
each individual robot. Due to the team-wide ball model (cf. 5.2.3), a robot only needs to actively
search for the ball if all team members lost knowledge of the ball position. Consequently, if a
robot is searching, it can be sure that its team members do the same. Knowing which parts of
the field are visible to the team members, searching the ball can happen dynamically and much
more effective.

5.4.1 Local Field Coverage

To keep track of which parts of the field are visible to a robot, the field is divided into a very
coarse grid of cells, each cell being a square that has a size of 0.25m?. To determine which of
the cells are currently visible, the current field of view is projected onto the field. Then, all cells
whose center lies within the field of view are candidates for being marked as visible.

There may be other robots obstructing the view to certain parts of the field. Thus, depending
on the point of view of the viewing robot, another robot may create a “shadow” on the field. No
cell whose center lies within such a shadow is marked as visible. An example local field coverage
is depicted in Fig. 5.4.

Having determined the set of visible cells, each of the cells gets a time stamp. These time stamps
are later used to build the global field coverage model. They are also used to determine the
leastrecentlyseen cell, which can be used to generate the head motion to scan the field while
searching for the ball.

A special situation arises when the ball goes out. If this happens, the time stamps of the cells
are reset to values depending on where the ball is being put back onto the field. That way, the
leastrecentlyseen cell of the grid — the cell which the robot has the most outdated information
about — is now the cell in which the ball most likely is. This cell is determined by the last
intersection of the trajectory of the ball with a field line before the GameController sent the
information that the ball is out. In addition, all other cells that are near the field border receive
later time stamps so that the side lines become targets for the ball search in case of a referee
error or an error in the estimation of the ball motion.

Another special case is the ball’s movement as represented in the BallModel. If the ball touches
a cell, its time stamp is set back to zero. This way, if the ball is lost while moving, the robots
will search for it along its last known path first.

5.4.2 Global Field Coverage
To make use of the field coverage grids of the other robots, each robot has to communicate its

grid to its teammates. So, in addition to its own local field coverage grid, each robot maintains
a global field coverage grid, which is incrementally updated in every team communication cycle.
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Figure 5.4: The local field coverage grid after walking around on the field. The more intense
the red borders of the cells are, the less these cells are covered. Two opponent robots prevent
cells on the top right of the field from being marked as visible.

This global grid looks roughly the same for all teammates, so that calculations based on the
grid come to sufficiently similar results for all teammates.

Since we want to change the actual time stamp of each cell in case the ball goes out, we actually
need two time stamps in team communication. One to determine the time when the cell was
last seen as described above and one to keep track of the time when this value was changed.
The former will be called coverage value from here on. The merging of the grids is then done
simply by looking at the time stamp of each cell in the existing global grid and a received local
grid. If the received cell has a more recent time stamp it is carried over to the global grid.

Given this year’s field dimensions, 4 byte time stamps, and a cell’s edge length of %m, there

are 2 x 4 bytes x % = 1728 bytes which have to be sent in every team communication cycle

in addition to all other communication our robots do during gameplay. Since the resulting
bandwidth requirement would be beyond the bandwidth cap set by this year’s rules, the grid is
not sent as a whole but in intervals of 18 cells each. In addition, the time stamps are compressed
into 2 byte values and a base time stamp for each interval. This way only 18 x 2 x 2 + 4 bytes =
76 bytes are required each cycle.

To calculate each robot’s patrol target, the cells of the global grid are sorted descending by their
coverage value. For each cell in this list, the distance to each robot is calculated. If the distance
of the cell to the current robot is less than the distance to one of its teammates, the patrol target
is found.
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5.5 Whistle Recognition

The implementation for detecting a referee whistle is more of less the same as in the last two
years. The approach is based on the correlation between the robot’s current audio input and a
previously recorded reference whistle. As different whistles might be used during a competition
and as a single whistle might produce quite different sounds, our 2016 implementation allows
to compare the audio input with multiple reference whistles. The whistle recognition is imple-
mented in the MultiWhistleRecognizer module, providing the Whistle representation. In addition
to this detection, we also implemented a mechanism for a team-wide majority vote.

5.5.1 Correlating Whistle Signals

For the whistle detection, we use a cross-correlation. To calculate the correlation between a
given whistle signal and a actual recorded signal in a fast way, we transform the actual signal
into the frequency domain, multiply it with the conjugate complex stored reference whistle signal
and transform it back into the time domain, where we detect the compliance with the reference
signal.

First, we need a reference signal s,of. The reference signal is also recorded by the robot, where
we take a window length of N samples. We use the sampling frequency fs of the robot’s audio
hardware without downsampling. The signal must be extended with zeros by length N, because
the result of the correlation is twice the window length. In addition, correlating signals by Fourier
transformating them results in a cyclic correlation, which is avoided by the zero padding. This
signal is transformed to the frequency domain by a Fast Fourier Transformation (we use the
highly efficient FFTW3 implementation by [6]).

F(sret[n]) = Syer[K]- (5.4)

The underline denotes complex values. This signal is stored as a reference and has not to be
recalculated in every step.

For the actual recorded signal s,ct, we use the same procedure by adding zeros to get the doubled

length and transform it into the frequency domain to get S,;.

We make use of the fact that a correlation can be represented by a convolution using one signal
in reorder. The advantage of a convolution is that it can be calculated easily in the frequency
domain by just multiplying the signals. As we do not want to store the signal in reverse order,
we can transform the reversion into the frequency domain, too. Thus, we get

(k] - Sace[F], (5.5)

Sref [n] * Sact[_n] =5 " Dact

ref

where S

Siet denotes the conjugate complex of the signal.

As it does not matter which signal is conjugated, we store the reference signal as conjugate.
Multiplying both signals gives us the result in the frequency domain and the inverse Fourier
Transform is the correlation result scor in the time domain.

The best result can be achieved if the reference signal is equal to the actual signal or the negative
actual signal. Using this value, which is the autocorrelation value, and dividing the correlation
signal s.orr by this factor, we always get a percent value of the best possible result. An example
is depicted in Fig. 5.5.

If the percentage is above a defined threshold, the whistle is detected. As step by step formula-
tion, we have the following implementation in discrete form:
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Figure 5.5: Correlation between the current signal and a pre-recorded reference whistle signal
over 600 frames (equal 10 seconds). During this time, a whistle has been blown twice. The
threshold for whistle detection during this experiment has been set to 0.15. The differently
colored lines depict the different results from the two used audio channels.

Shet[n] = (Sact[n] On)
ﬁact [k] =F (S/act [n])
Scorr [n] = ’F_l (ﬁact[k] ' —:ef[k])

= max(|Scorr (1)) e

0,1]
Pacmax

true  for e > a
w = )
false otherwise

 denotes the correlation value for the cross correlation and the auto correlation of the reference
signal respectively. The parameters n and k are discrete time and frequency respectively.

The correlation procedure is repeated for every stored reference whistle. The computed Whistle
representation contains the information about the signal that has the best correlation. The
module’s required computing time scales linearly with the number of reference whistles. During
RoboCup 2016, we used the reference signals of four different whistles. However, all computa-
tions are only executed during the game’s SET state.

5.5.2 Majority Vote

To decide whether or not a whistle has been blown, we don’t rely on the detection of each
individual robot alone. Instead, we take all detections on the different audio channels on each
robot into account and start a majority vote on whether or not the team should start playing.
To do this, each robot sends the time stamp and its confidence of the last whistle detection to
the teammates via team communication. If the robot never detected a whistle, this time stamp
is zero. The confidence is calculated as follows:

e 100: If the robot detected the signal on both audio channels

e 66: If the robot detected the signal on one audio channel while the other one is deactivated
due to being damaged

e 33: If the robot detected the signal only on one audio channel although both microphones
are supposed to be working fine

e 0: If the robot did not detect a signal
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e -1: If both audio channels are deactivated (i.e. the robot is deaf)

All detections that happened after the beginning of the last SET state are now taken and sorted
by their time stamps. Each detection is now grouped with all other detections that happened
within 500 milliseconds of each other. The total confidence of each group is then divided by the
number of non-deaf robots. If the average confidence of one group is above 50, the team starts

playing.
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Chapter 6

Behavior Control

The part of the B-Human system that performs the action selection is called Behavior Control.
It also runs in the context of the process Cognition. The behavior is modeled using the C-based
Agent Behavior Specification Language (CABSL). The main module — BehaviorControl2015 [sic!]
— provides many representations that either control the actions of the robot or are sent to
teammates. It is accompanied by several additional modules such as the VGPathPlanner (cf.
Sect. 6.5), the KickPoseProvider (cf. Sect. 6.6), the CameraControlEngine (cf. Sect. 6.7), and the
LEDHandler (cf. Sect. 6.8) as well as the RoleProvider (cf. Sect. 6.3.1).

This chapter begins with a short overview of the behavior specification language CABSL and
how it is used in a simple way. Afterwards, it is shown how to set up a new behavior. Both
issues are clarified by examples. The major part of this chapter is a detailed explanation of the
full soccer behavior used by B-Human at RoboCup 2016.

6.1 CABSL

CABSL is a language that has been designed to describe an agent’s behavior as a hierarchy of
state machines and is a derivative of the State Machine Behavior Engine (cf. [26, Chap. 5]) that
we used a few years ago. CABSL solely consists of C4++ preprocessor macros and, therefore,
can be compiled with a normal C++ compiler.

For using it, it is important to understand its general structure. In CABSL, the following base
elements are used: options, states, transitions, actions. A behavior consists of a set of options
that are arranged in an option graph. There is a single starting option from which all other
options are called; this is the root of the option graph. Each option is a finite state machine
that describes a specific part of the behavior such as a skill or a head motion of the robot,
or it combines such basic features. Each option starts with its intital_state. Inside a state, an
action can be executed which may call another option as well as execute any C++ code, e.g.
modifying the representations provided by the Behavior Control. Further, there is a transition
part inside each state, where a decision about a transition to another state (within the option)
can be made. Like actions, transitions are capable of executing C++ code. In addition to
options (cf. Sect. 6.1.2), CABSL supports the use of so-called Libraries (cf. Sect. 6.1.2), which
may be used inside actions and transitions. Libraries are collections of functions, variables,
and constants, which help keeping the code clean and readable without the need of additional
modules and representations, while providing a maximum of freedom if extensive calculations
have to be made.

This structure is clarified in the following subsections with several examples.
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Figure 6.1: Behavior control module graph. Behavior control modules are depicted as yellow
rectangles. All representations they provide are shown as blue ellipses. The representations they
require are shown as ellipses colored in either yellow if they are provided by other Cognition
modules and orange if they are received from the process Motion.
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6.1.1 Options

option(exampleOption)

{
initial_state(firstState)
{

transition
{
if (booleanExpression)
goto secondState;
else if (libExample.boolFunction())
goto thirdState;
}

action

{

providedRepresentation.value = requiredRepresentation.value * 3;
}
}

state (secondState)
{

action
{
SecondOption();
}
}

state (thirdState)
{

transition
{
if (booleanExpression)
goto firstState;
}
action
{

providedRepresentation.value = RequiredRepresentation::someEnumValue;
ThirdOption();
}
¥
X

Special elements within an option are common transitions as well as target states and aborted
states.

Common transitions consist of conditions that are checked all the time, independent from the
current state. They are defined at the beginning of an option. Transitions within states are
only “else-branches” of the common transition, because they are only evaluated if no common
transition is satisfied.

Target states and aborted states behave like normal states, except that a calling option may
check whether the called option currently executes a target state or an aborted state. This can
come in handy if a calling option should wait for the called option to finish before transitioning to
another state. This can be done by using the special symbols action_done and action_aborted.

Note that if two or more options are called in the same action block, it is only possible to check
whether the option called last reached a special state.

91



B-Human 2016 6.1. CABSL

option(exampleCommonTransitionSpecialStates)
{
common_transition
{
if (booleanExpression)
goto firstState;
else if(booleanExpression)
goto secondState;

initial_state(firstState)
{
transition
{
if (booleanExpression)
goto secondState;
}

action

{

providedRepresentation.value = requiredRepresentation.value * 3;

}

state (secondState)

{
transition
{
if (action_done || action_aborted)
goto firstState;
}
action
{
SecondOption () ;
}

option(SecondOption)
{
initial_state(firstState)
{
transition
{
if (boolean_expression)
goto targetState;
else
goto abortedState;

target_state(targetState)
{
}

aborted_state (abortedState)
{
}

In addition, options can have parameters that can be used like normal function parameters. The
specification of parameters uses the same syntax as the streamable data type definition in our
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® robot2.behavior
option(SetHeadPanTilt, Soccer 47.04
(float) pan, state = playSoccer 44.90
(float) tilt, HandlePenaltyState 44.90
(float)(pi) speed, _ P lized 44.90
((HeadMotionRequest) CameraControlMode) (autoCamera) camera) state = notPenalize *

{ HandleGameState 44.90
initial_state(setRequest) state = set 3.86
¢ transition Activity 47.04

{ activity = standAndWait
if(state_time > 200 && !theHeadlointRequest.moving) state = setActivity 47.04
goto targetReached; Stand 5.98
Zction state = requestisExecuted 4.91
HeadControl 44.90
theHeadMotionRequest.mode = HeadMotionRequest::panTiltMode; state = lookLeftAndRight 3.86
theHeadMotionRequest.cameraControlMode = camera; LookLeftAndRight 3.86
theHeadMotionRequest.pan = pan; _ .
theHeadMotionRequest.tilt = tilt; state = IODKR'gr_“ 0.63
theHeadMotionRequest.speed = speed; SetHeadPanTilt 3.86
} pan = -0.872665
¥ tilt = 0.401426

target_state(targetReached) speed = 1.74533

{ state = setRequest 0.63
Figure 6.2: The behavior view shows the actual parameters, e. g. of the option SetHeadPanTilt
(left: source, right: view). The display of values equaling default parameters (specified in a
second pair of parentheses) is suppressed. On the right of the view, the number of seconds an
option or state is active is shown.

system. Thereby, the actual parameters of each option can be recorded in log files and they can
also be shown in the behavior dialog (cf. Fig. 6.2). Please note that the source code shown in
Fig. 6.2 is still understood by a C++ compiler and thereby by the editors of C++ IDEs.

6.1.2 Libraries

A library is a normal C+4++ class, a single object that is instantiated as part of the behavior
control and that is accessible by all options. In contrast to options, libraries can have variables
that keep their values beyond a single execution cycle. Libraries must be derived from the class
LibraryBase and an instance variable with their type must be added to the file Libraries.h. In
addition, if you want your library to be useable by other libraries, it has to be added to the
files LibraryBase.h and LibraryBase.cpp. Please refer to the example behavior contained in this
code release on how to do this.

Here is an example for a header file that declares a library:

class LibExample : public LibraryBase

{
public:

LibExample () ;

void preProcess() override;

void postProcess () override;

bool boolFunction(); // Sample method
};

Here is the matching implementation file:

#include "../LibraryBase.h"

namespace Behavior2015

{
#include "LibExample.h"
#include "AnotherLib.h"
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LibExample::LibExample ()
{

// Init library (optional)
}

void LibExample::preProcess ()

// Called each cycle before the first option is executed (optional)

void LibExample::postProcess()

{
// Called each cycle after the last option was executed (optional)
}
bool LibExample::boolFunction ()
{
return true;
}

}

6.2 Setting Up a New Behavior

The code release comes with a basic behavior but you might want to set up
your own one with a new name. To do so, you simply need to copy the ex-
isting behavior in Src/Modules/BehaviorControl/BehaviorControl2015 into a new folder
Src/Modules/BehaviorControl /< NewBehavior> and subsequently replace all references to the
old name within the cloned folder. This basically means to rename the module BehaviorCon-
trol2015 to your desired name (this includes renaming the configuration file Config/Location-
s/Default/behaviorControl2015.cfg) and to update the namespace definitions of the source files
within <NewBehavior>/*.cpp and <NewBehavior>/*.h. When renaming the namespace and
the module, you may not choose the same name for both.

6.3 Behavior Used at RoboCup 2016

The behavior is split in two parts, “BodyControl” and “HeadControl”. The “BodyControl” part
is the main part of the behavior and is used to handle all game situations by making decisions
and calling the respective options. It is also responsible for setting the HeadControlMode which
is then used by the “HeadControl” to move the head as described in Sect. 6.3.7. Both parts
are called in the behavior’s main option named Soccer, which also handles the initial stand up
of the robot if its chest button is pressed as well as the sit down motion, if the chest button is
pressed thrice.

The “BodyControl” part starts with an option named HandlePenaltyState which makes sure
that the robot stands still in case of a penalty and listens to chest button presses to penalize
and unpenalize the robot manually. If the robot is not penalized, the option HandleGameState
is called, which in turn will make sure that the robot stands still, if one of the gamestates inital,
set, or finished is active. In the “Ready” state, it will call the option ReadyState which lets the
robots walk to their kickoff positions.

When in “Playing” state, an option named PlayingState will be called which handles different
game situations. First, it handles kickoff situations which are described in detail in its own
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section (cf. Sect. 6.3.6). In addition it checks whether a special situation, where all robots have
to behave the same, has to be handled before invoking the role selection (cf. Sect. 6.3.1) where
each robot gets chosen for one of the different roles (cf. Sect. 6.3.1).

The special situations are:

StopBall: If the ball was kicked in the direction of the robot, it tries to catch it by getting in
its way and execute a special action to stop it.

TakePass: If the striker decides to pass to a robot, that robot immediately turns in the direction
of the ball and tries to take the pass.

SearchForBall: If the whole team has not seen the ball for a while, the field players start
turning around to find it. While turning, the robot aligns its head to the positions provided
by the FieldCoverageProvider (cf. Sect. 5.4). If, after a whole turn, no ball was observed,
each robot patrols to a position provided by the GlobalFieldCoverageProvider (cf. Sect. 5.4).
This also includes a special handling for balls that went out.

6.3.1 Roles and Tactic

The intention of this year’s major behavior changes was to improve the behavior of last year by
more exact calculations instead of good approximations. The general behavior ideas of last year
were to play defensively and to let the robots move less. To accomplish this, we played with the
following lineup:

1. One Keeper: The goalkeeper robot.

2. Two Defenders: Robots that are positioned defensively to help the Keeper by defending
their own goal.

3. One Striker: The ball-playing robot.

4. One Supporter: A robot that is positioned offensively to help the Striker.

In a lineup with less than five robots, at least one robot should be the Defender. The ideas
behind the lineup at the overall behavior are to prevent opponent teams from dribbling into
our goal and to save battery power and avoid joint heat. Saving battery power is important for
us since we had issues to play multiple long games on one tournament day with the batteries
available to us. In the same scenario, it is important to avoid joint heat and the consequential
joint stiffness loss to perform motions on the highest possible level, when they are really needed.

This year, we have been using the same lineup as in 2015 but the behavior differs in Keeper,
Defender (slightly), KickPoseProvider (cf. 6.6) and ball search (cf. 5.4).

The role selection is done by the RoleProviderRoyale. The general procedure is that every robot is
calculating a role selection suggestion for itself and each connected teammate, but uses the role
selection of the captain robot. The captain robot is determined by the lowest (not penalized)
connected teammate number. The reason behind this procedure is to have always a suggestion
available but inhibit the chance that the robots play with different role selections at the same
time.

The keeper role is always assigned to the robot with the number one and will not be changed
at any point. The Striker role will be assigned to the robot which can reach the ball fastest.
The calculation will favor the current striker to prevent oscillations. All other available robots
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will now distribute to the two Defender roles and one Supporter role. To decide which robot
becomes a Supporter and which a Defender, the global x-position will be used with a favor for
the previous role. If there are more robots than the goalkeeper and the striker, at least one
defender will assigned.

6.3.2 Striker

The main task of the striker is to go to the ball and to kick it into the opponent goal. To achieve
this simple-sounding target, several situations need to be taken into account:

GoToBallAndKick: Whenever no special situation is active (such as kick-off, duel, search for
the ball ...), the striker walks towards the ball and tries to score. This is the main state
of the striker and after any other state, which was activated, has reached its target, it
returns to GoToBallAndKick. To reach a good position near the ball, the striker walks to
the KickPose (cf. Sect. 6.6). Depending on the distance to the target, the coordinates are
then either passed to the PathPlanner (cf. Sect. 6.5) to find the optimal way to a target far
away or to the LibWalk when it comes to close range positioning and obstacle avoidance.
Each strategy then provides new coordinates, which are passed to the WalkingEngine (cf.
Sect. 8.3).

After reaching the pose, the striker either executes the kick that was selected by the
KickPoseProvider (cf. Sect. 6.6) or chooses another state in case of an opponent robot
blocking the way to the goal.

Duel: Whenever there is a close obstacle between the ball and the goal, the robot will choose
an appropriate action to avoid that obstacle. Depending on the position of the robot, the
ball, and the obstacle, there are several actions to choose from (cf. Fig. 6.3):

e The robot is near the left or right sideline.

— If the robot is oriented to the opponent goal and the straight way is not blocked
by an obstacle, it will perform a fast forward kick.

— If the direct way to the goal is blocked or the robot is oriented away from the
opponent goal, the robot will perform a sidewards kick to the middle of the field.

e The robot is in the middle of the field.

— If the obstacle is blocking the direct path to the goal, the robot will perform a
sidewards kick. The direction of the kick depends on the closest teammate and
other obstacles. In an optimal situation, a supporter should stand besides the
striker to receive the ball.

— If the obstacle leaves room for a direct kick towards the opponent goal, the robot
will perform a fast forward kick.

The kick leg is always chosen by the smallest distance from the leg to the ball. If the
robot has not seen the ball for more than three seconds while in duel mode, it will move
backwards for a short time to reduce the probability of getting punished for pushing in
case the ball is no longer close to the robot. Duel is deactivated in the vicinity of the
opponent’s penalty box, because we do not want the robot to kick the ball away from the
goal if there is an obstacle (i.e. the keeper or a goalpost) in front of it.

DribbleDuel: This is a special kind of duel behavior. It is chosen if there is an opponent
between the ball and the goal and our robot stands in front of the ball facing the side of

96



6.3. BEHAVIOR USED AT ROBOCUP 2016 B-Human 2016

Figure 6.3: A set of possible tackling situations. The black lines mark the desired kick direction.

the field. In that case, the robot just takes its arms back to avoid contact with the opponent
robot and starts to run to the ball to quickly dribble it away from the opponent’s feet.

DribbleBeforeGoal: If the ball is lying near the opponent ground line, so that it is unlikely
to score a goal, the striker aligns behind the ball and slowly moves in the direction of the
opponent’s penalty mark. If the robot drifts too far away from its target, it starts again
to align. If it is again possible to score directly, the state GoToBallAndKick is executed.

WalkNextToKeeper: If the ball is inside the own penalty area, the robot will try to block
the way to the ball so that opponents cannot reach it. If the keeper is ready to kick the
ball out of the penalty area, the robot will move out of the way.

KickingOut: The striker will kick the ball out of the field, if the position at which it should
be put in again is strategically better than the current ball position.

6.3.3 Supporter

Our supporter knows two modes: Directly supporting the striker or waiting near the opponent
goal. Directly supporting means following the striker to catch the ball in case the striker loses
the ball against an opponent. The aim of waiting near the opponent goal is to catch the ball in
case the opponent defense successfully blocked a long range shot at their goal.

6.3.4 Defender

A Defender has five modes, which differ only slightly. These are: back-left, back-middle, back-
right, forward-left and forward-right — the areas where the robot can position itself. Whereas
the role Defender is taken upon consultation with the robot’s team members, the decision of the
taken mode is made by the Defender alone. It makes its decision on the basis of the received
pose of the second Defender (or on the absence of such data). If there are two Defenders, they
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must be either left or right and never on the same side. In addition, one of them must hold a
back-mode but the other one may be forward. Otherwise, if there is just one defending robot,
it must be a back one.

In each frame, the Defender recomputes

1. if it is left or right (or in special case middle),
2. if it is forward,
3. which position it should take, and

4. if it should move.

The Left / Right Decision

If the Defender is left, it means that it will calculate a position on the left side of the virtual line
between the calculated goalkeeper position and the ball. A middle defending position means
that the Defender stands on this line. This position is just a special case if neither a Keeper is
inside the penalty area nor a team member performs a second Defender. In all other cases, you
do not want to interfere with the direct goalkeeper sight of the ball.

e Being a single Defender (with a present Keeper), a robot will always decide for the same
side like last frame as long as the ball is not too far on the other side.

e In the case of two Defenders, each robot will compare its (signed) distance to the goalkeeper-
ball line and the distance of the last known position of the other Defender to that line. If
the robot can clearly decide if it is more left of the line, it takes the decision. If this is not
the case, it tries to decide by looking up which of the both poses is clearly more left on
the field (given the global coordinate system as described in Sect. 4.1.2). If the robot still
does not know which side it belongs to, it uses the decision of the last frame.

The Back / Forward Decision

A back position is defined as a position directly outside the penalty area, a forward position
could be farther away. In the case of a single defending robot, the position will be back as
mentioned above. In the other case, the robot decides on the basis of its actual position, if it is
distinctly forward or back. It does the same for the position of the second Defender. The robot
will hold its decision, if it differs from the position about the second Defender or if it is back
and the ball is not far away. If both cases are not applicable and the robots are clearly looking
in different directions, the robot that is looking in the direction of the opponent goal will move
forward. If none of the cases were applicable and the Defender robot is on the same side as the
ball, it is moving forward. If the ball side is not clear, both Defenders stay back.

The Position Selection

All selected positions for the Defender are located on a semicircle, which is centered around the
center of the own goalposts. The radius is decided by the previously described back / forward
mode. If it is back, the semicircle goes barely around the penalty area, but the maximum
semicircle for a forward Defender gives the own goal a wide berth. As long as the ball is not
inside the own penalty area, the forward radius is always smaller than the distance of the
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semicircle origin to the ball. The Defender will take a position on the selected semicircle with
that he can cover the space between the goalpost on his side and the goalie blocking coverage
area. This means that a forward Defender is standing nearer to the goalie-ball-line, which results
in a restriction to the goalkeeper’s sight of the ball. At that range our goalie will not see the
new ball as good as the old one. Thus, this positioning is still acceptable. To avoid that the
distance of the back-standing robots to the penalty area gets too large, the semicircles may be
cut along the lines of the penalty area. There is also a special handling when the ball is entering
the penalty area or is lying close to the own ground line.

The Decision to Move

Beside the general idea, this year, methods corresponding to this topic were not implemented.
Instead, our robots always wanted to move to the calculated position. The underlying path
finding modules inhibits this for very short distances.

It is important that the Defender is doing its job, but as the last instance, between opponent
scoring or a successful defense, there is still the goalkeeper. To give him time for a timely
reaction, it must see the ball early enough. To maximize this time, the Defenders are also
performing arm movements to make themselves as thin as possible, if the goalkeeper-ball line
comes close to the robot.

6.3.5 Keeper

The keeper’s main task is to defend the own goal. Hence, the keeper mainly stays inside the
own penalty area. There are only two situations in which the robot leaves the own goal. Either
the keeper is taken out of the field or it walks towards the ball to kick it away. When the robot
was taken from the field and put back on the field, the keeper walks directly towards its own
goal again. Certainly, the time to reach the own goal should take as little time as possible.
To achieve this, the robot walks straight forward to the own goal as long as it is still far away
and starts walking omni-directionally when it comes closer to the target to reach the desired
orientation. When walking omni-directionally, the keeper avoids obstacles in the same way as
the other players do. The second situation, in which the robot leaves the own goal, is given if
the ball is close to the goal and has stopped moving. In this case, the robot walks towards the
ball in order to kick it away. The keeper uses the same kicking method as the striker with the
difference that obstacle avoidance is deactivated. Since a goalie is not penalized for pushing in
its own penalty box, this solution is acceptable.

In any other situation, the robot will not leave its position within the own penalty area and
executes different actions according to different situations. Normally, the keeper walks to po-
sitions computed like described below. So while guarding the goal, the keeper will switch its
head control depending on how long the ball was not seen and in which half of the field the
ball was seen last. For example, while the ball is in the opponent half, the keeper looks for
important landmarks to improve its localization. But once the ball passes the middle line, the
keeper invariably tracks the ball.

If the ball is rolling towards the goal, the goalie has to select whether it should spread its legs
or dive sidewards to catch the ball. The decision is made by considering the velocity of the
ball as well as its distance. The estimates are used to calculate both the remaining time until
the ball will intersect the lateral axis of the goalie and the position of intersection. In case of
a close intersection, the goalie changes to a wide defensive posture to increase its range (for
approximately four seconds, conforming to the rules of 2016). The diving is initiated when the
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Figure 6.4: The blue figure indicates the pose of a goalkeeper that is rotated towards the ball
(depicted as a small orange circle). The area between ball and goal is shown in red. The areas
that are covered with the keeper actions standing / blocking / diving are colored in green /
violet / orange.

ball intersects the goalkeeper’s lateral axis in a position farther away from the farthest possible
point of the defensive posture. The decision whether to execute such a motion is consolidated
over multiple frames (about a third of a second in total) to compensate for falsely positive ball
estimates and to avoid an unnecessary dive.

Sometimes, after a rough situation in the penalty area, the keeper’s rotation is wrong by 180°,
letting the robot turn in the wrong direction and stare into the goal net. This situation is
resolved by the self-locator by checking for a close FieldBoundary and getting no percepts of
major field elements for a certain time. In this case, the goalie localization is turned back by
180 degrees, letting the behavior move to the right pose again.

In case the keeper has not seen the ball for several seconds (the actual value is currently set to
7s) it will, under some further circumstances, initiate a ball searching routine. This is only done
if its absolute position on the field is considered to be within the own penalty area and the ball
position communicated by the teammates is considered invalid. The first condition grants that
the keeper does not start searching for the ball while it is walking back to its goal after returning
from a penalty. If the ball position communicated by the teammates is considered valid, the
keeper may be able to find the ball by turning towards the communicated position. If it is not
valid, it will refrain from its normal positioning as described below and take a position in the
middle of the goal. Once it reaches this position, it will continually turn its body left and right
to cover the greatest possible range of view until either of its teammates or the goalie himself
has found the ball.

The main idea of the goalie positioning is to inhibit the opponent robot to score a goal, i.e. to
inhibit the ball to move at a straight line into the goal. This year, we are directly calculating
which parts of the field will be covered with a specific robot pose. The perfect position would be
if the robot is able to cover the whole goal by just standing. Of course, in nearly every situation
this is not recommendable because of the distance to the goal the robot must hold to meet this
condition. The second best situation would be if our robot is able to cover the whole goal with
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our blocking motion (sitting down and spreading the legs) since this motion needs nearly no
time to perform. This is why we are trying to maximize the goal coverage with this motion at
all time. This intention is restricted by the secondary idea of the goalie positioning: the goalie
should also be able to perform his dive motion at any moment. It is possible to perform a dive
motion if the goalie is inside the penalty area and if it will not dive into the goal post/frame to
prevent damages. In addition, a restriction is added that the robot is not touching the penalty
area lines with the feet to keep the lines detectable for the vision system. This should help
the robot to maintain an accurate self-localization which is essential to find the best spot for
covering the goal.

With this goalie positioning, we are able to cover (nearly) the whole goal at all time and to
perform the dive motion before the ball crosses the keeper. The coverage at an example situation
is depicted in Fig. 6.4;

6.3.6 Kickoff

The kickoff options control the positioning behavior of all robots during the whole READY and
SET game states as well as the action selection during the beginning of PLAYING.

6.3.6.1 Positioning

For the two main kickoff situations (defensive and offensive), distinct sets of kickoff poses are
specified in a configuration file. Each pose set is ordered by the importance of the respective
poses, i. e. if robots are missing, the least important positions are not taken. We do not rely on
a fixed pose assignment (except for the goalkeeper, of course) based on robot numbers as such
an approach has two significant drawbacks. Firstly, an important position might be left empty,
if one robot is missing. Secondly, some robots might be forced to walk farther than necessary
and thus risk to come too late.

As our self-localization provides a very precise pose estimate and all robots receive the poses of
their teammates via team communication, a robust dynamic pose assignment is possible. Our
approach is realized by two sequential assignment rules:

1. The robot that is closest to the center position will walk to that position. If our team has
kickoff, this position is equal to the center of the field. If the opponent team has kickoff,
this position is between the center of the field and our own goal, right at the border of the
center circle.

2. For the remaining field players, the configuration that has the smallest sum of squared
distances (between robots and positions) is determined.

The first rule ensures that the central position will always be occupied, if there is at least one
field player left. This position is definitely the most important one as it is the one closest to the
ball. Furthermore, assigning this position to the closest robot strongly increases the likelihood
that this robot actually reaches it in time. A robot that has a long way to walk during the
READY state might be blocked by other robots or the referees. These delays could lead to a
manual placement position which is too far away from the ball position.

We prefer a correct orientation to a correct position. Thus, to avoid having robots facing their
own goal, the positioning procedure is stopped a few seconds before the end of the READY
state to give a robot some time to take a proper orientation.
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6.3.6.2 Actions after the Kickoff

When the game state changes from SET to PLAYING, not all robots immediately switch to
their default playing behavior as some rules have to be considered.

If a team does not have kickoff, its robots are not allowed to enter the center circle until the
ball has been touched or 10 seconds have elapsed in the PLAYING state. Therefore, our robots
switch to a special option that calls the normal soccer behavior but stops the robots before
entering the center circle without permission. The robots actively check, if the ball has already
been moved in order to enter the center circle as early as possible.

If a team has kickoff, its robots are not allowed to score before the ball has left the center circle.
Therefore, the normal playing behavior, which would probably try to make a direct shot into
the goal, is postponed and a kickoff action is carried out. Our kickoff taker prefers to make a
medium-length shot into the opponent half. The direction of the shot depends on the perceived
obstacles around the center circle. If there seem to be no obstacles at all, the kickoff taker
dribbles the ball to a position outside the center circle.

Both kickoff variants are terminated, i.e. the behavior is switched to normal playing, in two
cases: if the ball has left the center circle or if a certain timeout (currently 15 seconds) has been
reached.

6.3.7 Head Control

The head control sets the angles of the two head joints and thereby the direction in which the
robot looks. In our behavior, the head control is an independent option (HeadControl) running
parallel to the game state handling and is called from the root option Soccer. This ensures that
only one head control command is handled per cycle. However, the head control command is
given by the game state handling option by setting the symbol theHeadControlMode. As long
as the symbol does not change, the selected head control command is executed continuously.

The problem of designing and choosing head control modes is that the information provided by
our vision system is required from many software modules with different tasks. For instance,
the BallPerceptor, and the LinePerceptor provide input for the modeling modules (cf. Sect. 5)
that provide localization information, and the ball position. However, providing images from all
relevant areas on the field is often mutually exclusive. For instance, when the ball is located in a
different direction from the robot than the goal, it cannot look at both objects at the same time.
In addition to only being able to gather some information at a time, speed constraints come into
play, too. The solution to move the head around very fast to look at important areas more often
proves impractical, since not only the images become blurred above a certain motion speed, but
also because a high motion speed has a negative influence on the robot’s walk stability due to
the forces resulting from fast rotational movements of the head. With these known limitations,
we had to design many head control modes for a variety of needs. We are able to use three
different ways of setting the position of the head. We can specify the absolute angels of the
head joints (option SetHeadPanTilt), a position on the field (option SetHeadTargetOnGround),
or a position relative to the robot (option SetHeadTarget). The head control modes used in our
behavior are:

off: In this mode, the robot turns off its head controlling joints.

lookForward: In this mode, the pan and tilt angles are set to static values, so that the robot
looks forward. This mode is used before the game, after the game, and when the robot is
penalized.
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lookLeft AndRight: In this mode, the robot moves its head left and right in a continuous
motion. This mode is used for a first orientation after the robot has been penalized and
gets back to the game. It is also used when the robot or the whole team searches for the
ball.

lookAtGlobalBall: As the name implies, this head control moves the head to the global ball
estimate, which is primarily used by the keeper, whenever the ball is covered by field
players.

lookAtGlobalBallMirrored: This mode is basically the same as the one above, but it moves
the head toward the position of the global ball mirrored at the center point, assuming the
robot might be at the mirrored position from where it thinks to be.

lookAtBall: When using this head control mode, the robot looks at its ball estimate. However,
if the ball is not seen for some time, the head will be moved toward the global ball estimate.
In case the ball is still not seen after some additional time, the robot just changes to
lookActive mode. The mode lookAtBall is used, whenever a robot kicks the ball or
is preparing to kick it as well as when the robot is in a duel. Nonetheless, this mode
is important for the keeper, when the ball moves toward the goal and the keeper must
prepare to catch it. Additionally, this mode is used by the robot roles used for penalty
shoot-out (cf. Sect. 6.4).

lookAtBallMirrored: This is basically the same as the mode above, but the robot looks at
the estimated ball position mirrored at the center point. This mode is used for checking,
if the ball is mirrored from where the robot thinks it is.

lookAtOwnBall: This mode is nearly the same as lookAtBall, but — as the name implies —
without taking the global ball estimate into account.

lookAtOwnBallMirrored: This mode is analog to lookAtBallMirrored. It is basically the
same as lookAtOwnBall, but it takes the mirrored position into account. This mode is
used for checking, if the ball is mirrored from where the robot thinks it is.

lookActive: In this mode, the robot looks to the most interesting point on the field, which
is calculated by libLook. During the game, the importance or unimportance of different
points on the field — for example field features, field lines, and the ball position — changes,
depending on the current situation. Therefore, our solution is based on having a set of
points of interest which consists of static points on the field as well as of dynamic points
like the ball estimate or the global ball estimate. All points that are reachable by the
head are assigned a value representing the robot’s interest in that point, depending on
the robot’s role and the time that has passed since the point has been seen. It also
handles synchronized head control, i.e. when the striker looks away from the ball, all
other robots that are currently using this head control mode will focus the ball. Whether
the striker looks away from the ball is checked in the three basic head control options
SetHeadPanTilt, SetHeadTargetOnGround, and SetHeadTarget. The synchronized head
control shall ensure that at least one team member sees the ball. Additionally, while using
this head control mode, every robot that is currently not looking at the ball will turn its
head as fast as possible toward the ball, when the global ball estimate moves toward the
robot’s current position. This head control mode is the default one and is always used
when none of the other ones fits better.

lookActiveWithBall: This head control mode is basically the same as lookActive, but it
limits the reachability of points of interest, as it requires the head control to always keep
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the ball in the field of sight. This mode is used when the robot needs to see the ball — for
example, because it is moving towards the robot — but still has to see as much as possible

of the field.

lookActiveWithoutBall: As the name implies, this mode is based on lookActive, but it
completely ignores the ball. It is used during the READY state.

6.4 Penalty Shoot-out Behavior

The penalty shoot-out behavior of 2016 did not changed mainly to previous years: Since the
keeper can simply track the ball and jump to catch it, the main idea for the striker was to kick
the ball as near to the goal post as possible. In addition, the ball shall be kicked with as much
force as possible without any lack of precision. On the other side, the keeper shall also catch
balls that are kicked near the goal post. The keeper’s jump on the goal line would leave some
space between the robot and the goal post. To remove this possibility for a ball passing the
keeper and to cover the whole space between the goal posts, the keeper’s position must be closer
to the ball. Thus, the keeper shall move toward the ball before the striker kicks it.

The RoboCup 2016 penalty shoot-out behavior is embedded in the behavior described above.
It is implemented by introducing two additional roles: PenaltyStriker, and PenaltyKeeper
(cf. Sect. 6.3.1). Depending on the secondary game state and the current kick-off team, the
RoleProviderRoyale assigns one of these two roles to the robot. Game state handling and head
control is processed the same way as during an ordinary game.

In detail, the two roles work as follows:

PenaltyKeeper: The penalty keeper starts moving toward a position in the middle of the
penalty area, using the time the striker needs for getting to the ball. As described above,
this is done to cover the whole goal with a keeper jump. How much time the keeper has
to take the required position is defined in Behavior2015Parameters. When the position
is reached or the defined time has passed, the keeper has some additional time to check
its rotation toward the ball. After that, the penalty keeper sits down as preparation
to catch the ball. When the ball moves towards the keeper, depending on where the
ball is assumed to pass the robot, the keeper either jumps left, jumps right, or uses
the genuflect movement, i.e. a sit down movement where the robot spreads its legs.
Regarding the head control, the penalty keeper always keeps the ball in sight of view, using
lookActiveWithBall while taking position and lookAtBall after that (cf. Sect. 6.3.7).

PenaltyStriker: In the beginning, the robot randomly decides, if it wants to kick at the right
edge of the goal or at the left edge. The robot moves towards the ball, already rotating in
the direction, it wants to kick to. Reaching a specific distance from the ball, the striker
stops two times for a short time, so it will not accidentally run against the ball. Then
the robot makes the last few steps towards the ball, getting in position for the kick. In
the end, our standard kick is executed. There exists a fallback behavior, in case there is
just little time left for the shot. This behavior lets the robot just move towards the ball
and kick it, using the KickPoseProvider (cf. Sect. 6.6). For the head control, the penalty
striker simply uses lookAtBall, because it needs to focus at the ball all the time. This
is acceptable, because due to its position on the field and its rotation toward the goal,
the penalty area is also always in sight. Similar to the penalty keeper, the striker has a
localization behavior for searching the ball, which is activated when the ball is not seen
for some time.
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6.5 Path Planner

In some situations, robots have to walk longer distances to reach their next target location, e. g.,
when walking to their kickoff positions or when walking to a distant ball. In these cases, a purely
reactive control can be disadvantageous, because it usually would not consider obstacles that
are further away, which might result in getting stuck. Therefore, our robots use a path planner
in these situations since 2011. Until 2014, it was based on the Rapidly-Exploring Random Tree
approach [17] with re-planning in each Cognition cycle. Although the planner worked quite well,
it had two major problems: On the one hand, the randomness sometimes resulted in suboptimal
paths and in oscillations!. On the other hand, it seemed that the RRT approach is not really
necessary for solving a 2-D planning problem, as the planner actually did. Thus, it was slower
than it needed to be.

6.5.1 Approach

Therefore, a new planner was developed for RoboCup 2015. It is a visibility-graph-based 2-D
A* planner (cf. Fig. 6.5). It represents obstacles as circles on which they can be surrounded and
the path between them as tangential straight lines. As a result, a path is always an alternating
sequence of straight lines and circle segments. There are four connecting tangents between each
pair of non-overlapping obstacle circles, only two between circles that overlap, and none if one
circle contains the other. With up to nine other robots on the field, four goal posts, and the
ball, the number of edges in the visibility graph can be quite high. Thus, the creation of the
entire graph could be a very time-consuming task. Therefore, the planner creates the graph
while planning, i.e. it only creates the outgoing edges from nodes that were already reached
by the A* planning algorithm. Thereby, the A* heuristic (which is the Euclidean distance) not
only speeds up the search, but it also reduces the number of nodes that are expanded. When
a node is expanded, the tangents to all other wvisible nodes that have not been visited before
are computed. Visible means that no closer obstacle circles intersect with the tangent, which
would prevent traveling directly from one circle to another. To compute the visibility efficiently,
a sweep line approach is used. As a result, the planning process never took longer than 1 ms
per Cognition cycle in typical games.

6.5.2 Avoiding Oscillations

Re-planning in each Cognition cycle bears the risk of oscillations, i.e. repeatedly changing the
decision, for instance, to avoid the closest obstacle on either the left or the right side. The
planner introduces some stability into the planning process by adding an extra distance to all
outgoing edges of the start node based on how far the robot had to turn to walk in the direction
of that edge and whether the first obstacle is passed on the same side again (no extra penalty)
or not (extra penalty). Note that this does not violate the requirement of the A* algorithm
that the heuristic is not allowed to overestimate the remaining distance, because the heuristic
is never used for the outgoing edges of the start node.

6.5.3 Overlapping Obstacle Circles

The planning process is a little bit more complex than it appears at first sight: As obstacles can
overlap, ingoing and outgoing edges of the same circle are not necessarily connected, because

! Although the planner tried to keep each new plan close to the previous one.
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Figure 6.5: Visualization of the planning process. The robot’s position is shown as a small
rectangle right of the big orange square. The target position is depicted as small circle left of
the center circle. Obstacles are shown as red and yellow squares, some of which are ignored.
Obstacle circles are depicted in yellow. Yellow lines indicate expanded edges. The shortest path
is depicted in bright green.

the robot cannot walk on their connecting circle segment if this is also inside another obstacle
region. Therefore, the planner manages a set of walkable (non-overlapping) segments for each
circle, which reduces the number of outgoing edges that are expanded when a circle is reached
from a certain ingoing edge. However, this also breaks the association between the obstacle
circles and the nodes of the search graph, because since some outgoing edges are unreachable
from a certain ingoing one, the same circle can be reached again later through another ingoing
edge that now opens up the connection to other outgoing edges. To solve this problem, circles
are cloned for each yet unreached segment, which makes the circle segments the actual nodes in
the search graph. However, as the graph is created during the search process, this cloning also
only happens on demand.

6.5.4 Forbidden Areas

There are two other extensions in the planning process. Another source for unreachable segments
on obstacle circles is a virtual border around the field. In theory, the shortest path to a location
could be to surround another robot outside of the carpet. The virtual border makes sure that
no paths are planned that are closer to the edge of the carpet than it is safe. On demand,
the planner can also activate lines surrounding the own penalty area to avoid entering it. The
lines prevent passing obstacles on the inner side of the penalty area. In addition, edges of the
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visibility graph are not allowed to intersect with these lines. To give the planner still a chance
to find a shortest path around the penalty area, four obstacle circles are placed on its corners in
this mode. A similar approach is also used to prevent the robot from walking through the goal
nets.

6.5.5 Avoiding Impossible Plans

In practice, it is possible that the robot should reach a position that the planner assumes to
be unreachable. On the one hand, the start position or the target position could be inside
obstacle circles. In these cases, the obstacle circles are “pushed away* from these locations
in the direction they have to be moved the least to not overlap with the start/target position
anymore before the planning is started?. On the other hand, due to localization errors, the start
and target location could be on different sides of lines that should not be passed. In these cases,
the closest line is “pushed away”. For instance, if the robot is inside its penalty area although
it should not be, this would move the closest border of the penalty area far enough inward so

that the robot’s start position appears to be outside for the planning process so that a plan can
be found.

6.6 Kick Pose Provider

To calculate the optimal position for a kick toward the opponent’s goal, a module called Kick-
PoseProvider is used. Most of the time, at least some parts of the goal are covered by opponent
robots. Therefore, we need to calculate the part of the goal that has the largest opening angle
as seen from the ball (cf. Fig. 6.6). The center of this part will be the target for our kick.

Now we need to choose which kick to use. For every possible kick, the module requires informa-
tion about how long it takes to perform the kick and what offset the robot has to have to the
ball, including a rotation offset. The rotation offset defines an angle by which the target pose
for performing the kick must be rotated to have the ball move in the intended direction after the
kick. Based on this information, the module calculates a KickPose for each kick, i.e. the point
the robot has to stand at and the direction it has to face to execute the kick. Afterwards, each
pose is evaluated to find the best of the possible poses.

The evaluation of the different poses is based on several criteria. The most important one is
how long it will take the robot to execute the specified kick. This is broken down into how long
it takes for the robot to reach the pose and how long it takes to perform the actual kick. Other
things that are taken into account are whether the kick is strong enough for the ball to reach the
opponent goal and the time since the ball was last seen. Some other constant properties of the
kick influence the evaluation via the execution time of the kick. If, for instance, a kick is rather
unstable and should only be used if the robot is already standing at an almost perfect position
for executing the kick, the probability of the kick being chosen can be reduced by increasing its
stored execution time.

6.7 Camera Control Engine

The CameraControlEngine takes the HeadMotionRequest provided by the BehaviorControl2015
and modifies it to provide the HeadAngleRequest, which is used to set the actual head angles.

ZNote that when executing the plan, these situations are handled differently to avoid bumping into other
robots.
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Figure 6.6: Visualization of all openings between opponent robots (red squares) as seen from
the ball. The red opening was chosen to be the kick target.

The main function of this module is to make sure that the requested angles are valid. In addition,
it provides the possibility to either use the so called PanTiltMode, where the user can set the
desired head angles manually, or the target mode. In target mode, the CameraControlEngine
takes targets on the field (provided by the user) and calculates the required head angles by
using inverse kinematics (cf. Sect. 8.3.3). It must also be ensured that the cameras cover as
much of the field as possible. Therefore, the CameraControlEngine calculates which camera suits
best the provided target and sets the angles accordingly. Also, because of this, most of the time
the provided target will not be in the middle of either camera image.

6.8 LED Handler

The LEDs of the robot are used to show information about the internal state of the robot, which
is useful when it comes to debugging the code.
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Right Eye
Color Role Additional information
Blue All No ground contact
Magenta | All Robot is connected to external power source
(Only if no Head LEDs are available.)
Blue Keeper
White Defender
Green Supporter
Red Striker
Left Eye
Color Information
Yellow No ground contact
White Ball was seen
Blue Field Feature was seen
Red Ball and Field Feature

were seen

Torso (Chest Button)

Color State
Off Initial, finished
Blue Ready
Green Playing
Yellow Set
Red Penalized
Feet

e The left foot shows the team color. For instance, if the team is currently the red team,

the color of the LED is red. If the team color is black, this LED will be switched off.

e The right foot shows whether the team has kick-off or not. If the team has kick-off, the
color of the LED is white, otherwise it is switched off. In case of a penalty shootout, the
color of the LED is green, when the robot is the penalty taker, and yellow if it is the goal

keeper.

Ears

e The right ear shows the battery level of the robot. For each 10% of battery loss, an LED
is switched off.

e The left ear shows the number of players connected through the wireless. For each con-
nected player, two LEDs are switched on (upper left, lower left, lower right, upper right).
Without game controller access, two LEDs are blinking, the rest are off.
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Head (if available)

If the robot is charging, the LEDs will be turned on and off one after another. Due to the
circular arrangement of the LEDs, this looks like a rotating beam of light. If these LEDs are
not available and the robot is charging, the right eye will be colored magenta.
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Chapter 7

Proprioception (Sensing)

The NAO has an inertial measurement unit (IMU) with three acceleration sensors (for the z-,
y-, and z-direction) and two or three gyroscopes (for the rotation around the z-, y- and in
V5 NAOs also the z-axes). By means of these measurements, the IMU board calculates rough
approximations of the robot’s torso angles relative to the ground, which are provided together
with the other sensor data. Furthermore, the NAO has a sensor for the battery level, eight
force sensing resistors on the feet, two ultrasound sensors with different measurement modes,
and sensors for the load, temperature, and angle of each joint. We currently do not use the data

from the ultrasound sensors.

In the process Motion, the NaoProvider receives all sensor readings from the Nao@Qi module
libbhuman (cf. Sect. 3.1), adds a configured calibration bias for each sensor, and provides them
as FsrSensorData, InertialSensorData, JointSensorData, KeyStates, and SystemSensorData. The

RobotDimensions MassCalibration JointAngles

uIModeF‘rovlder

Robotinfo @

‘
tsmmcm ‘h
P,

e W

TorsoMatrixProvider ArmContactModelProvider FootBumperStateProvider
ArmContactModel FootBumperState

/

Figure 7.1: Sensing module graph. Sensing modules are depicted as yellow rectangles.

All

representations they provide are shown as blue ellipses. The representations they require are
shown as ellipses colored in either yellow if they are provided by other Motion modules and

orange if they are received from the process Cognition.
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JointAngles encapsulates the JointSensorData for the whole system, which is used to set the
WristJoints angles in case they are not supported by the NAO version.

The RobotModel (cf. Sect. 7.2) provides the positions of the robot’s limbs and the GroundContact-
State (cf. Sect. 7.1), which is the information whether the robot’s feet are touching the ground.
Based on the JointAngles, the InertialData, the RobotModel and the currently executed motion,
it is possible to calculate the TorsoMatrix (cf. Sect. 7.4), which describes a transformation from
the ground to an origin point within the torso of the NAO. The representation InertiaData is
also considered to detect whether a robot has fallen down by the module FallDownStateDetector,
which provides the FallDownState (cf. Sect. 7.5). Figure 7.1 shows all Sensing modules and the
provided representations.

7.1 Ground Contact Recognition

Since it may happen during official soccer matches that a robot is manually placed or it gets
lifted because of a penalty, it is useful for several reasons (e.g. localization and behavior) to
know whether it is standing or walking on the ground or not. It also comes in handy when the
robot stops moving automatically after it got lifted, since it is much easier to place a standing
robot on the field instead of a moving one. The GroundContactState, which is actually a simple
Boolean value indicating whether there is at least one foot on the ground, should not be confused
with the FallDownState that indicates whether the robot is in a horizontal position.

Due to the inaccuracy and failure of many force sensing resistors in the past, these are currently
not the basis for the ground contact detection. The current GroundContactDetector measures
the noise in the accelerometers and gyroscopes and calculates the average values over 60 frames.
If all values exceed a preset threshold, the GroundContactState becomes false. The assumption
for this method is that movements that cause high values in the accelerometers and gyroscopes
tend to be the ones that cause losing ground contact like lifting the robot, or the robot falling
down.

The force sensing resistors of newer NAO robots seem to be much more reliable and might be
used in the near future.

7.2 Robot Model Generation

The RobotModel is a simplified representation of the robot. It provides the positions and rota-
tions of the robot’s limbs relative to its torso as well as the position of the robot’s center of mass
(CoM). All limbs are represented by homogeneous transformation matrices (Pose3D) whereby
each limb maps to a joint. By considering the measured joint angles of the representation Join-
tAngles, the calculation of each limb is ensured by the consecutive computations of the kinematic
chains. Similar to the inverse kinematic (cf. Sect.8.3.3), the implementation is customized for
the NAOQ, i.e., the kinematic chains are not described by a general purpose convention such as
Denavit-Hartenberg parameters to save computation time.

The CoM is computed by equation (7.1) with n = number of limbs, 7; = position of the center
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of mass of the i-th limb relative to the torso, and m; = the mass of the i-th limb.

g T3y

Teom = = (71)

n
> mi
i=1

For each limb, 7; is calculated by considering the representation RobotDimensions and the posi-
tion of its CoM (relative to the limb origin). The limb CoM positions and masses are provided
in the representation MassCalibration. They can be configured in the file massCalibration.cfg.
The values used were taken from the NAO documentation by SoftBank Robotics.

7.3 Inertia Sensor Data Filtering

The InertialDataFilter module determines the orientation of the robot’s torso relative to the
ground. Therefore, the calibrated IMU sensor readings (/nertialSensorData) and the measured
stance of the robot (RobotModel) are processed using an Unscented Kalman filter (UKF) [13].

A three-dimensional rotation matrix, which represents the orientation of the robot’s torso, is
used as the estimated state in the Kalman filtering process. In each cycle, the rotation of
the torso is predicted by adding an additional rotation to the estimated state. The additional
rotation is computed using the readings from the gyroscope sensor. After that, two different
cases are handled. In the case that it is obvious that the feet of the robot are not evenly
resting on the ground (when the robots fell down or is currently falling), the acceleration sensors
are used to update the estimated rotation of torso, in order to avoid accumulating an error
caused by slightly miscalibrated or noisy sensors. In the other case, an orientation of the robot’s
torso computed from the RobotModel, assuming that at least one foot of the robot rests evenly
on the ground, is used to update the estimate. The resulting orientation is provided in the
representation InertialData.

7.4 Torso Matrix

The TorsoMatrix describes the three-dimensional transformation from the projection of the mid-
dle of both feet on the ground up to the center of hip within the robot torso. Additionally, the
TorsoMatrix contains the alteration of the position of the center of hip including the odometry.
Hence, the TorsoMatrix is used by the WalkingEngine for estimating the odometry offset. The
CameraMatrix within the Cognition process is computed based on the TorsoMatrix.

In order to calculate the TorsoMatrix, the vector of each foot from ground to the torso (f; and
fr) is calculated by rotating the vector from the torso to each foot (#; and t,.). This can be
calculated by the kinematic chains, according to the estimated rotation (cf. Sect. 7.3). The
estimated rotation is represented as rotation matrix R.

fi=-R-4 (7.2)
fr=—-R-t,

The next step is to calculate the span s between both feet (from left to right) by using f; and
fr:

113



B-Human 2016 7.5. DETECTING A FALL

s=fr—"f (74)

Now, it is possible to calculate the translation part of the torso matrix p;,, by using the longer
leg. The rotation part is already known since it is equal to R.

_ 8/2+fl if (fl)z> (fr)z
Pim = { —s/2+ f, otherwise (75)

The change of the position of the center of hip is determined by using the inverted torso matrix
of the previous frame and concatenating the odometry offset. The odometry offset is calculated
by using the change of the span s between both feet and the change of the ground foot’s rotation
as well as the new torso matrix.

7.5 Detecting a Fall

Although we try our best at keeping our robots upright, it occasionally happens that one of them
falls over. In such a case, it is helpful to decrease the stiffness in the joints and bring the head into
a safe position to protect the robot’s hardware from unnecessary damage. The task of detecting
such a situation is realized by the FallDownStateDetector, which provides the FallDownState.
One major requirement for the detection system is the certainty that the robot is going to fall
and there is no way to avoid it. If the system makes a false positive, the robot might get into
trouble and cause an unnecessary collapse by itself. For that reason, fall detection is split up
into two phases. In the first one, the robots detects if it is staggering. In a situation like this, we
bring the head into a safe position, which can be done without risking its stability. If the robot
exceeds another given threshold in its tilt angle, the system enters the second phase which will
power down the joints to a low hardness. It has been shown that this is a better approach than
completely switching them off, because deactivated joints tend to gain too much momentum
before hitting the floor. To determine the robot’s tilt angle, the FallDownStateDetector utilizes
the InertialData. Still, there are some exceptions, when the FallDownState is undefined and thus
the safety procedures mentioned above are not triggered, in particular, if the keeper is diving,
as these motions switch off the joints on their own.

To start an appropriate get-up motion after a fall, the FallDownStateDetector determines,
whether the robot is lying on its front, its back, its left side, or its right side. The latter
two cases appear to be highly unlikely, but are not impossible. Note that we distinguish cases,
in which the robot falls sidewards first, then continuing to fall on its back or front. We use this
information to correct the robot’s odometry data, in order to speed up regaining knowledge of
its rotation on the field after standing up again.

7.6 Arm Contact Recognition

Robots should detect whether they touch obstacles with their arms in order to improve close-
range obstacle avoidance. When getting caught in an obstacle with an arm, there is a good
chance that the robot gets turned around, causing its odometry data to get erroneous. This, in
turn, affects the self-localization (cf. Sect. 5.1).

In order to improve the precision as well as the reactivity, the ArmContactModelProvider is
executed within the Motion process. This enables the module to query the required joint angles
100 times per second. The difference of the intended and actual position of the shoulder joint

114



7.6. ARM CONTACT RECOGNITION B-Human 2016

per frame is calculated and also buffered over several frames. This allows to calculate an average
error. Each time this error exceeds a certain threshold, an arm contact is reported. Using this
method, small errors caused by arm motions in combination with low stiffness can be smoothed.
Hence, we are able to increase the detection accuracy. Due to the joint slackness, the arm may
never reach certain positions. This might lead to prolonged erroneous measurements. Therefore,
a malfunction threshold has been introduced. Whenever an arm contact continues for longer
than this threshold, all further arm contacts will be ignored until no contact is measured.

The current implementation provides several features that are used to gather information while
playing. For instance, we are using the error value to determine in which direction an arm is
being pushed. Thereby, the average error is converted into compass directions relative to the
robot. Additionally, the ArmContactModelProvider keeps track of the time and duration of the
current arm contact. This information may be used to improve the behavior.

In order to detect arm contacts, the first step of our implementation is to calculate the difference
between the measured and commanded shoulder joint angles. Since we noticed that there is a
small delay between receiving new measured joint positions and commanding them, we do not
compare the commanded and actual position of one shoulder joint from one frame. Instead
we are using the commanded position from n frames!
position.

earlier as well as the newest measured

In our approach, the joint position of one shoulder consists of two components: x for pitch and
y for roll. Given the desired position p and the current position ¢, the divergence d is simply
calculated as:

d.x =cx—px

dy=cy—p.y

In order to overcome errors caused by fast arm movements, we added a bonus factor f that
decreases the average error if the arm currently moves fast. The aim is to decrease the precision,
i.e. to increase the detection threshold for fast movements in order to prevent false positives.
The influence of the factor f can be modified with the parameter speedBasedErrorReduction
and is calculated as:

speedBasedError Reduction

f = max <0 1— |handSpeed| >

So for each arm, the divergence value d, actually being used is:

do=4d-f

As mentioned above, the push direction is determined from the calculated error of an arm
shoulder joint. This error has two signed components x and y denoting the joint’s pitch and roll
divergences. One component is only taken into account if its absolute value is greater than its
contact threshold.

Table 7.1 shows how the signed components are converted into compass directions for the right
arm. The compound directions NW, NE, SE, SW are constructed by simply combining the
above rules if both components are greater than their thresholds, e. g. £ < 0 Ay < 0 results into
direction SE. The push direction of each arm is used to add an obstacle to the robot’s obstacle
model, causing the robot to perform an evasion movement when it hits an obstacle with one of
its arms.

LCurrently, n = 5 delivers accurate results.
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N
is positive | N E
is negative | S W

Table 7.1: Converting signed error values into compass directions for the right shoulder and
with —y for the left

Arm contacts are also used to move the arm out of the way to avoid further interference with
the obstacle (cf. Sect. 8.7). Please note that while arm motions from the ArmMotionEngine are
active, no arm contacts are detected for that arm.
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Chapter 8

Motion Control

The B-Human motion control system generates all kinds of motions needed to play soccer
with a robot. They are split into the different types of motions walk, stand, kick, getUp and
specialAction. These motions are generated by the corresponding whole body motion engines.
Additionally there are engines for the head and specific arm motions. This split was done in order
for the walking engine to be able to use the upcoming arm and head movements for its balancing
algorithms. The walking motion and a corresponding stand are dynamically generated by the
WalkingEngine (cf. Sect. 8.3). Some kicking motions are generated by the KickEngine [20] that
models kicks by using Bézier splines and inverse kinematics. Getting up from a position lying
on the ground is a special task that includes basic balancing and is done with the GetUpEngine
(cf. Sect. 8.5). All other whole body motions are provided by the module SpecialActions in the
form of sequences of static joint angle patterns (cf. Sect. 8.4). The head motion is generated
by the HeadMotionEngine (cf. Sect. 8.6). The modules responsible for specific arm motions are
the ArmKeyFrameEngine and PointAtEngine (cf. Sect. 8.7). All motion engines generate joint
angles. Depending on the selected motions (cf. Sect. 8.1) these angles are combined into the
JointRequest at the end of the process Motion (cf. Sect. 8.2). Figure 8.1 shows all motion control
modules and the representations they provide.

8.1 Motion Selection

According to the representations MotionRequest and ArmMotionRequest, the MotionSelector cal-
culates which motions to execute and how to interpolate between them, while switching from
one to another. This information is then provided in the representations LegMotionSelection and
ArmMotionSelection.

The MotionSelector determines which arm motion engine (ArmKeyFrameEngine and
PointAtEngine) and whole-body motion engine (WalkingEngine, KickEngine, SpecialActions, or
GetUpEngine) is to be executed and calculates interpolation ratios in order to switch between
them. In doing so this module takes into account which motions and motion engines are de-
manded, which motions and motion engines are currently being executed, and whether those
motions can be interrupted. Almost all motions can be interrupted but not in all states. The
interruptibility of a motion is handled by the corresponding motion engine in order to ensure
the motion is not interrupted in an unstable state.
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Figure 8.1: Motion control module graph. Motion control modules are depicted as yellow
rectangles. All representations they provide are shown as blue ellipses. The representations
they require are shown as ellipses colored in either yellow if they are provided by other Motion
modules and orange if they are received from the process Cognition.

8.2 Motion Combination

Motion combination is the task of merging the generated joint angles of all active motions into
one, according to the ratios provided by the MotionSelector. This merging is done by a linear
interpolation. Since joint angles for the arms have to be calculated before the walk motion can
be generated, there are three modules performing this task:

The ArmMotionCombinator merges the joint angles for the arms, by taking into account the
outputs of all modules producing such angles. Its output is the ArmJointRequest containing
those angles and the ArmMotionInfo describing the executed motions per arm.

The LegMotionCombinator is responsible for merging the joint angles for the legs and outputs
them in form of the LegJointRequest.

The MotionCombinator is the module executed last in the motion cycle. It combines the
ArmJointRequest and LegJointRequest into the final JointRequest containing all joint angles
for the NAO to be executed. In addition, it handles emergency situations, where the robot
is falling by choosing appropriate angles and stiffnesses. Finally it fills the representations
Motioninfo and OdometryData that contain data such as the current position in the walk
cycle, whether the motion is stable, and the odometry position.
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8.3 Walking

The walk and stand motions are generated by the WalkingEngine. This engine is split into
two modules, called WalkingEngine and WalkingEngineLegProvider. The module WalkingEngine
is the main component. It generates an abstract walk state for the legs in the form of the
representation WalkingEngineState as well as joint angles for the arms as WalkArmRequest and
StandArmRequest. Together with the abstract walk state and the ArmJointRequest generated
by the ArmMotionCombinator, the WalkingEngineLegProvider then produces joint angles for the
legs. These angles are held by the representations WalkLegRequest and StandlLegRequest. The
distinction between the two sets of joint angles (Stand*Request and Walk*Request) exists,
because the MotionCombinators (cf. Sect.8.2) expect two individual joint angle sets for standing
and walking. However, both of the sets provided are identical to allow the WalkingEngine to
handle the transition between standing and walking on its own.

The walking motions are generated based on the computationally inexpensive model of an in-
verted pendulum. Using this model, a trajectory for the robot’s center of mass can be planned
where the supporting foot does not tip over one of the foot’s edges. The planned trajectory can
then be transformed into a series of joint angles where the center of mass follows the planned
trajectory. To compensate inaccuracies of the pendulum model and to react on external forces,
the resulting motion of the center of mass is observed based on data of the TorsoMatrix and the
RobotModel. If the observed motion does not correspond to the planned center of mass trajec-
tory, the planned trajectory is slightly adjusted to ensure that further steps can be performed
without causing the robot to fall over. This approach was released and described in further
detail in [10] and [9].

The generated gait and the stand posture can be customized wusing the configura-
tion file Config/Robots/Default/walkingEngine.cfg (or individually for each robot using
Config/Robots/<robot>/Body/walkingEngine.cfg). The parameters are categorized in the
groups stand, walk, observer, and balance. The stand parameters control the stand posture,
which also determines the initial pose for walking motions. The walk parameters control how
the feet are moved and how the inverted pendulum is used to compute the center of mass tra-
jectory. The observer parameters and balance parameters control how the observed center of
mass position is used to adjust the planned center of mass trajectory.

Changes
e Compared to the releases of the previous years the walking engine underwent a heavy
refactoring, mainly by moving the calculations of the linear inverted pendulum model

onto separate classes called LIP and LIP3D.

e The acceleration of the walking Engine is now correctly influenced by the parameter speed-
MaxChange.

e The in-walk kicks were replaced by a new engine (cf. 8.3.2).

8.3.1 Load Balancing
RoboCup games can take quite a while, in particular the play-offs, in which the clock is stopped

when not in playing state. During such a game, the power consumption is very high, which has
mainly two negative effects: On the one hand, weak rechargeable batteries can reach a critical

119



B-Human 2016 8.3. WALKING

80y

— maxJointTemperatureWalking

— maxJointTemperatureStanding IF

75 /]

70 ]
65 ]

60

55|

50

45

9 00|  4500p| 425p0 40000 | 37500 | 3500Q] 3250 [30000 [2750p 25000 22500 [200P0 17500 pooo || 124po 100p0 | 750 50p0 2500

Figure 8.2: The temperature in °C of the hottest joint of B-Human’s robot “Kripke” in the
second half of the final of the RoboCup German Open 2015. The robot also played the whole
first half before. The time is shown as the number of vision frames until the end of the half,
i.e. in 6isecs. The vertical blue lines mark the begin and end of phases in which the robot was

standing.

limit. On the other hand, the joints are getting very hot!, which results in weaker and less
precise joint movements, and ultimately in the robots falling down more often.

For the past two years we have addressed the high power consumption problem with a special
behavior (cf. 6.3.1) that is more optimized to avoid the robots have to continuous walk around
the field. Instead, they try to stand still as often as (strategically) possible. But even when
standing, the heat of the joints can quickly go up if the weight is not evenly distributed over
both legs.

Therefore, while standing, our robots are continuously detecting the cumulative electrical cur-
rents for each leg over a short amount of time and then lean the torso over towards the side
the leg which had the smaller power consumption so far. Thereby, the robots are able to dis-
tribute the load more equally and to keep the temperature from increasing while the robot is
standing. The calculations are done in the StandBodyRotationProvider which is providing the
StandBodyRotation.

As can be seen in Fig. 8.2, on a robot playing during the final of the RoboCup German Open
2015, the increase in joint temperature was always slowed down when the robot was standing.

8.3.2 In-Walk Kicks

Besides walking and standing, the WalkingEngine has also minor kicking capabilities. The tasks
of walking and kicking are often treated separately, both solved by different approaches. In the
presence of opponent robots, such a composition might waste precious time as certain transition
phases between walking and kicking are necessary to ensure stability. A common sequence is to
walk, stand, kick, stand, and walk again. Since direct transitions between walking and kicking
modules are likely to let the robot stumble or fall over, the WalkingEngine is able to carry out
simple kicks while walking.

At the moment, there are three kick types: forward, sidewardsInner, and turnOut. Those
kicks are described individually by the config files located in Config/WalkKicks. Every kick is
defined by its duration, step sizes before and during the kick, and key frames for the 3D position
and rotation of the kicking foot. These key frames are later interpolated by cubic splines to

'The joint temperature is an estimation done by NAQ’s operating system NAOqi and not an actual measure-
ment.
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describe the actual trajectory of the foot, by overlaying the original trajectory of the swinging
foot and thereby describing the actual kicking motion. In doing so the overlaying trajectory
starts and stops at 0 in all dimensions both in position and velocity. Thus, the kick retains the
start and end positions as well as the speeds of a normal step. The instability resulting from the
higher momentum of the kick is compensated by the walk during the steps following the kick.

8.3.3 Inverse Kinematic

The inverse kinematics for the ankles of the NAO are a central component of the module
WalkingEngine. In general, they are a handy tool for generating motions, but solving the in-
verse kinematics problem analytically for the NAO is not straightforward, because of two special
circumstances:

e The axes of the hip yaw joints are rotated by 45 degrees.

e These joints are also mechanically connected among both legs, i.e., they are driven by a
single servo motor.

The target of the feet is given as homogeneous transformation matrices, i. e., matrices containing
the rotation and the translation of the foot in the coordinate system of the torso. In order to
explain our solution we use the following convention: A transformation matrix that transforms a
point p4 given in coordinates of coordinate system A to the same point pp in coordinate system
B is named A2B, so that pp = A2B-p4. Hence the transformation matrix Foot2T orso is given
as input, which describes the foot position relative to the torso. The coordinate frames used are
depicted in Fig. 8.3.

The position is given relative to the torso, i.e., more specifically relative to the center point
between the intersection points of the axes of the hip joints. So first of all the position relative
to the hip is needed?. It is a simple translation along the y-axis®

1.
Foot2Hip = Trans, ( d;St

) - Foot2T orso (8.1)

with g = distance between legs. Now the first problem is solved by describing the position
in a coordinate system rotated by 45 degrees, so that the axes of the hip joints can be seen
as orthogonal. This is achieved by a rotation around the x-axis of the hip by 45 degrees or 7
radians.

Foot2HipOrthogonal = Rotx(g) - Foot2Hip (8.2)
Because of the nature of the kinematic chain, this transformation is inverted. Then the transla-
tional part of the transformation is solely determined by the last three joints, by which means

they can be computed directly.
HipOrthogonal2F oot = Foot2HipOrthogonal ~! (8.3)

The limbs of the leg and the knee form a triangle, in which an edge equals the length of the
translation vector of HipOrthogonal2F oot (lgrans). Because all three edges of this triangle are
known (the other two edges, the lengths of the limbs, are fix properties of the NAO) the angles

2The computation is described for one leg and can be applied to the other leg as well.
3The elementary homogeneous transformation matrices for rotation and translation are noted as
Rot<azis>(angle) resp. Trans<awis> (translation).
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Figure 8.3: Visualization of coordinate frames used in the inverse kinematic. Red = z-axis,
green = y-axis, blue = z-axis.

of the triangle can be computed using the law of cosines (8.4). Knowing that the angle enclosed
by the limbs corresponds to the knee joint, that joint angle is computed by equation (8.5).

A =a*+bv*—2-a-b-cosy (8.4)

2 2 2
lupperLeg =+ llowerLeg - ltrans (8 5)

7y = arccos
2. lupperLeg : llowerLeg

Because v represents an interior angle and the knee joint is being stretched in the zero-position,
the resulting angle is computed by

Oknee = T — 7Y (8.6)

Additionally, the angle opposite to the upper leg has to be computed, because it corresponds to
the foot pitch joint:
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2 2 2
llowerLeg + ltrans - lupperLeg (8 7)

Ofoot Pitchl = AICCOS
2- llowerLeg ’ ltrans

Now the foot pitch and roll joints combined with the triangle form a kind of pan-tilt-unit. Their
joints can be computed from the translation vector using atan2.*

6footPitch2 = atan2(x, V y2 + 22) (88)

5footRoll = atan2(y: Z) (89)

where x, ¥, z are the components of the translation of Foot2HipOrthogonal. As the foot pitch
angle is composed by two parts it is computed as the sum of its parts.

5footPitch = 5footPitchl + 5footPitch2 (810)

After the last three joints of the kinematic chain (viewed from the torso) are determined, the
remaining three joints that form the hip can be computed. The joint angles can be extracted
from the rotation matrix of the hip that can be computed by multiplications of transformation
matrices. For this purpose another coordinate frame T'high is introduced that is located at the
end of the upper leg, viewed from the foot. The rotation matrix for extracting the joint angles
is contained in HipOrthogonal2T high that can be computed by

HipOrthogonal2T high = Thigh2F oot~ - HipOrthogonal2F oot (8.11)

where Thigh2F oot can be computed by following the kinematic chain from foot to thigh.

Thigh2F00t = ROtz (5footRoll) . ROty (5footPitch) : TT&TLSZ (llowerLeg) . ROty (5knee) : T’I”CLTLSZ (lupperLeg)
(8.12)

To understand the computation of those joint angles, the rotation matrix produced by the known
order of hip joints (yaw (z), roll (z), pitch (y)) is constructed (the matrix is noted abbreviated,
€.g. ¢; means cosdy).

CyCy — SzSySz —CzSz  CxSy + CySzS,
Rotpip = Rot,(0,) - Roty(6;) - Roty(0y) = | cas28y +cys.  cuce  —cycaSp + SySs (8.13)
_sty Sy Cny

The angle &, can obviously be computed by arcsinre;.> The extraction of §, and d, is more
complicated, they must be computed using two entries of the matrix, which can be easily seen
by some transformation:

—7rg1 COS Oy - sind, sin d,
= = =tand 8.14
711 cosdy - cosd,  COSO, an o ( )

Now 4, and, using the same approach, J, can be computed by

‘atan2(y, z) is defined as in the C standard library, returning the angle between the z-axis and the point (z, ).
5The first index, zero based, denotes the row, the second index denotes the column of the rotation matrix.
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52 = 6hipYaw = atan2(—7“01, 7“11) (8.15)

(Sy = 5hipPitch = atan2(—r20, 7'22) (8.16)
At last the rotation by 45 degrees (cf. eq. 8.2) has to be compensated in joint space.

™

OhipRoll = Oz — 1 (8.17)
Now all joints are computed. This computation is done for both legs, assuming that there is an
independent hip yaw joint for each leg.

The computation described above can lead to different resulting values for the hip yaw joints.
From these two joint values a single resulting value is determined, in which the interface allows
setting the ratio. This is necessary, because if the values differ, only one leg can realize the
desired target. Normally, the support leg is supposed to reach the target position exactly. By
applying this fixed hip joint angle the leg joints are computed again. In order to face the six
parameters with the same number of degrees of freedom, a virtual foot yaw joint is introduced,
which holds the positioning error provoked by the fixed hip joint angle. The decision to introduce
a foot yaw joint was mainly taken because an error in this (virtual) joint has a low impact on
the stability of the robot, whereas other joints (e.g. foot pitch or roll) have a huge impact
on stability. The computation is almost the same as described above, except it is the other
way around. The need to invert the calculation is caused by the fixed hip joint angle and the
additional virtual foot joint, because the imagined pan-tilt-unit is now fixed at the hip and the
universal joint is represented by the foot.

This approach can be realized without any numerical solution, which has the advantage of a
constant and low computation time and a mathematically exact solution instead of an approxi-
mation.

8.4 Special Actions

Special actions are hardcoded motions that are provided by the module SpecialActions. By
executing a special action, different target joint values are sent consecutively, allowing the robot
to perform actions such as a goalie dive or the high stand posture. Those motions are defined
in .mof files that are located in the folder Config/mof. A .mof file starts with the unique name
of the special action, followed by the label start. The following lines represent sets of joint
angles, separated by a whitespace. The order of the joints is as follows: head (pan, tilt), left
arm (shoulder pitch/roll, elbow yaw/roll, wrist, hand), right arm (shoulder pitch/roll, elbow
yaw /roll, wrist, hand), left leg (hip yaw-pitch/roll/pitch, knee pitch, ankle pitch/roll), and right
leg (hip yaw-pitch®/roll/pitch, knee pitch, ankle pitch/roll). A “*’ does not change the angle
of the joint (keeping, e.g., the joint angles set by the head motion engine), a ‘~’ deactivates
the joint. Each line ends with two more values. The first decides whether the target angles
will be set immediately (the value is 0); forcing the robot to move its joints as fast as possible,
or whether the angles will be reached by interpolating between the current and target angles
(the value is 1). The time this interpolation takes is read from the last value in the line in
milliseconds. If the values are not interpolated, the robot will set and hold the values for that
amount of time instead.

5Ignored
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It is also possible to change the stiffness of the joints during the execution of a special action,
which can be useful, e.g., to achieve a stronger kick while not using the maximum stiffness as
default. This is done by a line starting with the keyword stiffness, followed by a value between
0 and 100 for each joint (in the same order as for specifying actual joint angles). In the file
Config/stiffnessSettings.cfg default values are specified. If only the stiffness of certain joints
should be changed, the others can be set to ‘*’. This will cause those joints to use the default
stiffness. At the end of one stiffness line the time has to be specified that it will take to reach the
new stiffness values. This interpolation time runs in parallel to the interpolation time between
target joint angles. In addition, the stiffness values defined will not be reached if another stiffness
command is executed before the interpolation time has elapsed.

Transitions are conditional statements. If the currently selected special action is equal to the first
parameter, the special action given in the second parameter will be executed next, starting at the
position of the label specified as last parameter. Note that the currently selected special action
may differ from the currently executed one, because the execution costs time. Transitions allow
defining constraints such as to switch from A to B, C has to be executed first. There is a wildcard
condition allMotions that is true for all currently selected special actions. Furthermore, there
is a special action called extern that allows leaving the module SpecialActions, e. g., to continue
with walking. extern.mof is also the entry point to the special action module. Therefore, all
special actions must have an entry in that file to be executable. A special action is executed
line by line, until a transition is found the condition of which is fulfilled. Hence, the last line of
each .mof file contains an unconditional transition to extern.

An example of a special action:

motion_id = stand

label start

stiffness 20 20 60 60 60 60 60 60 60 60 60 60 60 60 90 90 90 90 90 90 90 90 90 90 90 90 50

"HP HT ALO AL1 AL2 AL3 AL4 AL5 ARO AR1 AR2 AR3 AR4 AR5 LLO LL1 LL2 LL3 LL4 LL5 LRO LR1 LR2 LR3 LR4 LR5 Int Dur

* ok 0 -50 -2 -40 0 0 0 -50 -2 -40 0 0 -6 -1 -43 92 -48 0 -6 -1-43 92 -48 -1 1 100
transition allMotions extern start

To receive proper odometry data for special actions, they have to be manually set in the file
Config/special Actions.cfg. It can be specified whether the robot moves at all during the exe-
cution of the special action, and if yes, how it has moved after completing the special action,
or whether it moves continuously in a certain direction while executing the special action. It
can also be specified whether the motion is stable, i.e., whether the camera position can be
calculated correctly during the execution of the special action. Several modules in the process
Cognition will ignore new data while an unstable motion is executed to protect the world model
from being impaired by unrealistic measurements.

8.5 Get Up Motion

Besides the complex motion engines (e.g. walking and kicking) there is also a smaller, task-
specific engine called the GetUpEngine. As the name implies, this engine specializes in getting a
lying robot back on its feet.

While using a key-frame-based approach, we included so called critical parts in order to verify
certain body poses, e.g. if the robot’s torso is near an upright position. Whenever one of the
critical parts is unsuccessfully passed, the motion engine stops the current execution and initiates
a recovery movement in order to try again from the start. After two attempts, a hardware defect
is assumed causing the engine to set the stiffness of all joints to zero. Thus, the robot stays lying
down in order to prevent any more damage. Furthermore, a cry for help is initiated causing the
robot to play the sound “help me”.
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There is only one way to terminate the execution of this motion engine: get the robot into an
upright position. This can either be done by a successful standing up movement or (after two
unsuccessful attempts) manually by holding the robot upright as a referee would do following
the fallen robot rule.

As we all know robot soccer is often very rough and even robots that are almost finished with
a stand-up movement could be in distress. Thus, we included the possibility to enable a PID-
controlled gyroscope based balancing (similar to the one in KickEngine by Miiller et al. [20])
starting at a certain predefined part of the movement until it is finished, e.g. if the robot is
standing upright again.

It is desirable that a motion engine is easy to use. For that reason, the last feature is that the
engine is able to distinguish on its own whether the robot has fallen on its front, back, or not at
all. Thereby, the torso rotation of the representation InertiaData is used to select the appropriate
motion, e.g., standing up from lying on the front side or standing up from lying on the back
side. In case that the robot has not fallen at all, the engine terminates immediately, i.e. flags
itself as “leaving is possible” and initiates a stand. Furthermore, after each unsuccessful stand
up attempt, the engine reviews the torso rotation in case an interfering robot has changed it.

Thus, if a fall is detected, one only needs to activate the engine by setting the motion to getUp
in the representation MotionRequest and wait for the termination (i.e. the “leaving is possible”

flag).

8.5.1 Modify Get Up Motions

After a couple of years, we finally needed to adjust our stand-up motions, which did not feel
very comfortable. For that reason, we tried to improve that process by using special actions (cf.
Sect. 8.4) during creation and convert them afterwards into getUpEngine.cfg. In doing so we
first included getUpEngineDummy.mof as a dummy file that is later used to edit and execute
the stand-up motion to change.

To load the data from an existing motion into the dummy file we use set
module:GetUpEngine:generateMof0f nameOfMotion; in simulator. This looks up the mo-
tion name in file getUpEngine.cfg and converts the data of that specific stand-up motion
from the config-file into the file getUpEngineDummy.mof. Afterwards it can be written back
to the file getUpEngine.cfg with set module:GetUpEngine:generateMotionFromDummyMof
name0OfMotion;. Once you have generated the file getUpEngineDummy.mof you can use it
as normal special action. Of course this includes the simulator command mof that compiles and
copies special actions from your hard drive to the robot without restart.

As all conversions are done on file level, it is advisable to always convert in offline mode. Other-
wise, in online mode, you have to look up the files on the robot’s memory drive instead of your
own harddrive.

Since GetUpEngine motions are a bit different from normal special actions, we included some
special comments to mark critical phases ("@critical), the phase the balance mechanism should
be activated ("@balanceStartLine), and how the odometry changes after the whole motion is
done ("@odometryOffset x y rotation). These special comments are used if the motion is
converted back into the file get UpEngine.cfg and implemented by the GetUpEngine. If the motion
is executed by the module SpecialActions, the special comments are ignored. Thus, balancing
and upright position verification are not enabled.

At last the GetUpEngine is now able to change the joint stiffness during execution. This can be
marked during the creation process as special action with the stiffness command. As special
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actions and the GetUpEngine are functioning different from each other, there is a compatibility
issue regarding the stiffness. In the GetUpEngine the stiffness is applied at the start of each
interpolation process in a single joints key-frame. In the module SpecialActions the stiffness is
interpolated in parallel to the joints key-frame interpolations. Thus, the stiffness interpolation
time can differ from the joints interpolation time and stretch over more than a single joints
key-frame. Consequently, comparable behaviors of both engines are only reached if you set the
interpolation time of stiffness key-frames to 0.

The following example shows how to use the special comments if a motion is created as special
action:

motion_id = getUpEngineDummy

label start

stiffness 20 20 60 60 60 60 60 60 60 60 60 60 60 60 90 90 90 90 90 90 90 90 90 90 90 90 O
0099 74 -5 -80 -90 0 99 -74 58090 0000060000O0O0 6001500

stiffness 30 30 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 O
0099 74 -5 -80 -90 0 99 -74 56 80 90 0 0 0006000000600 1500

"Qcritical (upright check at start of interpolation to next line)
0099 74 -5 -80 -90 0 99 -74 580 90 0 0 0 0 0 60 0 0 0 0 0 60 O 1 500

"@balanceStartLine (turn on balance at start of interpolation to next line)
0099 74 -5 -80 -90 0 99 -74 580 90 0 0 0 0 060 0 0 0 0 0 60 O 1 500

label repeat
0099 74 -5 -80 -90 0 99 -74 5 80 90 0 0 0006000000600 1500

"QodometryO0ffset 230.00 -40.00 -45.00

transition getUpEngineDummy getUpEngineDummy repeat
transition allMotions extern start

8.6 Head Motions

Besides the motion of the body (arms and legs), the head motion is handled separately. This task
is encapsulated within the separate module HeadMotionEngine for two reasons. The first reason
is that the modules WalkingEngine and KickEngine manipulate the center of mass. Therefore
these modules need to consider the mass distribution of the head before its execution in order
to compensate for head movements.

The other reason is that the module smoothens the head movement by limiting the speed as
well as the maximum angular acceleration of the head. In encapsulating this, the other motion
modules do not have to concern themselves with this.

The HeadMotionEngine takes the representation HeadAngleRequest generated by the CameraCon-
trolEngine (cf. Sect. 4.1.1) and produces the representation HeadJointRequest.

8.7 Arm Motions

In addition to the arm motions that are calculated combined with the leg motions (e.g. during
a special action or a kick) we also use two motion engines that provide only output for the
arm joints: The PointAtEngine to point and the ArmKeyFrameEngine to follow key frames. Both
motions will be selected only during a walking or standing (leg) motion.
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Figure 8.4: The outstretched robot’s left arm is pointing towards the ball. The red line shows
the shoulder-elbow extension.

8.7.1 Pointing at Something

The functionality to point at something with an outstretched arm was firstly used in this year’s
No Wi-Fi Challenge (cf. Sect. 9.4) and Drop-In Competition’s gestures (cf. Sect. 9.1.2).

A geometric inverse kinematic is used to find the target shoulder joint angles. All other joints are
set to zero’. The result is shown in Fig. 8.4. To ensure a smooth motion a simple cubic easing
out function over the target joint angles is used. No output will be generated if the requested
point is (roughly) too close to the own body or to the shoulder joints or if the requested point
is located clearly behind the robot or in the workspace of the robot’s other arm to prevent a
self-collision.

A point-at motion can be triggered by filling out the attribute pointToPointAt of the ArmMo-
tionRequest. This is done by the behavior output options PointAtWithArm or PointAt. The
former lets you select the pointing arm while the latter will choose it for you. In any case you
have to specify the point you want to point at as three-dimensional coordinates relative to the
robot’s origin.

8.7.2 Key Frame Motion

Although we are mainly using this feature to move the arms behind the robot’s back to prevent
(further) contact with other robots, it generally supports any desired arm key frame motion.
A motion is defined by a set of states, which consist of all target angles of an arm (similar to
a special action, cf. Sect. 8.4). Upon executing an arm motion, the motion engine interpolates
intermediate angles between two states to provide a smooth motion. When reaching the final
state, the arm remains there until the engine gets a new request. The ArmKeyFrameEngine
performs all the calculations and interpolations for the desired arm motion.

"Plus/minus two degrees for the elbow roll joints because of the restricted robot’s kinematics.
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Arm motions are configured in the file armKeyFrameEngine.cfg. It defines the sets of targets as
well as some other configuration entries:

actionDelay: Delay (in ms) after which an arm motion can be triggered again by an arm
contact.

targetTime: Time (in Motion frames) after which an arm should be moved back to its default
position (applies only for motions triggered by arm contact).

allMotions: Array of different arm motions. The entry with the id useDefault is a native
motion, which should neither be modified nor should it get another index within the array.

Despite the available motions, you may add further ones to the file following the same structure
under a new id. The new id has to be appended to the end of the enumeration ArmKeyFrameId
within the representation ArmKeyFrameRequest.
// [..] config entries left out
allMotions = [
{
// [..] native motions left out
. {
id = sampleArmMotion;
states = [
{angles=[-2.05, 0.2, 0.174, -0.2, -90deg, Odegl; stiffness = [90, 60,
80, 90, 90, 90]; steps = 80; 1},
{angles=[-2.11, -0.33, 0.4, -0.32, -90deg, 1]; stiffness = [90, 60, 80,
90, 90, 90]; steps = 80; 1}
1;
}
1;

Listing 8.1: Example of an arm motion definition

It is important to know that all motions will be only declared for the left arm. Inside the
ArmKeyFrameEngine, the motion will then be correctly mirrored for the right arm. The an-
gles respectively stiffness values of each state correspond in their order of occurrence to:
ShoulderPitch, ShoulderRoll, ElbowYaw, ElbowRoll, WristYaw, and Hand. For each stiff-
ness entry, the special value —1 may be used, which indicates the use of the default stiffness
value for that joint as specified in the file stiffnessSettings.cfg. The attribute step specifies how
many Motion frames should be used to interpolate intermediate angles between two entries in
the array states.

Arm motions can be triggered by filling out the representation ArmKeyFrameRequest.
This is done by the behavior output options KeyFrameArms, KeyFrameLeftArm, or
KeyFrameRightArm. The first will start the motion selected for both arms. The represen-
tation mentioned has two attributes for each arm describing the motion to execute:

motion: The id of the motion to execute. useDefault means to use the default arm motions
produced by the WalkingEngine, reverse means that you request the reverse motion of
the last executed (key frame) motion.

fast: If set to true, interpolation will be turned off for this motion.
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Chapter 9

Sub-Competitions and
Technical Challenges

In addition to the main indoor soccer competition, B-Human participated in all other competi-
tions that were held in 2016, i. e. the Outdoor Competition, the Drop-In Competition, as well as
in both technical challenges, i.e. the No Wi-Fi Challenge and the Outdoor Challenge. For these
competitions, most modules that have been described in the previous chapters can be used, too.
However, each competition requires certain adaptions and / or the implementation of a few new
software components. This chapter describes these specific developments.

9.1 Drop-In Competition

In the Drop-in Player Competition, robots from different teams have to play together. They have
a common goal, namely to win their matches, but also compete with each other, because being
seen by the human judges as both active and cooperative counts for the overall score. The main
challenge of the Drop-in Player Competition is that all robots of a team run different software.
Therefore, it is not quite clear for each robot what to expect from its teammates. Although
the league defines a standard message that has to be exchanged among the team members, it is
not guaranteed that all robots fill in all the fields with correct information. There is always the
risk that a player gets a negative scoring for behaving strangely, just because it was fed wrong
information by its teammates.

Since its introduction, we have always participated successfully in the Drop-In Player Com-
petition. For these games, our major adaptions concern the robot behavior as well as the
interpretation of the information sent by our teammates.

9.1.1 Reliability of Teammates

As some information given by other players might be imprecise or wrong, the reliabilities of all
teammates are estimated during a game. In previous years, these reliabilities were used by the
behavior to decide whether we try to carry out some actions all by ourselves or to support other
robots and let them, for instance, play the ball. In 2016, we changed our implementation such
that all messages from teammates that are currently not considered as reliable become discarded
completely. Thereby, missing checks of the reliability — of which we discovered quite a few —
cannot introduce unreliable information into our system anymore.

The reliability estimation is done by continuously analyzing the consistency, completeness, and
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plausibility of the standard messages received. This analysis consists of a number of different
tests. Currently, only the content of the most important elements is considered: the ball position
and the robot pose.

In a first step, it is checked, whether the robot pose coordinates have been set to valid numbers
at all. This is done by buffering the values and checking, whether the value ranges exceed a
certain threshold. This approach allows to exclude teammates that do not set this field (i.e.
leaving the default value) as well as teammates that — for whatever reason — use meters instead
of millimeters as length unit. In addition, to exclude teammates that use degrees instead of
radians, the value for the robot’s rotation has to be within the interval [—m,7]. Although
forbidden by the current rules, during the RoboCup 2016 Drop-In Competition, we experienced
a case in which a teammate sent a message with invalid floating point data such as Infinity or
Not a Number. Thus, we implemented several additional checks for all floating point fields. If
all these numerical and plausibility checks have been passed, the communicated robot position
as well as the ball position must be on the field.

Finally, it is checked, whether communicated ball perceptions are compatible to our own per-
ceptions, i.e. if the difference (in absolute field coordinates) between both positions is below
are given threshold. Only if this check is successful multiple times, the other robot has reached
reliability status and is treated by the behavior similar to a teammate in a normal game. This
state lasts for at least several seconds. If both robots see the ball at the same place many times,
the state length might even be extended to a few minutes.

Regardless of the teammates’ reliability, the team-wide localization symmetry resetting (cf.
Sect. 5.1.3) is disabled in all Drop-In games. As these games are not as tough as many normal
games, it is less likely that a robot loses its orientation. In addition, we only use NAO V5 robots
in Drop-In games, as their z-axis gyroscopes prevent most orientation problems.

9.1.2 Behavior

Major parts of the robot behavior are identical to our behavior for the normal competition.
However, the role selection is limited to striker and supporting behaviors. As we believe that
our robot can better contribute to the overall team performance when being a field player, the
goalkeeper role is avoided. For the role selection, we actually would accept suggestions by our
teammates, if a majority of the trusted teammates agrees on a role for our robot.

As passes are rewarded with positive scores, our drop-in player tries to pass to teammates
that report an adequate target position. For normal games, these passes are not activated.
In addition, the supporting behaviors actively take promising positions and wait for passes by
our teammates. When playing normal games, the decision whether or not to play the ball
is completely based on the communication with the teammates. However, in drop-in games
there might be ball-playing teammates that are not trustworthy enough to be considered in
our decision making. This is why we additionally consider perceptions of robots: if the vision
system reports a teammate close to the ball, we do not try to play the ball and thereby avoid
any negative scores for bad team play.

One new element that we have introduced for the 2016 competition are gestures. In general, the
audience and the judges cannot know, if some action is intended by the robot or just happened
accidentally. Therefore, we implemented two gestures: waving and pointing. Whenever we play
a pass to a teammate or decided to let a teammate play the ball, the robot is pointing towards
that robot to express its intention in a comprehensible manner. If the robot positions to receive
a pass from a teammate, it raises its arm and waves to indicate its waiting status. For the arm
motions, the approaches described in Sect. 8.7 have been used.
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9.1.3 Analysis and Results

We won the 2016 Drop-In Player Competition and thus the Most Valuable Player award with
the maximum possible score of 300 points [3]. In contrast to the 2015 competition — in which we
showed a reasonable performance but lost many games — we won all six games. Many thanks to
our teammates who contributed to this success by scoring goals and helping to defend our goal!

Two thirds of the overall score are based on the average judge rating. We received the full 200
judge points as our average judge score per game (18.1 points) was the highest of all teams.
We do not know the detailed scores by any individual judge but after having seen the games
and given the scoring rules defined in [4], one can assume the following: In most games, our
robot had a lot of ball contacts and scored multiple goals. Hence, many scores might involve
an exceptional game participation, which is awarded with 10 points. In addition, an average
positioning (worth 5 points) combined with a few individual positive team play actions (+1—+4
points) might result in the score that we achieved. Personal communication with judges revealed
that our team play gestures have been noticed and appreciated and thus probably contributed
to our success.

9.2 QOutdoor Competition

We successfully applied for the participation in the Outdoor Competition and thus played our
first matches on artificial lawn and with natural lighting (cf. Fig. 9.1) instead of playing the first
preliminary round of the normal indoor competition. Except for some adaptions to our vision
system and a lot of tuning of our robots’ walking parameters, we used the same code as for the
indoor competition.

9.2.1 Vision Adaptions

Most of this year’s vision system changes, especially using the YHS color space for color clas-
sification (cf. Sect. 4.1.4), were made in order to be able to play under the natural lighting
conditions of the outdoor competition. Because of these adjustments, we were able to calibrate
our robots for the outdoor competition the same way as during the normal indoor tournament,
achieving similar results except for circumstances with very sharp shadow edges or very bright
light. However, even in these cases we made our vision still work well enough by using the auto-
matic exposure mechanism of the camera driver. It turned out that for the automatic exposure,
the adaptive weighted auto exposure mode for lowlights combined with a low brightness setting
provided good results for both color classification and ball detection, which relies on clear edges,
throughout the outdoor competition.

9.2.2 Analysis and Results

Overall, our team was able to play under outdoor conditions in a reasonable manner. In five
matches, we scored 18 goals and received only one goal. Unfortunately, the goal against us was
scored in the final, which we lost 0:1 against the Nao Devils.

The lighting conditions only caused minor perception problems. Hence, localization and ball
tracking worked almost as good as in the indoor competition. However, making our robots walk
robustly on the artificial lawn turned out to be a major problem. Several robots that played
decently on the indoor carpet were not able to walk at all, others tumbled a lot. As future

132



9.3. OUTDOOR CHALLENGE B-Human 2016

Figure 9.1: Outdoor Competition final between B-Human and Nao Devils.

competitions will be played on a similar, we will definitely need a new walk as the current one
cannot be considered as competitive to some others.

9.3 Outdoor Challenge

As we also participated in the Outdoor Competition, no additional preparations regarding vision
and walking have been necessary for this challenge. We only adapted the robots’ behaviors to
increase their chances of receiving the maximum score for an attempt, i.e. shot at the goal by
the striker and execution of a proper blocking motion by the goalkeeper. Hence, the goalkeeper
was programmed to keep standing and looking for the ball until the ball is eventually rolling
towards the goal. The striker starts each attempt with a localization sequence. After it has seen
enough features to be sure about the current pose on the field, it performs short kicks towards
the goal. It will try to score not before the ball has reached a position that allows a shot that
is likely to enter the goal.

Due to an improper robot configuration in the first round (making the striker unable to localize)
and bad luck in the second round (the shot towards the goal stopped before it reached the goal),
our robots performed worse than expected. Most test runs scored more points. Overall, the
score was still good enough to reach a shared second place in this challenge.
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9.4 No Wi-Fi Challenge

The standard communication channel for the robots is Wi-Fi. The task for this challenge was
to implement a channel that is not depending on that infrastructure. During the challenge, two
robots are placed on the opposite sides of the field, facing each other. In the first round, one
robot has to transmit a location on the field to the other robot which has to point at it with his
arm (cf. Sect. 8.7.1). In the second round, as much as possible arbitrary binary data has to be
transmitted.

9.4.1 Evaluated Communication Approaches

As the rules for this challenge do not require the use of any specific communication approach, we
evaluated different ways of transmitting data, such as sound, infrared light, and the recognition
of robot’s eye LEDs. Infrared transmitters and receivers are part of the NAO robots. They allow
the transmission of decent amounts of data, but unfortunately not over the distances required
in this challenge. One alternative approach was to change the transmitting robot’s eye colors
in a fast manner and to perceive these changes with the camera of the receiving robot. This
method seems to work in principle but was not finished early enough for thorough testing and
tuning.

Eventually, we used sound communication in this challenge. We developed two different ap-
proaches in parallel: one sophisticated approach that had the potential of transmitting a high
number of bytes within a short amount of time as well as one basic backup approach that was
very slow but very robust.

The sophisticated approach was based on BPSK (binary phase-shift keying) modulation. It
works by detecting the phase of a signal and deriving the transmitted symbols out of it. Until
the RoboCup, the modulation, demodulation, basic filtering, and a package abstraction layer for
data transparency were implemented but further filtering was necessary to correctly demodulate
noisy signals. Unfortunately, due to the complex nature of digital signal processing, these
filtering techniques did not work correctly when the challenge took place. It is impossible
to estimate the maximum bitrate of this unsuccessful approach over a noisy channel without
adequate on-site testing, but in our software testing environment, which added noise around the
carrier frequency, it worked with over 100 bit/s.

The remainder of this section describes the approach that has been actually used in the challenge.

9.4.2 Transmitting and Detecting Sounds

The basic idea of our sound transmission is quite straightforward:

1. We defined a set of sounds, each of them represents a certain value.

2. Data is encoded and converted to a sequence of sounds that are played by the transmitting
robot.

3. The receiving robot recognizes the sounds, converts them back to the assigned values, and
decodes the data.

The sounds are normal audio files that are played just in the same way as other sounds. Each

sound has a length of 300 ms and contains a generated signal of a certain frequency. We chose
frequencies in the range [1750,4000[ Hz as these do not occur often in surrounding sounds. As

134



9.4. NO WI-FI CHALLENGE B-Human 2016

described in the following section, we use quaternary symbols and thus require four different
sounds !. This small number of sounds in combination with the length of each sound (which is
required for a robust detection) indicates that this approach is only able to transmit a few bits
per second. However, our major intention was to reliably score some points and thus we did not
make any major efforts in tuning the bandwidth.

For the recognition of the different sounds, we use a Fast Fourier Transformation. In contrast
to the whistle recognition described in Sect. 5.5.1, we do not perform a correlation with a pre-
viously recorded signal but just perform the transformation of the audio signal to the frequency
domain by the FFT. As we know the frequencies that are used by the transmitting robot,
their detection is now just a simple lookup, whether the amplitudes of these frequencies are
higher than a preconfigured threshold. The sound recognition is implemented in the module
NoWirelessSoundRecognizer.

9.4.3 Base 4 Hamming Encoding

One of our main goals in this challenge was to make sure that all data received and used was
error free. Thus, we encoded all data using a linear error-correcting code called Hamming (8,
4)-code by Richard Hamming [11]. For each 4 bit of data this code adds 4 additional so-called
parity bits. Using this additional redundant information one is able to detect errors in up to 3
of these 8 bits and to correct one error when decoding.

Since transmitting single bits was too slow, we decided to use a quaternary instead of a binary
format for our data. As described by Leonid Bystrykh [2], it is possible to encode quaternary
symbols in the same way as bits. Using this technique, we are able to transmit 8 bits of data
using 8 quaternary symbols while preserving the high level of error detection and correction
described above.

The decoding is implemented in the HammingSoundToDataConverter and the encoding as well as
the playing of the aforementioned sound files is implemented in the HammingSound Transmitter.

9.4.4 Analysis and Results

When we decided to use the robust backup solution, we already expected that we would not
be able to win this challenge as the method’s maximum possible data transmission rate is quite
low. During the challenge at RoboCup 2016, we successfully transmitted data from the close
positions in the first part as well as a few bytes in the second part. However, similar to the
Outdoor Challenge, our final tests (a few minutes before the challenge was held) on the same
field were more successful as we were also able to reliably transmit data from the far positions,
too.

In the end, we reached the third place in this challenge, with a score close to the Nao Devils but
far away from the HULKSs [3], who demonstrated the by far best solution.

'Due to implementation details, we actually used four pairs of sounds and thus eight different sounds in total.
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Chapter 10

Tools

The following chapter describes B-Human’s simulator, SimRobot, as well as the B-Human User
Shell (bush), which is used during games to deploy the code and the settings to several NAO
robots at once. As the official GameController and the tools accompanying it were also developed
by B-Human, they are also described at the end of this chapter.

10.1 SimRobot

The B-Human software package uses the physical robotics simulator SimRobot [16, 14] as front
end for software development. The simulator is not only used for working with simulated robots,
but it also functions as graphical user interface for replaying log files and connecting to actual
robots via Ethernet or WiFi.

10.1.1 Architecture

Three dynamic libraries are created when SimRobot is built. These are SimulatedNao, Sim-
RobotCore2 and SimRobotEditor (cf. Fig. 10.1).

SimRobotCore2 is an enhancement of the previous simulation core. It is the most important
part of the SimRobot application, because it models the robots and the environment, simulates
sensor readings, and executes commands given by the controller or the user. The core is platform-
independent and it is connected to a user interface and a controller via a well-defined interface.

The library SimulatedNao is in fact the controller that consists of the two projects SimulatedNao
and Controller. SimulatedNao creates the code for the simulated robot. This code is linked
together with the code created by the Controller project to the SimulatedNao library. In the
scene files, this library is referenced by the controller attribute within the Scene element.

10.1.2 B-Human Toolbar

The B-Human toolbar is part of the general SimRobot toolbar which can be found at the top
of the application window (see Fig. 10.2).

!The actual names of the libraries have platform-dependent prefixes and suffixes, i. e. .dll, .dylib, and lib .so.
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Figure 10.1: This figure shows the most important libraries of SimRobot (excluding foreign
libraries). The rectangles represent the projects, which create the appropriate library. Dynamic
libraries are represented by ellipses and the static one by a diamond. Note: The static library
will be linked together with the SimulatedNao code. The result is the library SimulatedNao.

°
‘ & Lets the robot stand up.

°
. L Lets the robot sit down.

A
<o) ,
4 Allows moving the robot’s head by hand.

10.1.3 Scene View

The scene view (cf. Fig. 10.3 right) appears if the scene is opened from the scene graph, e.g.,
by double-clicking on the entry RoboCup. The view can be rotated around two axes, zoomed,

and it supports several mouse operations:

e Left-clicking an object allows dragging it to another position. Robots and the ball can be

moved in that way.

Figure 10.2: This figure shows the three buttons from the BHToolBar.
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Figure 10.3: SimRobot running on Windows, Linux, and macOS. The left pane shows the scene
graph, the center pane shows a scene view, and on the right there are two views showing the
images of both cameras. The console window is shown at the bottom.

e Left-clicking while pressing the Shift key allows rotating objects around their centers. The

axes of the rotating objects can be selected first by pressing x, y or z key, before pressing
and holding the Shift key.

e Select an active robot by double-clicking it. Robots are active if they are defined in the
compound robots in the scene description file (cf. Sect. 10.1.5). Robot console commands
are sent to the selected robot only (see also the command robot).

10.1.4 Information Views

In the simulator, information views are used to display debugging output such as debug drawings.
Such output is generated by the robot control program, and it is sent to the simulator via message
queues (Sect. 3.5). The views are interactively created using the console window, or they are
defined in a script file. Since SimRobot is able to simulate more than a single robot, the views
are instantiated separately for each robot. There are fifteen kinds of information views, which
are structured here into the five categories cognition, behavior control, sensing, motion control,
and general debugging support. All information views can be selected from the scene graph (cf.

Fig. 10.3 left).

10.1.4.1 Cognition

Image Views

An image view (cf. left of Fig. 10.4) displays debug information in the coordinate system of
the camera image. It is defined by an debug image, an optional flag for the image, an optional
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robot2.image.upper (2153

Figure 10.4: Image view and field view with several debug drawings

switch for JPEG compression, an optional switch for segmentation and a name using the console
command vi. More formally its syntax is defined as:

vi <debug image> [upper] [jpegl [segmented] [name]

The debug image can be the regular camera image and any other image that can be sent using
the SEND_DEBUG_IMAGE macro. The following debug image are currently defined:

ColoredImage: A color segmented image. Only contains the relevant colors.
GrayscaledImage: The Y channel of the image.

SaturatedImage: An image only containing the calculated saturation visualized as a grayscale
image.

HuedImage: An image only containing the calculated hue visualized as a grayscale image.

cnsImage: A contrast normalized Sobel image which is a Sobel image containing information
about the direction. The angles are visualized with different colors (cf. Fig. 4.11b).

image: The image provided by the camera.
netThumbnail: A downscaled compressed version of the image.

binaryDebuglmage: A binarized version of grayscale image. Provided by the module Auto-
maticHeadPitchCalibrator.

imagePatches: Image cutouts smaller than the full image, containing all channels (e. g. could
be used to only use the information around specific points of interest).

corrected: Similar to image, but without the rolling shutter effects.
horizonAligned: Similar to image, but aligned to the horizon.

none: Displays an empty background.
The default is to show data based on the images taken by the lower camera. With upper, the

upper camera is selected instead.The switch jpeg will cause the NAO to compress the images
before sending them to SimRobot. This might be useful if SimRobot is connected with the NAO
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Figure 10.5: An example calibration for green

via WiFi. The switch segmented will cause the image view to classify each pixel and draw its
color class instead of the pixels value itself.

The console command vid adds the debug drawings. For instance, the image view with the flag
segmented is defined as:

vi image segmented

vid segmentedLower representation:LinesPercept:image
vid segmentedLower representation:BallPercept:image
vid segmentedLower representation:PlayersPercept:image

You can deactivate debug drawings by appending off to a vid command.

Color Calibration View

The colorCalibration view provides direct access to the parameter settings for all existing color
classes. The parameters of a color class can be changed by moving the sliders. Color classes are
defined in the YHS color space as described in Sect. 4.1.4.

The following buttons are added to the toolbar when the colorCalibration view is focused.

E saves the local color configuration } toggles the expand color mode
) undoes the latest slider change ‘ redoes a reverted slider change

- max black/white saturation Y threshold for white

. Y threshold for black . YHS for green

YHS for your own team’s color YHS for the opponent team’s color

Furthermore each button will show the current settings of the corresponding color class in the
colorCalibration view. Green and both jersey colors use range selectors for the YHS colorspace.
Black and White are defined through Y thresholds and a value for the maximum white/black
saturation. Figure 10.5 shows an example calibration for green.
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LOG.colorSpace.lower.YCbCr.Y

Figure 10.6: Color channel views (left) and image color space view (right)

Color Space Views

Color space views visualize image information in 3-D (cf. Fig. 10.6). They can be rotated by
clicking into them with the left mouse button and dragging the mouse afterwards. There are
three kinds of color space views:

Image Color Channel: This view displays an image while using a certain color channel as
height information (cf. Fig. 10.6 left).

Image Color Space: This view displays the distribution of all pixels of an image in a certain
color space (HSI, RGB, or YCbCr). It can be displayed by selecting the entry all for a
certain color space in the scene graph (cf. Fig. 10.6 right).

The two kinds of views have to be added manually for the camera image or any debug image.
For instance, to add a set of views for the camera image under the name raw, the following
command has to be executed:

v3 image raw

Field Views

A field view (cf. right of Fig. 10.4) displays information in the system of coordinates of the
soccer field. The command to create and manipulate it is defined similar to the one for the
image views. For instance, the view worldState is defined as:

# field views

vi worldState

vfd worldState fieldLines

vfd worldState goalFrame

vfd worldState fieldPolygons

vifd worldState representation:RobotPose
#

# views relative to robot

vfd worldState origin:RobotPose

vifd worldState representation:BallModel:endPosition
#

# back to global coordinates
vifd worldState origin:Reset
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Figure 10.7: Option graph view

Please note that some drawings are relative to the robot rather than relative to the field. There-
fore, special drawings exist (starting with origin: by convention) that change the system of
coordinates for all drawings added afterwards, until the system of coordinates is changed again.

The field can be zoomed in or out by using the mouse wheel, touch gestures, or the page up/down
buttons. It can also be dragged around with the left mouse button or by touch gestures. Double
clicking the view resets it to its initial position and scale.

10.1.4.2 Behavior Control

Option Graph View

The option graph view (cf. Fig. 10.7) can be found under Docs in the scene graph. It is a static
view that only displays a graph with all the options of a CABSL behavior. It has the same name
as the behavior the option graph of which it displays, i.e. currently BehaviorControl2015. The
colors of the options visualize to which part of the behavior each option belongs:

Skills are shown in yellow.

GameControl options are shown in red.
HeadControl options are shown in brown.
Output options are shown in blue.

Tools are shown in gray.

Roles are shown in green.

Everything else is shown in white.

The graph can be zoomed in or out by using the mouse wheel, touch gestures, or the page up/down
buttons. It can also be dragged around with the left mouse button or by touch gestures.
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Remote. behavior ¥ Remote.sensorData # Remote jointData (5]
Soccer 100139~ Sensor Value * Joint Request Sensor  Load Temp Stiffness *
state = playSoccer 483.49 Inertial sensor data: headYaw 0.0% -0.1% 0ma 38 °C 70 %
HandlePenaltyState 483.49 Gyro x 0.1%  headpitch 23.0° 23.8° 112mA 42°C 70 %
state = notPenalized 483.48 Gyro y 0.4°fs IShoulderPil off 86.7° OmA 38 °C 0%
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it = 0.38 Battery temperature 340.0%  rHand off 88.7% OmA  38°C 0%

speed = 2.61799  Far sensor data: v HoYanPitc  0.0°  0.0° OmA 36 °C 75%

Figure 10.8: Behavior view, sensor data view and joint data view

Activation Graph View

The activation graph view (cf. left of Fig. 10.8) shows all the options and states that are currently
active in the behavior.

10.1.4.3 Sensing
Sensor Data View

The sensor data view displays all the sensor data taken by the robot, e.g. accelerations, gyro
measurements, pressure readings, and sonar readings (cf. middle view in Fig. 10.8). To display
this information, the following debug requests must be sent:

dr representation:InertialSensorData

dr representation:SystemSensorData

dr representation:FsrSensorData
dr representation:KeyStates

Joint Data View

Similar to sensor data view the joint data view displays all the joint data taken by the robot,
e. g. requested and measured joint angles, temperatures, and loads (cf. right view in Fig. 10.8).
To display this information, the following debug requests must be sent:

dr representation:JointRequest
dr representation:JointSensorData

10.1.4.4 Motion Control
Kick View

The basic idea of the kick view shown in Figure 10.9 is to visualize and edit basic configurations
of motions for the KickEngine described in [20]. In doing so the central element of this view is
a 3-D robot model. Regardless of whether the controller is connected to a simulated or a real
robot, this model represents the current robot posture.

Since the KickEngine organizes motions as a set of Bézier curves, the movement of the limbs can
easily be visualized. Thereby the sets of curves of each limb are represented by combined cubic
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Figure 10.9: The kick view. A marks the editor view, B denotes the drag and drop plane, C
points at a clipped curve, D tags the buttons that control the 3D-View, e.g. play the motion
or reset the robot to a standing position, E labels one of the control points, F' points at the
subviews and G points at the tool bar, where a motion can be saved or loaded.

Bézier curves. Those curves are attached to the 3-D robot model with the robot center as origin.
They are painted into the three-dimensional space. Each curve is defined by equation 10.1:

o) = > Binl)P, (10.1)
=0

To represent as many aspects as possible, the kick view has several sub views:

3-D View: In this view each combined curve of each limb is directly attached to the robot
model and therefore painted into the 3-dimensional space. Since it is useful to observe the
motion curves from different angles, the view angle can be rotated by clicking with the
left mouse button into the free space and dragging it in one direction. In order to inspect
more or less details of a motion, the view can also be zoomed in or out by using the mouse
wheel or the page up/down buttons.

A motion configuration is not only visualized by this view, it is also editable. Thereby
the user can click on one of the visualized control points (cf. Fig. 10.9 at F) and drag
it to the desired position. In order to visualize the current dragging plane, a light green
area (cf. Fig. 10.9 at B) is displayed during the dragging process. This area displays the
mapping between the screen and the model coordinates and can be adjusted by using the
right mouse button and choosing the desired axis configuration.

Another feature of this view is the ability to display unreachable parts of motion curves.
Since a motion curve defines the movement of a single limb, an unreachable part is a set of
points that cannot be traversed by the limb due to mechanic limitations. The unreachable
parts will be clipped automatically and marked with orange color (cf. Fig. 10.9 at C).
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Figure 10.10: Left: 1-D sub views. Right: 2-D sub views

1-D/2-D View: In some cases a movement only happens in the 2-dimensional or 1-dimensional

space (for example: Raising a leg is a movement along the z-axis only). For that reason
more detailed sub views are required. Those views can be displayed as an overlay to the
3-D view by using the context menu, which opens by clicking with the right mouse button
and choosing Display 1D Views or Display 2D Views. This only works within the left area,
where the control buttons are (cf. Fig. 10.9 left of D). By clicking with the right mouse
button within the 3-D view, the context menu for choosing the drag plane appears. The
second opportunity to display a sub view is by clicking at the BikeEdit entry in the menu.
So the same menu, which appears as context menu, will be displayed.

Because clarity is important, only a single curve of a single phase of a single limb can be
displayed at the same time. If a curve should be displayed in the detailed views, it has to
be activated. This can be done by clicking on one of the attached control points.

The 2-D view (cf. Fig. 10.10) is divided into three sub views. Each of these sub views
represents only two dimensions of the activated curve. The curve displayed in the sub
views is defined by equation 10.1 with P; = (Z‘/z), P, = (‘C:”Z”z) or P, = (Cyi).

cz;

The 1-D sub views (cf. Fig. 10.10) are basically structured as the 2-D sub views. The
difference is that each single sub view displays the relation between one dimension of the
activated curve and the time ¢. That means that in equation 10.1 F; is defined as: P; = ¢,
P; = ¢y, or P; = c,.
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Figure 10.11: The module view shows a part of the modules in the process Motion.

pecialActions InertiaMartrixP rovider

As in the 3-D view, the user has the possibility to edit a displayed curve directly in any
sub view by drag and drop.

Editor Sub View: The purpose of this view is to constitute the connection between the real
structure of the configuration files and the graphical interface. For that reason, this view
is responsible for all file operations (for example open, close, and save). It represents
loaded data in a tabbed view, where each phase is represented in a tab and the common
parameters in another one.

By means of this view the user is able to change certain values directly without using drag
and drop. Values directly changed will trigger a repainting of the 3-D view, and therefore,
changes will be visualized immediately. This view also allows phases to be reordered by
drag and drop, to add new phases, or to delete phases.

To save or load a motion the kick view has to be the active view, so some buttons to do this
appearing at the tool bar (cf. Fig. 10.9 at G).

10.1.4.5 General Debugging Support
Module Views

Since all the information about the current module configuration can be requested from the
robot control program, it is possible to generate a visual representation automatically. The
graphs, such as the one that is shown in Figure 10.11, are generated by the program dot from
the Graphviz package [7]. Modules are displayed as yellow rectangles and representations are
shown as blue ellipses. Representations that are received from another process are displayed
in orange and have a dashed border. If they are missing completely due to a wrong module
configuration, both label and border are displayed in red. The modules of each process can
either be displayed as a whole, or separated into the categories that were specified as the second
parameter of the macro MAKE_MODULE when they were defined. There is a module view for the
process Cognition and its categories infrastructure, communication, perception, modeling, and
behaviorControl, and one for the process Motion and its categories infrastructure, sensing, and
motionControl.
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Figure 10.12: Plot view and timing view

The module graph can be zoomed in or out by using the mouse wheel, touch gestures, or the
page up/down buttons. It can also be dragged around with the left mouse button or by touch
gestures.

Plot Views

Plot views allow plotting data sent from the robot control program through the macro PLOT (cf.
Fig. 10.12 left). They keep a history of the values sent of a defined size. Several plots can be
displayed in the same plot view in different colors. A plot view is defined by giving it a name
using the console command vp and by adding plots to the view using the command vpd (cf.
Sect. 10.1.6.3).

For instance, the view on the left side of Figure 10.12 was defined as:

vp orientationX 200 -1 1
vpd orientationX module:InertialDataProvider:internalOrientation:x

Timing View

The timing view displays statistics about all currently active stopwatches in a process (cf.
Fig. 10.12 right). It shows the minimum, maximum, and average runtime of each stopwatch
in milliseconds as well as the average frequency of the process. All statistics sum up the last
100 invocations of the stopwatch. Timing data is transferred to the PC using debug requests.
By default the timing data is not sent to the PC. Execute the console command dr timing to
activate the sending of timing data. Please note that time measurements are limited to full
milliseconds, so the maximum and minimum execution durations will always be given in this
precision. However, the average can be more precise.

Data View

SimRobot offers two console commands (get & set) to view or edit anything that the robot
exposes using the MODIFY macro. While those commands are enough to occasionally change
some variables, they can become quite annoying during heavy debugging sessions.

For this reason, we introduced a new dynamic data view. It displays modifiable content using
a property browser (cf. Fig. 10.13 left). Property browsers are well suited for displaying hierar-
chical data and should be well known from various editors such as Microsoft Visual Studio or
Eclipse.
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Property Value

contactLeft False
: L") Copy #C

contactRight False
pushDirectionLeft NOME Simulation »>
pushDirectionRight MOME
lastPushDirectionLeft MOME Set
lastPushDirectionRight MOME Unchanged
durationLeft 0 v ‘2 Auto-set
durationRight 1] Export Image >

timeOfLastContactLeft 0
Figure 10.13: The data view can be used to remotely modify data on the robot.

A new data view is constructed using the command vd in SimRobot. For example vd represen-
tation:ArmContactModel will create a new view displaying the ArmContactModel. Data views
can be found in the data category of the scene graph.

The data view automatically updates itself three times per second. Higher update rates are
possible, but result in a much higher CPU usage.

To modify data, just click on the desired field and start editing. The view will stop updating
itself as soon as you start editing a field. The editing process is finished either by pressing enter
or by deselecting the field. By default, modifications will be sent to the robot immediately.
This feature is called the auto-set mode. It can be turned off using the context menu (cf.
Fig. 10.13 right). If the auto-set mode is disabled, data can be transmitted to the robot using
the send item from the context menu.

Once the modifications are finished, the view will resume updating itself. However you may
not notice this since modification freezes the data on the robot side. To reset the data, use the
unchanged item from the context menu. As a result, the data will be unfrozen on the robot side
and you should see the data changing again.

Log Player View

The log player (cf. Fig. 10.1.4.5 left) allows to control the replay of log files using the following
buttons:

» start playback 14 go to the previous frame with an image
N :
stops playback go to the previous frame
O repeat the current frame go to the next frame
k’ run in a loop < go to the next frame with an image

In addition, the current frame can be directly selected using a slider.

Annotation View

The annotation view displays all annotations (cf. Sect. 3.7.6) contained in a log file (cf. Fig. 10.14
right). Double clicking an annotation will cause the log file to jump to the given frame number.
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LOG.annotations. cognition [
Filter:
Frame MName Annotaticn
0 Behavior Initial State,
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2692 Behavior Set State.
8909 Behavior Ready State.
11600 Behavior Set State.
LOG.logPlayer B | 16422 Behavior Getting up.
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21834 Behavior Getting up.
> B O 14 | £ > l::l 22733 Behavior Ready State.
25424 Behavior Set State.
28295 Behavior Ready State.
31018 Behavior Set State.
33758 Behavior Getting up.
33525 Behavior Ready State.
39363 Behavior Set State.
40201 Behavior Finished State,

Figure 10.14: The log player view and the annotation view

It is also possible to view annotations of Motion and Cognition modules when using the simulated
NAO or a direct debug connection to a real NAO. This has to be activated by using the following
debug request:

dr annotation

10.1.5 Scene Description Files

The language of scene description files is an extended version of RoSiML [16]. To use this new
version and the new SimRobotCore2, the scene file has to end with .ros2, such as BH2016.ros2.
In the following, the most important elements, which are necessary to add robots, dummies,
and balls, are shortly described (based upon BH2016.ros2). For a more detailed documentation
see Appendix A.

<Include href=*...”>: First of all the descriptions of the NAQ, the ball and the field are
included. The names of include files end with .rsi2.

<Compound name=*robots”>: This compound contains all active robots, i.e. robots for
which processes will be created. So, all robots in this compound will move on their own.
However, each of them will require a lot of computation time. In the tag Body, the attribute
ref specifies which NAO model should be used and name sets the robot name in the scene
graph of the simulation. Legal robot names are “robotl” ... “robot10”, where the first five
robots are assumed to play in the blue team (with player numbers 1...5) while the other
five play in the red team (again with player numbers 1...5). The standard color of the
NAO?’s jersey is set to blue. To set it to red, use <Set name=“NaoColor” value=“red” >
within the tag Body.

<Compound name="*extras”>: This compound contains passive robots, i.e. robots that
just stand around, but that are not controlled by a program. Passive robots can be
activated by moving their definition to the compound robots , but the referenced model
has to be changed from “NaoDummy” to “Nao”.
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Predefined Scenes

A lot of scene description files can be found in Config/Scenes. There are two types of scene
description files: the ones required to simulate one or more robots, and the ones that are
sufficient to connect to a real robot.

Simulating multiple robots is expensive. To overcome this and enable decent framerates, some
scenes come in special variants. In scenes ending with PerceptOracle percepts are provided by
the simulator. However, models, for example the BallModel, still have to be calculated. The suffix
Fast further implies that even models are provided. Moreover, scenes ending in WithPuppet
contain an additional robot which is used to display joint angles.

BH2016 (PerceptOracle|Fast): A single robot with five dummies.

Game2016 (PerceptOracle|Fast): A game five against five.

KickViewScene (RemoteWithPuppet): For working on kicks (cf. Sect. 10.1.4.4).
ReplayRobot (WithPuppet): Used to replay log files (cf. Sect. 3.7.5).

RemoteRobot (WithPuppet): Connects to a remote robot and displays images and data.

10.1.6 Console Commands

Console commands can either be directly typed into the console window or they can be executed
from a script file. There are three different kinds of commands. The first kind will typically be
used in a script file that is executed when the simulation is started. The second kind are global
commands that change the state of the whole simulation. The third type is robot commands
that affect currently selected robots only (see command robot to find out how to select robots).

10.1.6.1 Initialization Commands

sc <name> <a.b.c.d>
Starts a remote connection to a real robot. The first parameter defines the name that will
be used for the robot. The second parameter specifies the IP address of the robot. The
command will add a new robot to the list of available robots using name, and it adds a
set of views to the scene graph. When the simulation is reset or the simulator is exited,
the connection will be terminated.

sl <name> <file>

Replays a log file. The command will instantiate a complete set of processes and views.
The processes will be fed with the contents of the log file. The first parameter of the
command defines the name of the virtual robot. The name can be used in the robot
command (see below), and all views of this particular virtual robot will be identified by
this name in the tree view. The second parameter specifies the name and path of the log
file. If no path is given, Config/Logs is used as a default. Otherwise, the full path is used.
Jog is the default extension of log files. It will be automatically added if no extension is
given.

When replaying a log file, the replay can be controlled by the Log Player (cf. Sect. 10.1.4.5)
or the command log (see below). It is even possible to load a different log file during the
replay.
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loc <location>
Set the location of the scene. This command is special, because it only has an effect if run
directly from the script that is executed when a scene is loaded. It is always executed first
even if it is not the first command in the script, because the location must be set before
any robot code is executed, as the location influences the search path of the configuration
files loaded.

10.1.6.2 Global Commands

ar off | on
Enable or disable the automatic referee.

call <file>
Executes a script file. A script file contains commands as specified here, one command per
line. The default location for scripts is the directory from which the simulation scene was
started, their default extension is .con.

cls
Clears the console window.

dt off | on
Switches simulation dragging to real-time on or off. Normally, the simulation tries not to
run faster than real-time. Thereby, it also reduces the general computational load of the
computer. However, in some situations it is desirable to execute the simulation as fast as
possible. By default, this option is activated.

echo <text>
Prints text into the console window. The command is useful in script files to print com-
mands that can later be activated manually by pressing the Enter key in the printed
line.

gc initial | ready | set | playing | finished | kickOffBlue | kickOffRed | outByBlue |
outByRed | gameDroplIn | gamePlayoff | gameRoundRobin
The command sets the current state of the GameController.

help [<pattern>], ? [<pattern>|
Displays a help text. If a pattern is specified, only those lines are printed that contain the
pattern.

robot ? | all | <name> {<name>}
Selects a robot or a group of robots. The console commands described in the next section
are only sent to selected robots. By default, only the robot that was created or connected
last is selected. Using the robot command, this selection can be changed. Type robot ?
to display a list of the names of available robots. A single simulated robot can also be
selected by double-clicking it in the scene view. To select all robots, type robot all.

st off | on
Switches the simulation of time on or off. Without the simulation of time, all calls to
SystemCall: :getCurrentSystemTime () will return the real time of the PC. However if
the simulator runs slower than real-time, the simulated robots will receive less sensor
readings than the real ones. If the simulation of time is switched on, each step of the
simulator will advance the time by 10 ms. Thus, the simulator simulates real-time, but it
is running slower. By default this option is switched off.
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# <text>

Comment. Useful in script files.

10.1.6.3 Robot Commands

ac both | upper | lower

Accept Camera: Change the process that provides drawings in the field and 3-D views.

bc <red%> <green%> <blue%>

Defines the background color for 3-D views. The color is specified in percentages of red,
green, and blue intensities. All parameters are optional. Missing parameters will be
interpreted as 0%.

cameraCalibrator <view> (on | off)

This command activates or deactivates the CameraCalibrator module for the given view.
By default you may want to use the “raw” view. For a detailed description of the Camera-
Calibrator see Sect. 4.1.2.1.

ci off | on [<fps>]

dr ?

Switches the calculation of images on or off. With the optional parameter fps, a customized
image frame rate can be set. The default value is 60. The simulation of the robot’s camera
image costs a lot of time, especially if several robots are simulated. In some development
situations, it is better to switch off all low level processing of the robots and to work with
ground truth world states, i.e., world states that are directly delivered by the simulator.
In such cases there is no need to waste processing power by calculating camera images.
Therefore, it can be switched off. However, by default this option is switched on. Note
that this command only has an effect on simulated robots.

[<pattern>| | off | <key> ( off | on )

Sends a debug request. B-Human uses debug requests to switch debug responses (cf.
Sect. 3.6.1) on or off at runtime. Type dr ? to get a list of all available debug requests.
The resulting list can be shortened by specifying a search pattern after the question mark.
Debug responses can be activated or deactivated. They are deactivated by default. Spec-
ifying just off as only parameter returns to this default state. Several other commands
also send debug requests, e. g., to activate the transmission of debug drawings.

get 7 [<pattern>] | <key> [?]

Shows debug data or shows its specification. This command allows displaying any infor-
mation that is provided in the robot code via the MODIFY macro. If one of the strings that
are used as first parameter of the MODIFY macro is used as parameter of this command (the
modify key), the related data will be requested from the robot code and displayed. The
output of the command is a valid set command (see below) that can be changed to modify
data on the robot. A question mark directly after the command (with an optional filter
pattern) will list all the modify keys that are available. A question mark after a modify
key will display the type of the associated data structure rather than the data itself.

jc hide | show | motion ( 1 | 2 ) <command> | ( press | release ) <button>
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<command>

Sets a joystick command. If the first parameter is press or release, the number following
is interpreted as the number of a joystick button. Legal numbers are between 1 and 40.
Any text after this first parameter is part of the second parameter. The <command>
parameter can contain any legal script command that will be executed in every frame
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while the corresponding button is pressed. The prefixes press or release restrict the ex-
ecution to the corresponding event. The commands associated with the 26 first buttons
can also be executed by pressing Ctrl+Shift+A. .. Ctrl+Shift+Z on the keyboard. If the
first parameter is motion, an analog joystick command is defined. There are two slots
for such commands, number 1 and 2, e.g., to independently control the robot’s walking
direction and its head. The remaining text defines a command that is executed whenever
the readings of the analog joystick change. Within this command, $1...$8 can be used as
placeholders for up to eight joystick axes. The scaling of the values of these axes is defined
by the command js (see below). If the first parameter is show, any command executed will
also be printed in the console window. hide will switch this feature off again, and hide is
also the default.

jm <axis> <button> <button>

Maps two buttons on an axis. Pressing the first button emulates pushing the axis to its
positive maximum speed. Pressing the second button results in the negative maximum
speed. The command is useful when more axes are required to control a robot than the
joystick used actually has.

js <axis> <speed> <threshold> [<center>|

kick

log ?

Set axis maximum speed and ignore threshold for command jc motion <num>. axis is the
number of the joystick axis to configure (1...8). speed defines the maximum value for that
axis, i.e., the resulting range of values will be [—speed... speed]. The threshold defines
a joystick measuring range around zero, in which the joystick will still be recognized as
centered, i.e., the output value will be 0. The threshold can be set between 0 and 1. An
optional parameter allows for shifting the center itself, e.g., to compensate for the bad
calibration of a joystick.

Adds the KickFEngine view to the SceneGraph.

mr [list] | start | stop | pause | forward [image] | backward [image] | fastForward
| fastBackward | repeat | goto <number> | time <minutes> <seconds> | clear
| ( keep | remove ) <message> {<message>} | ( load | save | savelmages [raw])
<file> | saveTiming <file> | cycle | once | full | jpeg

The command supports both recording and replaying log files. The latter is only possible
if the current set of robot processes was created using the initialization command sl (cf.
Sect. 10.1.6.1). The different parameters have the following meaning:

?  Prints statistics on the messages contained in the current log file.

mr [list]
Sets the provider of all representations from the log file to CognitionLogDataProvider
or MotionLogDataProvider. If list is specified the module request commands will be
printed to the console instead.

start | stop
If replaying a log file, starts and stops the replay. Otherwise, the commands will start
and stop the recording.

pause | forward [image| | backward [image] | repeat | goto <number> | time
<minutes> <seconds>
The commands are only accepted while replaying a log file. pause stops the replay
without rewinding to the beginning, forward and backward advance a single step in
the respective direction. With the optional parameter image, it is possible to step
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from image to image. repeat just resends the current message. goto allows jumping
to a certain position in the log file. If the log file contains Gamelnfos, the command
time allows to jump to the first frame with a certain remaining game time.

fastForward | fastBackward
Jump 100 steps forward or backward.

clear | ( keep | remove ) <message>
clear removes all messages from the log file, while keep and remove only delete a
selected subset based on the set of message ids specified.

( load | save | savelmages [raw]) <file>

These commands load and save the log file stored in memory. If the filename contains
no path, Config/Logs is used as default. Otherwise, the full path is used. .log is the
default extension of log files. It will be automatically added if no extension is given.
The option savelmages saves only the images from the log file stored in memory to
the disk. The default directory is Config/Images. They will be stored in the format
defined by the extension of the filename specified. If the extension is omitted, .bmp
is used. The files saved contain either RGB or YCbCr images. The latter is the case
if the option raw is specified.

saveTiming <file>
Creates a comma separated list containing the data of all stopwatches for each frame.
<file> can either be an absolute or a relative path. In the latter case, it is relative
to the directory Config. If no extension is specified, .csv is used.

cycle | once
The two commands decide whether the log file is only replayed once or continuously
repeated.

full | jpeg

These two commands decide whether uncompressed images received from the robot
will also be written to the log file as full images, or JPEG-compressed. When the
robot is connected by cable, sending uncompressed images is usually a lot faster than
compressing them on the robot. By executing log jpeg they can still be saved in
JPEG format, saving a log memory space during recording as well as disk space
later. Note that running image processing routines on JPEG images does not always
give realistic results, because JPEG is not a lossless compression method, and it is
optimized for human viewers, not for machine vision.

mof Recompiles all special actions and if successful, the result is sent to the robot.

mr ? [<pattern>] | modules [<pattern>] | save | <representation> ( 7 [<pattern>]
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| <module> | default | off )

Sends a module request. This command allows selecting the module that provides a certain
representation. If a representation should not be provided anymore, it can be switched off.
Deactivating the provision of a representation is usually only possible if no other module
requires that representation. Otherwise, an error message is printed and the robot is still
using its previous module configuration. Sometimes, it is desirable to be able to deactivate
the provision of a representation without the requirement to deactivate the provision of all
other representations that depend on it. In that case, the provider of the representation
can be set to default. Thus no module updates the representation and it simply keeps its
previous state.

A question mark after the command lists all representations. A question mark after a
representation lists all modules that provide this representation. The parameter modules
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lists all modules with their requirements and provisions. All three listings can be filtered by
an optional pattern. save saves the current module configuration to the file modules.cfg
which it was originally loaded from. Note that this usually has not the desired effect,
because the module configuration has already been changed by the start script to be
compatible with the simulator. Therefore, it will not work anymore on a real robot. The
only configuration in which the command makes sense is when communicating with a
remote robot.

msg off | on | disable | enable | log <file>

Switches the output of text messages on or off, or redirects them to a text file. All processes
can send text messages via their message queues to the console window. As this can disturb
entering text into the console window, printing can be switched off. However, by default
text messages are printed. In addition, text messages can be stored in a log file, even if
their output is switched off. The file name has to be specified after msg log. If the file
already exists, it will be replaced. If no path is given, Config/Logs is used as default.
Otherwise, the full path is used. .txt is the default extension of text log files. It will be
automatically added if no extension is given.

mv <x> <y> <z> [<rotx> <roty> <rotz>]
Moves the selected simulated robot to the given metric position. z, y, and 2z have to be
specified in mm, the rotations have to be specified in degrees. Note that the origin of the
NAO is about 330 mm above the ground, so z should be 330.

mvb <x> <y> <z>
Moves the ball to the given metric position. x, y, and z have to be specified in mm. Note
that the origin of the ball is about 32.5 mm above the ground.

poll

Polls for all available debug requests and debug drawings. Debug requests and debug
drawings are dynamically defined in the robot control program. Before console commands
that use them can be executed, the simulator must first determine which identifiers exist
in the code that currently runs. Although the acquiring of this information is usually
done automatically, e.g., after the module configuration was changed, there are some
situations in which a manual execution of the command poll is required. For instance if
debug responses or debug drawings are defined inside another debug response, executing
poll is necessary to recognize the new identifiers after the outer debug response has been
activated.

pr none | illegalBallContact | playerPushing | illegalMotionInSet | inactivePlayer |
illegalDefender | leavingTheField | kickOffGoal | requestForPickup | manual
Penalizes a simulated robot with the given penalty or unpenalizes it, when used with none.
When penalized, the simulated robot will be moved to the sideline, looking away from the
field. When unpenalized, it will be turned, facing the field again, and moved to the sideline
that is further away from the ball.

qfr queue | replace | reject | collect <seconds> | save <seconds>
Sends a queue fill request. This request defines the mode how the message queue from the
debug process to the PC is handled.

replace

Replace is the default mode. If the mode is set to replace, only the newest message
of each type is preserved in the queue (with a few exceptions). On the one hand, the
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queue cannot overflow, on the other hand, messages are lost, e. g. it is not possible to
receive 60 images per second from the robot.

queue
Queue will insert all messages received by the debug process from other processes into
the queue, and send it as soon as possible to the PC. If more messages are received
than can be sent to the PC, the queue will overflow and some messages will be lost.

reject
Reject will not enter any messages into the queue to the PC. Therefore, the PC will
not receive any messages.

collect <seconds>

This mode collects messages for the specified number of seconds. After that period
of time, the collected messages will be sent to the PC. Since the TCP stack requires
a certain amount of execution time, it may impede the real-time behavior of the
robot control program. Using this command, no TCP packages are sent during the
recording period, guaranteeing real-time behavior. However, since the message queue
of the process Debug has a limited size, it cannot store an arbitrary number of
messages. Hence the bigger the messages, the shorter they can be collected. After
the collected messages were sent, no further messages will be sent to the PC until
another queue fill request is sent.

save <seconds>
This mode collects messages for the specified number of seconds, and it will afterwards
store them on the memory stick as a log file under /home/nao/Config/logfile.log. No
messages will be sent to the PC until another queue fill request is sent.

si reset | ( upper | lower ) [number| [<file>]

Saves the raw image of a robot. The image will be saved as bitmap file. If no path is
specified, Config/raw_image.bmp will be used as default option. If number is specified, a
number is appended to the filename that is increased each time the command is executed.
The option reset resets the counter.

set 7 [<pattern>] | <key> ( ? | unchanged | <data>)

save
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Changes debug data or shows its specification. This command allows changing any infor-
mation that is provided in the robot code via the MODIFY macro. If one of the strings that
are used as first parameter of the MODIFY macro is used as parameter of this command
(the modify key), the related data in the robot code will be replaced by the data structure
specified as second parameter. It is best to first create a valid set command using the get
command (see above). Afterwards that command can be changed before it is executed. If
the second parameter is the key word unchanged, the related MODIFY statement in the code
does not overwrite the data anymore, i. e., it is deactivated again. A question mark directly
after the command (with an optional filter pattern) will list all the modify keys that are
available. A question mark after a modify key will display the type of the associated data
structure rather than the data itself.

? [<pattern>| | <key> [<path>]

Save debug data to a configuration file. The keys supported can be queried using the
question mark. An additional pattern filters the output. If no path is specified, the name
of the configuration file is looked up from a table, and its first occurrence in the search
path is overwritten. Otherwise, the path is used. If it is relative, it is appended to the
directory Config.
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v3 ? [<pattern>| | <image> [jpeg] [<name>]
Adds a set of 3-D color space views for a certain image (cf. Sect. 10.1.4.1). The image can
either be the camera image (simply specify image) or a debug image. It will be JPEG
compressed if the option jpeg is specified. The last parameter is the name that will be
given to the set of views. If the name is not given, it will be the same as the name of the
image. A question mark followed by an optional filter pattern will list all available images.

vf <name>
Adds a field view (cf. Sect. 10.1.4.1). A field view is the means for displaying debug
drawings in field coordinates. The parameter defines the name of the view.

vid ? [<pattern>| | ( <name> | all ) ( ? [<pattern>] | <drawing> ( on | off ) )
(De)activates a debug drawing in a field view. The first parameter is the name of a field
view that has been created using the command vf (see above) or all to add the drawing
to all field views. The second parameter is the name of a drawing that is defined in the
robot control program. Such a drawing is activated when the third parameter is on or is
missing. It is deactivated when the third parameter is off. The drawings will be drawn
in the sequence they are added, from back to front. Adding a drawing a second time will
move it to the front. A question mark directly after the command will list all field views
that are available. A question after a valid field view will list all available field drawings.
Both question marks have an optional filter pattern that reduces the number of answers.

vi ? [<pattern>] | <image> [jpeg] [segmented] [upperCam]| [<name>| [ gain <value>]
Adds an image view (cf. Sect. 10.1.4.1). An image view is the means for displaying debug
drawings in image coordinates. The image can either be the camera image (simply specify
image), a debug image, or no image at all (none). It will be JPEG-compressed if the
option jpeg is specified. If segmented is given, the image will be segmented using the
current color table. The default is to show data based on the images taken by the lower
camera. With upperCam, the upper camera is selected instead. The next parameter is the
name that will be given to the set of views. If the name is not given, it will be the same as
the name of the image plus the word Segmented if it should be segmented. With the last
parameter the image gain can be adjusted, if no gain is specified the default value will be
1.0. A question mark followed by an optional filter pattern will list all available images.

vid ? [<pattern>] | ( <name> | all ) ( 7 [<pattern>] | <drawing> (on | off ) )
(De)activates a debug drawing in an image view. The first parameter is the name of an
image view that has been created using the command vi (see above) or all to add the
drawing to all image views. The second parameter is the name of a drawing that is defined
in the robot control program. Such a drawing is activated when the third parameter is on
or is missing. It is deactivated when the third parameter is off. The drawings will be drawn
in the sequence they are added, from back to front. Adding a drawing a second time will
move it to the front. A question mark directly after the command will list all image views
that are available. A question mark after a valid image view will list all available image
drawings. Both question marks have an optional filter pattern that reduces the number of
answers.

vp <name> <numOfValues> <minValue> <maxValue> [<yUnit> <xUnit>
<xScale>|
Adds a plot view (cf. Sect. 10.1.4.5). A plot view is the means for plotting data that was
defined by the macro PLOT in the robot control program. The first parameter defines the
name of the view. The second parameter is the number of entries in the plot, i.e. the size
of the z axis. The plot view stores the last numOfValues data points sent for each plot
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Figure 10.15: A dialog for selecting an IP address

and displays them. minValue and maxValue define the range of the y axis. The optional
parameters serve the capability to improve the appearance of the plots by adding labels
to both axes and by scaling the time-axis. The label drawing can be activated by using
the context menu of the plot view.

vpd ? [<pattern>] | <name> ( ? [<pattern>]| <drawing> ( ? [<pattern>] | <color>
| off ))
Plots data in a certain color in a plot view. The first parameter is the name of a plot
view that has been created using the command vp (see above). The second parameter is
the name of plot data that is defined in the robot control program. The third parameter
defines the color for the plot. black, red, green, blue, yellow, cyan, magenta, orange, violet,
gray, and six-digit hexadecimal RGB color codes are supported. The plot is deactivated
when the third parameter is off. The plots will be drawn in the sequence they were added,
from back to front. Adding a plot a second time will move it to the front. A question mark
directly after the command will list all plot views that are available. A question after a
valid plot view will list all available plot data. Both question marks have an optional filter
pattern that reduces the number of answers.

vd <debug data> (on | off )
Show debug data in a window or disable the updates of the data. Data views can be found
in the data category of the scene graph. Data views provide the same functionality as the
get and set commands (see above). However they are much more comfortable to use.

10.1.6.4 Input Selection Dialog

In scripting files, it is sometimes necessary to let the user choose between some values. Therefore
we implemented a small input dialog. After the user has selected a value it will then be passed
as input parameter to the scripting command. To use the input dialog you just have to type
the following expression:

${<label>,<valuel>,<value2>,...}

Inside the brackets there has to be a list of comma-separated values. The first value will be
interpreted as a label for the input box. All following values will then be selectable via the
dropdown list. The following example shows how we used it to make the IP address selectable.
The user’s choice will be passed to the command sc that establishes a remote connection to the
robot with the selected IP address. Figure 10.15 shows the corresponding dialog.

sc Remote ${IP address:,10.0.1.1,192.168.1.1}
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10.1.7 Recording a Remote Log File

To record a log file, the robot shall at least send images, camera info, joint data, sensor data, key
states, odometry data, the camera matrix, and the image coordinate system. The following script
connects to a robot and configures it to do so. In addition, it prints several useful commands into
the console window, so they can be executed by simply setting the cursor in the corresponding
line and pressing the Enter key. As these lines will be printed before the messages coming from
the robot, one has to scroll to the beginning of the console window to use them. Note that both
the IP address in the second line and the filename behind the line log save have to be changed.

# connect to a robot
sc Remote 10.1.0.101

# request everything that should be recorded
dr representation:JPEGImage

dr representation:Cameralnfo

dr representation:JointAngles

dr representation:InertialSensorData

dr representation:KeyStates

dr representation:0OdometryData

dr representation:CameraMatrix

dr representation:ImageCoordinateSystem

# print some useful commands
echo log start

echo log stop

echo log save <filename>
echo log clear

10.2 B-Human User Shell

The B-Human User Shell (bush) accelerates and simplifies the deployment of code and the
configuration of the robots. It is especially useful when controlling several robots at the same
time, e. g., during the preparation for a soccer match.

10.2.1 Configuration

Since the bush can be used to communicate with the robots without much help from the user,
it needs some information about the robots. Therefore, each robot has a configuration file
Config/Robots/<RobotName> /network.cfg, which defines the name of the robot and how it
can be reached by the bush.? Additionally you have to define one (or more) teams, which are
arranged in tabs. The data of the teams is used to define the other properties, which are required
to deploy code in the correct configuration to the robots. The default configuration file of the
teams is Config/teams.cfg which can be altered within the bush or with a text editor. Each
team can have the configuration variables shown in Table 10.1.

10.2.2 Commands

The bush supports two types of commands. There are local commands (cf. Tab. 10.2) and com-
mands that interact with selected robot(s) (cf. Tab. 10.3). Robots can be selected by checking
their checkbox or with the keys F1 to F10.

2The configuration file is created by the script createRobot described in Sect. 2.4.2.
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Figure 10.16: An example screenshot of the bush

10.2.3 Deploying Code to the Robots

For the simultaneous deployment of several robots the command deploy should be used. It
accepts a single optional parameter that designates the build configuration of the code to be
deployed to the selected robots. If the parameter is omitted the default build configuration of
the currently selected team is used. It can be changed with the drop-down menu at the top of
the bush user interface.

Before the deploy command copies code to the robots, it checks whether the binaries are up-
to-date. If needed, they are recompiled by the compile command, which can also be called
independently from the deploy command. Depending on the platform, the compile command
uses make, xcodebuild, or MSBuild to compile the binaries required.

After all the files required by the NAO are copied, the deploy command generates a new set-
tings.cfg according to the configuration tracked by the bush for each of the selected robots.
After updating the file settings.cfg, the bhuman software has to be restarted for changes to take
effect. This can easily be done with the command restart. If it is called without any parameter,
it restarts only the bhuman software but it can also be used to restart NAOqi and bhuman, and
the entire operating system of the robot if you call it with one of the parameters naoqi, full, or
robot. To inspect the configuration files copied to the robots, you can use the command show,
which knows most of the files located on the robots and can help you finding the desired files
with tab completion.

10.2.4 Managing Multiple Wireless Configurations
Since the robot soccer competition generally takes place on more than just a single field and

normally each field has its own WiFi access point, the robots have to deal with multiple con-
figuration files for their wireless interfaces. When a robot is deployed the selected wireless
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Entry Description

name The name of the team.

number The team number.

port The port, which is used for team communication messages. This entry is
optional. If this value is omitted, the port is generated from the team
number.

color The team color in the first half. This entry is optional. It is only required
if no game controller is running, which overwrites the team color.

location The location, which should be used by the software (cf. Sect. 2.9). This

entry is optional. It is set to Default if it is omitted.

buildConfig  The name of the configuration, which should be used to deploy the NAO
code (cf. Sect. 2.2).

wlanConfig The name of the configuration file, which should be used to configure the
wireless interface of the robots.

volume The audio volume, to which the robots should be set to.

deployDevice The device, which should be used to connect to the robots. Either a Ethernet
or a WiFi connection can be established. The default entry is auto. This
chooses the best device, depending on ping times.

magicNumber The magic number for the team communication. Robots with different num-
bers will ignore each other. The default number is -1, which will set a random
number between 0 and 255.

players The list of robots the team consists of. The list must have ten entries,
where each entry must either be a name of a robot (with an existing file
Config/Robots/<RobotName> /network.cfg), or an underscore for empty
slots. The first five robots are the main players and the last five their
substitutes.

Table 10.1: Configuration variables in the file Config/teams.cfg

configuration in the drop down menu will be used.

10.2.5 Substituting Robots

The robots known to bush are arranged in two rows. The entries in the upper row represent
the playing robots and the entries in the lower row the robots which stand by as substitutes.
To select which robots are playing and which are not, you can move them by drag&drop to the
appropriate position. Since this view only supports ten robots at a time, there is another view
called RobotPool, which contains all other robots. It can be pulled out at the right side of the
bush window. The robots displayed there can be exchanged with robots from the main view.
If a robot is deployed in the second row, NAOqi will be shut down. This is important because
the robots should be operational, to be replaced as fast as possible, but are not allowed to send
and receive packages.

10.2.6 Monitoring Robots
The bush displays some information about the robots’ states as you can see in Figure 10.16:

wireless connection pings, wired connection pings, and remaining battery charge level. The
latter is shown by the power bar. If the power bar is colored green, a power source is detected
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Command Parameter(s)

Description
compile [ <config> [ <project> | |
Compiles a project with a specified build configuration. The default is Develop
Nao.
exit
Exit the bush.
help
Print a help text with all commands.
Table 10.2: General bush commands.
Command  Parameter(s)
Description
deploy [ <config> ]
Deploys code and all settings to the robot(s) using copyfiles.
downloadLogs
Downloads all logs from the robot(s) and stores them at Config/Logs.
deleteLogs

Deletes all logs from the robot(s).

restart [ bhuman | naoqi | full | robot |
Restarts bhumand, naoqid, both, or the robot. If no parameter is given,
bhuman will be restarted.

scp @<path on NAO > <local path> | <local path> <path on NAO >
Copies a file to or from the robot(s). The first argument is the source and
the second the destination path.

show <config file>
Prints the config file stored on the robot(s).

shutdown
Executes a shutdown on the robot(s).
ssh <command >
Executes the command via ssh on the robot(s).

Table 10.3: Bush commands that need at least one selected robot.

and if it’s red no power source is detected. Besides the color change of the power bar the robot’s
head LEDs will display a rotating pattern to indicate a connected external power source.

10.3 GameController

A RoboCup game has a human referee. Unfortunately the robots cannot understand him or
her directly. Instead the referee’s assistant relays the decisions to the robots using a software
called GameController. From this year on the official GameController is the one we created. It
is written in Java 1.7.
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Figure 10.17: The architecture of the GameController

10.3.1 Architecture

The architecture (cf. Fig. 10.17) is based on a combination of the model-view-controller (MVC)

and the command pattern.
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Figure 10.18: The sequences between some threads

The GameController communicates with the robots using a C data structure called
RoboCupGameControlData as mentioned in the RoboCup SPL rules. It contains information
about the current game and penalty state of each robot. It is broadcasted via UDP several
times per seconds. Robots may answer using the RoboCupGameControlReturnData C data

structure.

Both C data structures were translated to Java for the GameController.> They only hold the

3Their names leave out the prefix “RoboCup”
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Figure 10.19: Start screen of the GameController
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Figure 10.20: The main screen of the GameController

Coach Motion

information and provide conversion methods from and to a byte stream. Unfortunately, the
GameControlData does not contain all the information needed to fully describe the current
state of the game. For example, it lacks information about the number of timeouts or penalties
that a team has taken and the game time is only precise up to one second. Therefore, the class
GameControlData is extended by a class called AdvancedData. This class holds the complete
game state. From the classical MVC point of view, the AdvancedData is the model.

The view component is represented by the package GUI. All GUI functionality is controlled
via the interface GCGUI. GCGUI only provides an update method with an instance of the class
AdvancedData as a parameter. This update method is called frequently. Therefore, the GUI
can only display the same game state as the one that is transmitted.

The controller part of the model-view-controller architecture is kind of tricky, because it has to
deal with parallel inputs from the user, a ticking clock, and robots via the network. To simplify
the access to the model, we only allow access to it from a single thread. Everything that modifies
the model is encapsulated in action classes, which are defined by extending the abstract class
GCAction. All threads (GUI, timing, network) register actions at the EventHandler. The
EventHandler executes the actions on the GUI thread (cf. Fig. 10.18).

Each action knows, based on the current game state, whether it can be legally executed according
to the rules. For example, switching directly from the initial to the playing state, penalizing a
robot for holding the ball in the ready state or decreasing the goal count is illegal.

10.3.2 UI Design

After launching the GameController, a small window will appear to select the basic settings
of the game (cf. Fig. 10.19). The most basic decision is the league. You can choose between
SPL, SPL Drop-in and three Humanoid leagues: Kid-, Teen- and Adult-Size. You can select,
which teams will play and whether it is a play-off game, as well as you can choose between a
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Figure 10.21: The GameStateVisualizer

fullscreen and a fully scalable windowed mode. For SPL teams, it can also be switched between
the primary and the secondary jersey color. After pressing the start button, the main GUI will
appear.

The look of the GUI (cf. Fig. 10.20) is completely symmetric and all buttons are as big as
possible. In addition, keyboard shortcuts are provided for most buttons. Thus making it
possible to operate the GameController in a more efficient way. Buttons are only enabled if
the corresponding actions are legal. This should decrease the chance that the operator of the
GameController presses a wrong button. Since mistakes such as penalizing the wrong robot can
still occur, the GUI provides an undo functionality that allows to revert actions. This clearly
distinguishes normal actions that must follow the rules from corrective actions that are only
legal because they heal a mistake that was made before.

All undoable actions are displayed in a timeline at the bottom of the GameController. By double
clicking on one of the actions in the timeline, the state will be reverted to the state right before
that action has been executed. However the game time will only be reverted if a transition
between different game states is reverted as well.

When testing their robots, most teams want to be able to do arbitrary state transitions with the
GameController. Therefore, it has a functionality to switch in and out of a test mode. While
being in test mode, all actions are allowed at any time.

10.3.3 Game State Visualizer

The GameController comes with two additional tools within the same Java project. One of them
is the GameStateVisualizer (cf. Fig. 10.21). Its purpose is to show the state of the game to the
audience. This includes the teams playing, the current score, the time remaining, and some other
information. The GameStateVisualizer listens through the network to the GameController and
displays everything of interest.
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Figure 10.22: The LogAnalyzer

For the purpose of testing the network or packages the robots should receive, there is a test mode
which can be switched on or off by pressing F11. In the test mode, the GameStateVisualizer
shows everything that is contained in the packages and how it should be interpreted.

10.3.4 Log Analyzer

The GameController writes some status information and all decisions entered to a log file with
a unique name. So after a competition, hundreds of log files exist, not only the ones of official
games, but also of practice matches, test kick-offs, etc. The LogAnalyzer allows to interactively
select the log files that resulted from official games and then convert from log files to files that
can be imported by a spreadsheet application. The LogAnalyzer also cleans the data, e.g. by
removing decisions that were reverted later, so they do not impede statistics made later.

Right after you launch the LogAnalyzer, it quickly parses each log file and then analyzes some
meta information to make a guess, whether and why a log file may not belong to a real game.
It then lists all logs in a GUI with that guess (cf. Fig. 10.22). While dealing with hundreds of
log-files, you can select the right ones within a few minutes by comparing them to the timetable
of the event. Afterwards a file containing the consolidated information of all the selected logs in
the form of comma separated values can be created.

10.4 Team Communication Monitor

With the start of the Drop-in Player Competition in 2014, a standard communication protocol,
i.e. the SPLStandardMessage, was introduced to allow robots of different teams to exchange
information. While implementing the standard protocol correctly is a necessity for the Drop-in
Player Competition to work, it is also an opportunity for teams to lower the amount of coding
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they have to do to develop debugging tools, because when all teams use the same communication
protocol, the tools they wrote could also be shared more easily. Therefore, B-Human developed
the TeamCommunicationMonitor (TCM) as a standard tool to monitor the network traffic
during SPL games. This project has been partially funded by the RoboCup Federation.

The TCM visualizes all data currently sent by the robots and highlights illegal messages. Fur-
thermore, it uses knowledge about the contents of SPLStandardMessages in order to visualize
them in a 3-D view of the playing field. This makes it also suitable for teams to debug their
network code. Visualized properties of robots are their position and orientation, their fallen and
penalty states (the latter is received from the GameController), where they last saw the ball,
and their player numbers. A screenshot of the TCM can be seen in Fig. 10.23.

In order to display all messages of robots sending packets, the TCM binds sockets to all UDP
ports that may be used by a team as their team number, i.e. ports 10000 to 10099, and listens
for any incoming packets. When a packet is received, it is parsed as an SPLStandardMessage,
marking all fields as invalid that do not contain legal values according to the definition of the
SPLStandardMessage. As the TCM only listens and does not send anything, it may run on
multiple computers in the same network at once without any interferences.

The TCM identifies robots using their IP address and assumes them to be sending on the
port that matches their team number. The team number sent by the robots as part of the
SPLStandardMessage is marked as invalid if it does not match the port on which the messages
are received. For each robot, the TCM holds an internal state containing the last received
message as well as the time stamps of the most recently received messages in order to calculate
the number of messages per second. A robot’s state is discarded if no message was received from
the robot for at least two seconds.

Displaying the 3-D view is done with OpenGL using the JOGL library [1]. The visualization
subsystem is also extensible to enable teams to write plug-ins containing drawings that visualize
data from the non-standardized part of their messages. We have written a plugin to display
perceptions of goals, obstacles, and whistles as well as basic status information of the robots
which our team communicates via the non-standardized message part.

168



10.4. TEAM COMMUNICATION MONITOR B-Human 2016

Besides just visualizing received messages, the TCM also stores all received messages both from
robots and the GameController in log files. These can be replayed later, allowing teams and
organizers to check the communication of robots after the game is over.

The TCM is developed as part of the repository of the GameController and it shares parts of
its code.

After having been successfully used at the RoboCup German Open 2015 to ensure valid messages
from all teams during the Drop-in games, the TCM was publicly released in early June 2015 and
was installed on the referee PC on each SPL field at both RoboCup 2015 and RoboCup 2016.
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Artistic Style: Source code formatting in the AStyle for B-Human text service on macOS.
(http://astyle.sourceforge.net)

AT&T Graphviz: For generating the graphs shown in the options view and the module view
of the simulator.
(http://www.graphviz.org)

ccache: A fast C/C++ compiler cache.
(http://ccache.samba.org)

clang: A compiler front end for the C, C++, Objective-C, and Objective-C++ programming
languages.
(http://clang.1llvm.org)

Eigen: A C++ template library for linear algebra: matrices, vectors, numerical solvers, and
related algorithms.
(http://eigen.tuxfamily.org)

getModKey: For checking whether the shift key is pressed in the Deploy target on macOS.
(http://allancraig.net/index.php?option=com_docman&Itemid=100, not available
anymore)

Id: The GNU linker is used for cross linking on Windows and macOS.
(http://sourceware.org/binutils/docs-2.21/1d)

libjpeg: Used to compress and decompress images from the robot’s camera.
(http://www.ijg.org)

libjpeg-turbo: For the NAO we use an optimized version of the libjpeg library.
(http://libjpeg-turbo.virtualgl.org)
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libgxt: For showing the sliders in the camera calibration view of the simulator.
(https://bitbucket.org/libqxt/libgxt/wiki/Home)

libxml2: For reading simulator’s scene description files.
(http://xmlsoft.org)

mare: Build automation tool and project file generator.
(http://github.com/craflin/mare)

ODE: For providing physics in the simulator.
(http://www.ode.org)

OpenGL Extension Wrangler Library: For determining, which OpenGL extensions are
supported by the platform.
(http://glew.sourceforge.net)

Qt: The GUI framework of the simulator.
(http://www.qt.1io0)

qtpropertybrowser: Extends the Qt framework with a property browser.
(https://github.com/qtproject/qt-solutions/tree/master/qtpropertybrowser)

snappy: Used for the compression of log files.
(http://google.github.io/snappy)
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Appendix A

The Scene Description Language

A.1 EBNF

In the next section the structure of a scene description file is explained by means of an EBNF
representation of the language. In the following, you can find an explanation of the symbols
used.

Symbols surrounded by ?(...)?
Parentheses with question marks mean, that the order of all elements between them
is irrelevant. That means every permutation of elements within those brackets is
allowed. For example: something =7( firstEle secondEle thirdEle )?; can also
be written as something =?( secondEle firstEle thirdEle )? or as something =
?( thirdEle firstEle sencondEle )? and so on.

Symbols surrounded by !

lz,y,...! means, that each rule is required. In fact the exclamation marks should only
underline that all elements between them are absolutely required. In normal EBNF-
Notation a rule like Hinge = ...lbodyClass, axisClass!... can be written as Hinge =

...bodyClass axisClass . . ..

+o. ]+
+[z,y]+ means, that x and y are optional. You could also write somewhat = +[z,y, z]+
as somewhat = [z] [y] [z].

Elements within curly braces are repeatable optional elements. These brackets have the
normal EBNF meaning.

13 2

Terminal symbols are marked with quotation marks.

A.2 Grammar

appearanceClass = Appearance | BoxAppearance | SphereAppearance
| CylinderAppearance | CapsuleAppearance | ComplexAppearance;
axisClass = Axis;
bodyClass = Body;
compoundClass = Compound;
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deflectionClass
extSensorClass

frictionClass
geometryClass

infrastructureClass
intSensorClass
jointClass
lightClass
massClass
materialClass
motorClass
normalsClass
primitiveGroupClass
rotationClass
sceneClass

setClass
solverClass
texCoordsClass
translationClass
userInputClass
verticesClass

Accelerometer
Gyroscope
CollisionSensor

Appearance

BoxAppearance

ComplexAppearance

CapsuleAppearance

CylinderAppearance

SphereAppearance

ApproxDistanceSensor

Camera

DepthImageSensor

SingleDistanceSensor

= Deflection;

Camera | DepthImageSensor | SingleDistanceSensor
ApproxDistanceSensor;

Friction | RollingFriction;

Geometry | BoxGeometry | CylinderGeometry
CapsuleGeometry | SphereGeometry;

Simulation | Include;

Accelerometer | Gyroscope | CollisionSensor;
Hinge | Slider;

Light;

Mass | BoxMass | InertiaMatrixMass | SphereMass;
Material;

ServoMotor | VelocityMotor;

Normals;

Quads | Triangles;

Rotation;

Scene;

Set;

Quicksolver;

TexCoords;

Translation;

UserInput;

Vertices;

"<Accelerometer></Accelerometer>" | "<Accelerometer/>";
"<Gyroscope></Gyroscope>" | "<Gyroscope/>";
"<CollisionSensor>" 7( +[translationClass, rotationClass]+
{geometryClass} )7 "</CollisionSensor>";

"<Appearance>" 7( +[translationClass, rotationClass]+
{setClass | appearanceClass} )7 "</Appearance>";
"<BoxAppearance>" 7( !surfaceClass! +[translationClass,
rotationClass]+ {setClass | appearanceClass} )7
"</BoxAppearance>";

"<ComplexAppearance>" 7( !surfaceClass, verticesClass,
primitiveGroupClass! +[translationClass, rotationClass,
normalsClass, texCoordsClass]+ {setClass | appearanceClass
| primitiveGroupClass} )7 "</ComplexAppearance>";
"<CapsuleAppearance>" 7( !surfaceClass!
+[translationClass, rotationClass]+

{setClass | appearanceClass} )7 "</CapsuleAppearance>";
"<CylinderAppearance>" 7( !surfaceClass!
+[translationClass, rotationClass]+

{setClass | appearanceClass} )? "</CylinderAppearance>";
"<SphereAppearance>" ?7( !surfaceClass!
+[translationClass, rotationClass]+

{setClass | appearanceClass} )7 "</SphereAppearance>";

"<ApproxDistanceSensor>" 7( +[translationClass,
rotationClass]+ )7 "</ApproxDistanceSensor>";
"<Camera>" 7( +[translationClass, rotationClass]+ )7
"</Camera>";

"<DepthImageSensor>" 7( +[translationClass,
rotationClass]+ )7 "</DepthImageSensor>";
"<SingleDistanceSensor>" 7( +[translationClass,
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UserInput
Mass
BoxMass

InertiaMatrixMass

SphereMass

Geometry

BoxGeometry

CylinderGeometry

CapsuleGeometry

SphereGeometry

Axis

Hinge

Slider

Body

Material
Friction
RollingFriction
ServoMotor
VelocityMotor
Simulation

Scene

Compound

rotationClass]+ )7 "</SingleDistanceSensor>";
"<UserInput></UserInput>" | "<UserInput/>";

"<Mass>" ?7( +[translationClass, rotationClass]+
{setClass | massClass} )7 "</Mass>";

"<BoxMass>" 7( +[translationClass, rotationClass]+
{setClass | massClass} )? "</BoxMass>";
"<InertiaMatrixMass>"

?( +[translationClass, rotationClass]+

{setClass | massClass} )? "</InertiaMatrixMass>";
"<SphereMass>" 7( +[translationClass, rotationClass]+
{setClass | massClass} )7 "</SphereMass>"

"<Geometry>" 7( +[translationClass, rotationClass,
materialClass]+ {setClass | geometryClass} )7
"</Geometry>";

"<BoxGeometry>" 7( +[translationClass, rotationClass,
materialClass]+ {setClass | geometryClass} )7
"</BoxGeometry>";

"<CylinderGeometry>"

?( +[translationClass, rotationClass, materialClass]+
{setClass | geometryClass} )7 "</CylinderGeometry>";
"<CapsuleGeometry>"

?( +[translationClass, rotationClass, materialClass]+
{setClass | geometryClass} )7 "</CapsuleGeometry>";
"<SphereGeometry>"

?( +[translationClass, rotationClass, materialClass]+
{setClass | geometryClass} )7 "</SphereGeometry>";

"<Axis>" ?( +[motorClass, deflectionClass]+
{setClass} )7 "</Axis>";

"<Hinge>" 7( !bodyClass, axisClass! +[translationClass,

rotationClass]+ {setClass} )7 "</Hinge>";

"<Slider>" 7( !bodyClass, axisClass! +[translationClass,

rotationClass]+ {setClass} )7 "</Slider>";

"<Body>" 7( !massClass! +[translationClass,

rotationClass]+ {setClass | jointClass | appearanceClass

| geometryClass | massClass | intSensorClass |
extSensorClass} )7 "</Body>";

"<Material>" ?7( {setClass | frictionClass} )7
"</Material>";

"<Friction></Friction>" | "<Friction/>";
"<RollingFriction></RollingFriction>"

"<RollingFriction/>";

"<ServoMotor></ServoMotor>" | "</ServoMotor>";
"<VelocityMotor></VelocityMotor>" | "</VelocityMotor>";
"<Simulation>" !sceneClass! "</Simulation>";

"<Scene>" 7( +[solverClass]+ {setClass | bodyClass
| compoundClass | lightClass} )7 "</Scene>";

"<Compound>" ?7( +[translationClass, rotationClass]+
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{setClass | compoundClass | bodyClass | appearanceClass
| geometryClass | extSensorClass} )7 "</Compound>";

Deflection "<Deflection></Deflection>" | "<Deflection/>";
Include "<Include></Include>" | "<Include/>";

Light "<Light></Light>" | "<Light/>";

Set "<Set></Set>" | "<Set/>";

Rotation "<Rotation></Rotation>" | "<Rotation>";
Translation "<Translation></Translation>" | "<Translation/>";
Normals "<Normals> Normals Definition "</Normals>";

Quads "<Quads>" Quads Definition "</Quads>";

TexCoords "<TexCoords>" TexCoords Definition "</TexCoords>";
Triangles "<Triangles>" Triangles Definition "</Triangles>";
Vertices "<Vertices> Vertices Definition "</Vertices>";

A.3 Structure of a Scene Description File

A.3.1 The Beginning of a Scene File

Every scene file has to start with a <Simulation> tag. Within a Simulation block a Scene
element is required, but there is one exception: files included via <Include href=...> must
start with <Simulation>, but there is no Scene element required. A Scene element specifies
which controller is loaded for this scene via the controller attribute (in our case all scenes set the
controller attribute to SimulatedNao, so that the library SimulatedNao is loaded by SimRobot).
It is recommended to include other specifications per Include before the scene description starts
(compare with BH2016.ros2), but it is not necessary.

A.3.2 The ref Attribute

An element with a name attribute can be referenced by the ref-attribute using its name, i.e.
elements that are needed repeatedly in a scene need to be defined only once. For example there
is only one description of a NAO in its definition file (NaoV4H21.rsi2), but NAOs with different
jersey colors are needed on a field. For each NAO on the field, there is a reference to the original
model. The positioning of the NAOs is done by Translation and Rotation elements. The color
is set by a Set element, which is described below.

<Body name="Nao">
<Set name="NaoColor" value="blue"/>

</Body>

<Body ref="Nao" name="BlueNao">
<Translation x="-2" y = "0.4" z="320mm"/>
</Body>
<Body ref="Nao" name="RedNao">
<Translation x="-1.5" y="-0.9" z="320mm"/>
<Rotation z="180degree"/>
<Set name="NaoColor" value="red"/>
</Body>
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A.3.3 Placeholders and Set Element

A placeholder has to start with a $ followed by a arbitrary string. A placeholder is replaced
by the definition specified within the corresponding Set element. The attribute name of a Set
elements specifies the placeholder, which is replaced by the value specified by the attribute value
of the Set element.

In the following code example, the color of NAQ’s jersey is set by a Set element. Within the
definition of the body Nao named RedNao, the Set element sets the placeholder color to the
value red. The placeholder named NaoColor of Nao, which is defined in the general definition of
a NAQ, is replaced by red in all elements of the model, also in the ones that are just referenced,
such as the appearances of individual body parts. So the Surface elements reference a Surface
named nao-red.

<ComplexAppearance name="CHEST_COORD_MACROCOL">
<Surface ref="nao-$NaoColor"/>
<Vertices ref="CHEST_COORD"/>

</ComplexAppearance>

<Surface name="nao-red" diffuseColor="rgb(100%, 0%, 100%)" ambientColor="rgb
(20%, 12%, 12%)"/>

A.4 Attributes

A.4.1 infrastructureClass

e Include This tag includes a file specified by href. The included file has to start with
< Simulation >.

— href

¢ Simulation
This element does not have any attributes.

A.4.2 setClass

e Set This element sets a placeholder referenced by the attribute name to the value specified
by the attribute value
— name The name of a placeholder.
* Use: required
* Range: String
— value The value the placeholder is set.

x Use: required

* Range: String
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A.4.3 sceneClass

e Scene Describes a scene and specifies the controller of the simulation.

— name The identifier of the scene object (must always be RoboCup).
x Use: optional
*+ Range: String

— controller The name of the controller library (without prefix lib; in our case it is
SimulatedNao).

x Use: optional

* Range: String
— color The background color of the scene, see A.4.23.
— stepLength

* Units: s

*x Default: 0.01s

*x Use: optional
* Range: (0, MAXFLOAT)
— gravity Sets the gravity in this scene.
* Units: "%, 3
* Default: —9.806655
x Use: optional
— CFM Sets ODE cfm (constraint force mixing) value.
x Default: -1
x Use: optional
+x Range: [0, 1]
— ERP Set ODE erp (error reducing parameter) value.
* Default: -1
x Use: optional
«x Range: [0, 1]
— contactSoftERP Sets another erp value for colliding surfaces.
x Default: -1
x Use: optional
+ Range: [0, 1]
— contactSoft CFM Sets another cfm value for colliding surfaces.

* Default: -1
x Use: optional
* Range: [0, 1]

A.4.4 solverClass

e Quicksolver

— iterations

* Default: -1

180



A4. ATTRIBUTES B-Human 2016

x Use: optional

* Range: (0, MAXINTEGER]
— skip

x Default: 1

x Use: optional
* Range: (0, MAXINTEGER]

A.4.5 bodyClass

e Body Specifies an object that has a mass and can move.

— name The name of the body.

x Use: optional
* Range: String

A.4.6 compoundClass

e Compound A Compound is a non-moving object. In contrast to the Body element a
compound does not require a Mass element as child.
— name The name of the compound.

x Use: optional
* Range: String

A.4.7 jointClass

e Hinge Defines a hinge. To define the axis of the hinge, this element requires an axis
element as child element. Furthermore, a body element is required to which the hinge is
connected.

— name The name of the hinge.

x Use: optional
* Range: String

e Slider Defines a slider. Requires an axis element to specify the axis and a body element,
which defines the body this slider is connected to.

— name The name of the slider.

x Use: optional
* Range: String

A.4.8 massClass

e Mass All this mass classes define the mass of an object.

— name The name of the mass declaration.

x Use: optional
x Range: String
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e BoxMass

— name The name of the boxMass declaration.
x Use: optional
* Range: String
— value The mass of the box.
x Units: g, kg
x Use: required
* Range: [0, MAXFLOAT]

width The width of the box.

* Units: mm, cm, dm, m, km

x Use: required
« Range: [-MAXFLOAT, MAXFLOAT)

height The height of the box.

* Units: mm, cm, dm, m, km

x Use: required
x Range: [-MAXFLOAT, MAXFLOAT)

— depth The depth of the box.
% Units: mm, cm, dm, m, km
* Use: required
+x Range: [-MAXFLOAT, MAXFLOAT)

e SphereMass

— name The name of the sphereMass declaration.
x Use: optional
* Range: String
— value The mass of the sphere.
* Units: g, kg
x Use: required
* Range: [0, MAXFLOAT]
— radius The radius of the sphere.
% Units: mm, cm, dm, m, km

* Use: required
« Range: [0, MAXFLOAT)]

e InertiaMatrixMass The matrix of the mass moment of inertia. Note that this matrix is
a symmetric matrix.

— name The name of the InertiaMatrixMass declaration.
x Use: optional
* Range: String

— value The total mass.
x Units: g, kg
x Use: required
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« Range: [0, MAXFLOAT]
x The center of mass in x direction.
* Units: mm, cm, dm, m, km
* Default: 0
x Use: optional
+x Range: [-MAXFLOAT, MAXFLOAT)
y The center of mass in y direction.
Units: mm, cm, dm, m, km
Default: 0
Use: optional

+x Range: [-MAXFLOAT, MAXFLOAT)

z The center of mass in z direction.

* K ¥

* Units: mm, cm, dm, m, km

* Default: 0

x Use: optional

«x Range: [-MAXFLOAT, MAXFLOAT)

ixx Moment of inertia around the x-axis when the object is rotated around the x-axis.

* Units: g * mm?2, kg m?

x Use: required
x Range: [-MAXFLOAT, MAXFLOAT)

ixy Moment of inertia around the y-axis when the object is rotated around the x-axis.

« Units: g« mm?, kg * m?

* Default: 0
x Use: optional
x Range: [-MAXFLOAT, MAXFLOAT)

ixz Moment of inertia around the z-axis when the object is rotated around the x-axis.

« Units: g« mm?, kg * m?

* Default: 0
x Use: optional
«* Range: [-MAXFLOAT, MAXFLOAT)

iyy Moment of inertia around the y-axis when the object is rotated around the y-axis.

« Units: g« mm?, kg * m?

x Use: required
x Range: [-MAXFLOAT, MAXFLOAT)

iyz Moment of inertia around the z-axis when the object is rotated around the y-axis
x Units: g x mm?, kg * m?

*x Default: 0

x Use: optional

x Range: [-MAXFLOAT, MAXFLOAT)

izz Moment of inertia around the z-axis when the object is rotated around the z-axis.

x Units: g x mm?, kg * m?
* Use: required

« Range: [-MAXFLOAT, MAXFLOAT)
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A.4.9 geometryClass

e Geometry Elements of geometryClass specify the physical structure of an object.

— name

x Use: optional
* Range: String

e BoxGeometry

color A color definition, see A.4.23

name
x Use: optional
* Range: String

— width The width of the box.

* Units: mm, cm, dm, m, km

* Use: required

x Range: [-MAXFLOAT, MAXFLOAT)

height The height of the box.

% Units: mm, cm, dm, m, km

x Use: required
x Range: [-MAXFLOAT, MAXFLOAT)

depth The depths of the box.

x Units: mm, cm, dm, m, km

x Use: required
* Range: [-MAXFLOAT, MAXFLOAT)

e SphereGeometry

— color A color definition, see A.4.23
— name
x Use: optional
*+ Range: String
— radius The radius of the sphere.
* Units: mm, cm, dm, m, km
* Use: required
x Range: [-MAXFLOAT, MAXFLOAT)

e CylinderGeometry

— color A color definition, see A.4.23
— name

x Use: optional

* Range: String
— radius The radius of the cylinder.

% Units: mm, cm, dm, m, km
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x Use: required
* Range: [-MAXFLOAT, MAXFLOAT)

— height The height of the cylinder.
* Units: mm, cm, dm, m, km
x Use: required
* Range: [-MAXFLOAT, MAXFLOAT)

e CapsuleGeometry

— color A color definition, see A.4.23

name
x Use: optional
*+ Range: String

— radius The radius of the capsule.

* Units: mm, cm, dm, m, km

x Use: required

x Range: [-MAXFLOAT, MAXFLOAT)

height The height of the capsule.

* Units: mm, cm, dm, m, km
x Use: required
x Range: [-MAXFLOAT, MAXFLOAT)

A.4.10 materialClass

e Material Specifies a material.
— Use: required

— Range: String

— name The name of the material.

x Use: optional
* Range: String

A.4.11 frictionClass

e Friction Specifies the friction between this material and an other material.

— material The other material the friction belongs to.
x Use: required
* Range: String

— value The value of the friction.

* Use: required
* Range: [0, MAXFLOAT]

¢ RollingFriction Specifies the rolling friction of an material.

— material The other material the rolling friction belongs to.
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x Use: required
* Range: String
— value The value of the rolling friction.

x Use: required
* Range: [0, MAXFLOAT)

A.4.12 appearanceClass

e Appearance The appearance elements specify only shapes for the surfaces, so all appear-
ance elements require a Surface specification. Appearance elements do not have a physical
structure. Therefore a geometry has to be defined.

— name The name of this appearance.

* Use: optional
* Range: String

e BoxAppearance
— name The name of this appearance. To specify how it should look like an element of

the type surfaceClass is needed.
x Use: optional
* Range: String

width The width of the box.

* Units: mm, cm, dm, m, km

x Use: required

+* Range: [-MAXFLOAT, MAXFLOAT)
— height The height of the box.

% Units: mm, cm, dm, m, km

x Use: required
«x Range: [-MAXFLOAT, MAXFLOAT)

depth The depth of the box.

% Units: mm, cm, dm, m, km

x Use: required
* Range: [-MAXFLOAT, MAXFLOAT)

e SphereAppearance

— name
* Use: optional
* Range: String
— radius The radius of the sphere.
% Units: mm, cm, dm, m, km
x Use: required
«x Range: [-MAXFLOAT, MAXFLOAT)

e CylinderAppearance

186



A4. ATTRIBUTES B-Human 2016

— name
x Use: optional
* Range: String
— height The height of the cylinder.
* Units: mm, cm, dm, m, km
x Use: required
* Range: [-MAXFLOAT, MAXFLOAT)

— radius The radius of the cylinder.
x Units: mm, cm, dm, m, km

x Use: required
* Range: [-MAXFLOAT, MAXFLOAT)

e CapsuleAppearance

— name
x Use: optional
* Range: String
— height The height of the capsule.
% Units: mm, cm, dm, m, km
x Use: required
x Range: [-MAXFLOAT, MAXFLOAT)

— radius The radius of the capsule.
* Units: mm, cm, dm, m, km

x Use: required
x Range: [-MAXFLOAT, MAXFLOAT)

e ComplexAppearance

— nhame

x Use: optional
* Range: String

A.4.13 translationClass

e Translation Specifies a translation of an object.

— x Translation in x direction.
% Units: mm, cm, dm, m, km
* Default: Om
x Use: optional
+x Range: [-MAXFLOAT, MAXFLOAT)

— y Translation in y direction.
% Units: mm, cm, dm, m, km
* Default: Om
x Use: optional

187



B-Human 2016 A.4. ATTRIBUTES

« Range: [-MAXFLOAT, MAXFLOAT)
— z Translation in z direction.

% Units: mm, cm, dm, m, km

x Default: Om

x Use: optional
x Range: [-MAXFLOAT, MAXFLOAT)

A.4.14 rotationClass

e Rotation Specifies the rotation of an object.

— x Rotation around the x-axis.

* Units: radian, degree
* Default: Odegree
x Use: optional

— vy Rotation around the y-axis.

* Units: radian, degree
* Default: Odegree
x Use: optional

— 7z Rotation around the z-axis.

* Units: radian, degree
* Default: Odegree
*x Use: optional

A.4.15 axisClass

e Axis Specifies the axis of a joint.

- X
x Default: 0
x Use: optional
x Range: [-MAXFLOAT, MAXFLOAT]

x Default: 0
x Use: optional
x Range: [-MAXFLOAT, MAXFLOAT]

* Default: 0
x Use: optional
x Range: [-MAXFLOAT, MAXFLOAT)

— cfm

* Default: -1
x Use: optional
+x Range: [0, 1]
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A.4.16 deflectionClass

e Deflection Specifies the maximum and minimum deflection of a joint.

— min The minimal deflection.

x Use: required
x Range: [-MAXFLOAT, MAXFLOAT)

max The maximal deflection.

*x Use: required
* Range: [-MAXFLOAT, MAXFLOAT)
— init The initial deflection.

* Default: 0
x Use: optional
* Range: [-MAXFLOAT, MAXFLOAT)

— stopCFM
* Default: -1
x Use: optional
* Range: [0, 1]
— stopERP
x Default: -1

x Use: optional
* Range: [0, 1]

A.4.17 motorClass

e ServoMotor

max Velocity The maximum velocity of this motor.
« Units: radian/s, degree/s
x Use: required
x Range: [-MAXFLOAT, MAXFLOAT)

— maxForce The maximum force of this motor.

* Units: N

x Use: required
x Range: [-MAXFLOAT, MAXFLOAT)

— p The p value of the motor’s pid interface.

*x Use: required
x Range: [-MAXFLOAT, MAXFLOAT)

— 1 The i value of the motor’s pid interface.

* Default: 0
x Use: optional
* Range: [-MAXFLOAT, MAXFLOAT)

d The d value of the motor’s pid interface.
x Default: 0
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x Use: optional
x Range: [-MAXFLOAT, MAXFLOAT)

e VelocityMotor

— maxVelocity The maximum velocity of this motor.
« Units: radian/s, degree/s
x Use: required
* Range: [-MAXFLOAT, MAXFLOAT)
— maxForce The maximum force of this motor.
* Units: N

* Use: required
* Range: [-MAXFLOAT, MAXFLOAT)

A.4.18 surfaceClass

e Surface Defines the appearance of a surface.

— diffuseColor The diffuse color, see A.4.23.
— ambientColor The ambient color of the light, see A.4.23.
— specularColor The specular color, see A.4.23.
— emissionColor The emitted color of the light, see A.4.23.
— shininess The shininess value.

* Default: 0.f

x Use: optional

+ Range: [0.f,128.f]
— diffuseTexture A texture.

x Use: optional

x Range: String

A.4.19 intSensorClass

e Gyroscope Mounts a gyroscope on a body.

— name The name of the gyroscope.
+x Use: optional
* Range: String

e Accelerometer Mounts an accelerometer on a body.

— name The name of the accelerometer.
x Use: optional
* Range: String

e CollisionSensor A collision sensor which uses geometries to detect collisions with other
objects.

— name The name of the collision sensor.
x Use: optional
x Range: String
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A.4.20 extSensorClass

e Camera Mounts a camera on a body.

— name Name of the camera.
x Use: optional
* Range: String
— imageWidth The width of the camera image.

x Use: required
*+ Range: Integer > 0

— imageHeight The height of the camera image.

* Use: required
*+ Range: Integer > 0

— angleX Opening angle in x.
* Units: degree, radian
x Use: required
* Range: Float > 0

— angleY Opening angle in y.
+x Units: degree, radian
x Use: required
+ Range: Float > 0

¢ SingleDistanceSensor

— name The name of the sensor.
x Use: optional
* Range: String
— min The minimum distance this sensor can measure.

* Default: 0
x Use: optional
x Range: [-MAXFLOAT, MAXFLOAT)

— max The maximum distance this sensor can measure.

x Default: 999999.f
x Use: optional
x Range: [-MAXFLOAT, MAXFLOAT)

e ApproxDistanceSensor

— name The name of the sensor.
x Use: optional
* Range: String
— min The minimum distance this sensor can measure.

*x Default: 0
x Use: optional
«x Range: [-MAXFLOAT, MAXFLOAT)
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— max The maximum distance this sensor can measure.

* Default: 999999.f
x Use: optional
x Range: [-MAXFLOAT, MAXFLOAT)

— angleX The maximum angle in x-direction the ray of the sensor can spread.

x Units: degree, radian
* Use: required
+ Range: Float > 0

— angleY The maximum angle in y-direction the ray of the sensor can spread.

x Units: degree, radian
x Use: required
*+ Range: Float > 0

e DepthImageSensor

name
x Use: optional
* Range: String
imageWidth The width of the image.
x Use: required
*+ Range: Integer > 0
imageHeight The height of the image.
x Default: 1
x Use: optional
*+ Range: Integer > 0
angleX
* Units: degree, radian
x Use: required
+ Range: Float > 0
angleY
* Units: degree, radian
x Use: required
+ Range: Float > 0
min The minimum distance this sensor can measure.
* Default: 0

x Use: optional
* Range: [-MAXFLOAT, MAXFLOAT)

max The maximum distance this sensor can measure.

* Default: 999999.f

x Use: optional

x Range: [-MAXFLOAT, MAXFLOAT]
projection The kind of projection.

x Default: perspective

x Use: optional

*+ Range: perspective, spheric
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A.4.21 wuserInputClass

e UserInput Combines an actuator and a sensor. The values set for the actuator are
directly returned by the sensor. Using the actuator view, this allows to feed user input to
the controller.

name Name of the user input.

x Use: optional
* Range: String

type The kind of data for which user input is provided.

x Default: length
x Use: optional
x Range: angle, angularVelocity, length, velocity, acceleration

— min The minimum value that can be set.

* Units: Units matching the type
x Use: required
x Range: [-MAXFLOAT, MAXFLOAT]

max The maximum value that can be set.

* Units: Units matching the type
x Use: required
x Range: [-MAXFLOAT, MAXFLOAT)
— default The value returned by the sensor if no value is set in the actuator view.
* Units: Units matching the type
Default: 0
Use: optional
Range: [-MAXFLOAT, MAXFLOAT)

*

*

*

A.4.22 lightClass

e Light Definition of a light source.

diffuseColor Diffuse color definition, see A.4.23

— ambientColor Ambient color definition, see A.4.23

specularColor Specular color definition, see A.4.23

x The x position of the light source.
% Units: mm, cm, dm, m, km
x Use: optional
*+ Range: o
— y The y position of the light source.
* Units: mm, cm, dm, m, km
x Use: optional
*+ Range: o

z The z position of the light source.

% Units: mm, cm, dm, m, km
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x Use: optional
+ Range: o
— constantAttenuation The constant attenuation of the light.

x Use: optional
*x Range: [0.f, MAXFLOAT)

— linearAttenuation The linear attenuation of the light.

x Use: optional
« Range: [0.f, MAXFLOAT]

— quadraticAttenuation The quadratic attenuation of the light.

x Use: optional

* Range: [0.f, MAXFLOAT)
— spotCutoff

* Units: mm, cm, dm, m, km

x Use: optional

+x Range: [-MAXFLOAT, MAXFLOAT)
— spotDirectionX The x direction of the light spot.

* Units: mm, cm, dm, m, km

x Use: optional

x Range: [-MAXFLOAT, MAXFLOAT)
— spotDirectionY The y direction of the light spot.

* Units: mm, cm, dm, m, km

x Use: optional

+* Range: [-MAXFLOAT, MAXFLOAT)

— spotDirectionZ The z direction of the light spot.
x Units: mm, cm, dm, m, km
x Use: optional
x Range: [-MAXFLOAT, MAXFLOAT)

— spotExponent

x Use: optional
+x Range: [0.f,128.f]

A.4.23 Color Specification

There two ways of specifying a color for a color-attribute.

e HTML-Style To specify a color in html-style the first sign of the color value has to be a
# followed by hexadecimal values for red, blue, green (and maybe a fourth value for the
alpha-channel. These values can be one-digit or two-digits, but not mixed.

— #rgb e.g. #f00

— #rgba e.g. #0f0a

— Frrggbb e.g. #£80011

— #Hrrggbbaa e.g. #1038bc

194



A4. ATTRIBUTES B-Human 2016

e CSS-Style A css color starts with rgb (or rgba) followed by the values for red, green, blue
put into brackets and separated by commas. The values for r, g, b has to be between 0
and 255 or between 0% and 100%, the a-value has to be between 0 and 1.

— rghb(r, g, b) e.g. rgh(255, 128, 0)
— rgba(r, g, b, a) e.g. rgba(0%, 50%, 75%, 0.75)
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Appendix B

Camera Kernel Module

The default kernel module for the NAO cameras bundled by SoftBank Robotics has some dis-
advantages. In low light situations the camera image can turn dark. This happens frequently
in duelling situations for the lower camera, when the robots stand close to one another and
produce a lot of shadows. Additionally, when playing with auto exposure, the power line fre-
quency needs to be known to the camera in order to avoid flicker from lights. Apart from those
problem fixes two new features where added to the driver. A gamma correction setting; and
most importantly a one time auto white balance. For a detailed description on all settings, and
on how to build the module, please read the README.md of the BKernel repository on GitHub
at https://github.com/bhuman/BKernel.
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